mirror of
https://github.com/torvalds/linux.git
synced 2024-11-18 18:11:56 +00:00
fb1755a645
By splitting the b_fspriv field into two different fields (b_log_item and b_li_list). It's possible to get rid of an old ABI workaround, by using the new b_log_item field to store xfs_buf_log_item separated from the log items attached to the buffer, which will be linked in the new b_li_list field. This way, there is no more need to reorder the log items list to place the buf_log_item at the beginning of the list, simplifying a bit the logic to handle buffer IO. This also opens the possibility to change buffer's log items list into a proper list_head. b_log_item field is still defined as a void *, because it is still used by the log buffers to store xlog_in_core structures, and there is no need to add an extra field on xfs_buf just for xlog_in_core. Signed-off-by: Carlos Maiolino <cmaiolino@redhat.com> Reviewed-by: Bill O'Donnell <billodo@redhat.com> Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com> [darrick: minor style changes] Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
5031 lines
131 KiB
C
5031 lines
131 KiB
C
/*
|
|
* Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
|
|
* All Rights Reserved.
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope that it would be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write the Free Software Foundation,
|
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
|
|
*/
|
|
#include "xfs.h"
|
|
#include "xfs_fs.h"
|
|
#include "xfs_shared.h"
|
|
#include "xfs_format.h"
|
|
#include "xfs_log_format.h"
|
|
#include "xfs_trans_resv.h"
|
|
#include "xfs_bit.h"
|
|
#include "xfs_mount.h"
|
|
#include "xfs_defer.h"
|
|
#include "xfs_inode.h"
|
|
#include "xfs_trans.h"
|
|
#include "xfs_inode_item.h"
|
|
#include "xfs_buf_item.h"
|
|
#include "xfs_btree.h"
|
|
#include "xfs_errortag.h"
|
|
#include "xfs_error.h"
|
|
#include "xfs_trace.h"
|
|
#include "xfs_cksum.h"
|
|
#include "xfs_alloc.h"
|
|
#include "xfs_log.h"
|
|
|
|
/*
|
|
* Cursor allocation zone.
|
|
*/
|
|
kmem_zone_t *xfs_btree_cur_zone;
|
|
|
|
/*
|
|
* Btree magic numbers.
|
|
*/
|
|
static const uint32_t xfs_magics[2][XFS_BTNUM_MAX] = {
|
|
{ XFS_ABTB_MAGIC, XFS_ABTC_MAGIC, 0, XFS_BMAP_MAGIC, XFS_IBT_MAGIC,
|
|
XFS_FIBT_MAGIC, 0 },
|
|
{ XFS_ABTB_CRC_MAGIC, XFS_ABTC_CRC_MAGIC, XFS_RMAP_CRC_MAGIC,
|
|
XFS_BMAP_CRC_MAGIC, XFS_IBT_CRC_MAGIC, XFS_FIBT_CRC_MAGIC,
|
|
XFS_REFC_CRC_MAGIC }
|
|
};
|
|
|
|
uint32_t
|
|
xfs_btree_magic(
|
|
int crc,
|
|
xfs_btnum_t btnum)
|
|
{
|
|
uint32_t magic = xfs_magics[crc][btnum];
|
|
|
|
/* Ensure we asked for crc for crc-only magics. */
|
|
ASSERT(magic != 0);
|
|
return magic;
|
|
}
|
|
|
|
/*
|
|
* Check a long btree block header. Return the address of the failing check,
|
|
* or NULL if everything is ok.
|
|
*/
|
|
xfs_failaddr_t
|
|
__xfs_btree_check_lblock(
|
|
struct xfs_btree_cur *cur,
|
|
struct xfs_btree_block *block,
|
|
int level,
|
|
struct xfs_buf *bp)
|
|
{
|
|
struct xfs_mount *mp = cur->bc_mp;
|
|
xfs_btnum_t btnum = cur->bc_btnum;
|
|
int crc = xfs_sb_version_hascrc(&mp->m_sb);
|
|
|
|
if (crc) {
|
|
if (!uuid_equal(&block->bb_u.l.bb_uuid, &mp->m_sb.sb_meta_uuid))
|
|
return __this_address;
|
|
if (block->bb_u.l.bb_blkno !=
|
|
cpu_to_be64(bp ? bp->b_bn : XFS_BUF_DADDR_NULL))
|
|
return __this_address;
|
|
if (block->bb_u.l.bb_pad != cpu_to_be32(0))
|
|
return __this_address;
|
|
}
|
|
|
|
if (be32_to_cpu(block->bb_magic) != xfs_btree_magic(crc, btnum))
|
|
return __this_address;
|
|
if (be16_to_cpu(block->bb_level) != level)
|
|
return __this_address;
|
|
if (be16_to_cpu(block->bb_numrecs) >
|
|
cur->bc_ops->get_maxrecs(cur, level))
|
|
return __this_address;
|
|
if (block->bb_u.l.bb_leftsib != cpu_to_be64(NULLFSBLOCK) &&
|
|
!xfs_btree_check_lptr(cur, be64_to_cpu(block->bb_u.l.bb_leftsib),
|
|
level + 1))
|
|
return __this_address;
|
|
if (block->bb_u.l.bb_rightsib != cpu_to_be64(NULLFSBLOCK) &&
|
|
!xfs_btree_check_lptr(cur, be64_to_cpu(block->bb_u.l.bb_rightsib),
|
|
level + 1))
|
|
return __this_address;
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/* Check a long btree block header. */
|
|
static int
|
|
xfs_btree_check_lblock(
|
|
struct xfs_btree_cur *cur,
|
|
struct xfs_btree_block *block,
|
|
int level,
|
|
struct xfs_buf *bp)
|
|
{
|
|
struct xfs_mount *mp = cur->bc_mp;
|
|
xfs_failaddr_t fa;
|
|
|
|
fa = __xfs_btree_check_lblock(cur, block, level, bp);
|
|
if (unlikely(XFS_TEST_ERROR(fa != NULL, mp,
|
|
XFS_ERRTAG_BTREE_CHECK_LBLOCK))) {
|
|
if (bp)
|
|
trace_xfs_btree_corrupt(bp, _RET_IP_);
|
|
XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, mp);
|
|
return -EFSCORRUPTED;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Check a short btree block header. Return the address of the failing check,
|
|
* or NULL if everything is ok.
|
|
*/
|
|
xfs_failaddr_t
|
|
__xfs_btree_check_sblock(
|
|
struct xfs_btree_cur *cur,
|
|
struct xfs_btree_block *block,
|
|
int level,
|
|
struct xfs_buf *bp)
|
|
{
|
|
struct xfs_mount *mp = cur->bc_mp;
|
|
xfs_btnum_t btnum = cur->bc_btnum;
|
|
int crc = xfs_sb_version_hascrc(&mp->m_sb);
|
|
|
|
if (crc) {
|
|
if (!uuid_equal(&block->bb_u.s.bb_uuid, &mp->m_sb.sb_meta_uuid))
|
|
return __this_address;
|
|
if (block->bb_u.s.bb_blkno !=
|
|
cpu_to_be64(bp ? bp->b_bn : XFS_BUF_DADDR_NULL))
|
|
return __this_address;
|
|
}
|
|
|
|
if (be32_to_cpu(block->bb_magic) != xfs_btree_magic(crc, btnum))
|
|
return __this_address;
|
|
if (be16_to_cpu(block->bb_level) != level)
|
|
return __this_address;
|
|
if (be16_to_cpu(block->bb_numrecs) >
|
|
cur->bc_ops->get_maxrecs(cur, level))
|
|
return __this_address;
|
|
if (block->bb_u.s.bb_leftsib != cpu_to_be32(NULLAGBLOCK) &&
|
|
!xfs_btree_check_sptr(cur, be32_to_cpu(block->bb_u.s.bb_leftsib),
|
|
level + 1))
|
|
return __this_address;
|
|
if (block->bb_u.s.bb_rightsib != cpu_to_be32(NULLAGBLOCK) &&
|
|
!xfs_btree_check_sptr(cur, be32_to_cpu(block->bb_u.s.bb_rightsib),
|
|
level + 1))
|
|
return __this_address;
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/* Check a short btree block header. */
|
|
STATIC int
|
|
xfs_btree_check_sblock(
|
|
struct xfs_btree_cur *cur,
|
|
struct xfs_btree_block *block,
|
|
int level,
|
|
struct xfs_buf *bp)
|
|
{
|
|
struct xfs_mount *mp = cur->bc_mp;
|
|
xfs_failaddr_t fa;
|
|
|
|
fa = __xfs_btree_check_sblock(cur, block, level, bp);
|
|
if (unlikely(XFS_TEST_ERROR(fa != NULL, mp,
|
|
XFS_ERRTAG_BTREE_CHECK_SBLOCK))) {
|
|
if (bp)
|
|
trace_xfs_btree_corrupt(bp, _RET_IP_);
|
|
XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, mp);
|
|
return -EFSCORRUPTED;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Debug routine: check that block header is ok.
|
|
*/
|
|
int
|
|
xfs_btree_check_block(
|
|
struct xfs_btree_cur *cur, /* btree cursor */
|
|
struct xfs_btree_block *block, /* generic btree block pointer */
|
|
int level, /* level of the btree block */
|
|
struct xfs_buf *bp) /* buffer containing block, if any */
|
|
{
|
|
if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
|
|
return xfs_btree_check_lblock(cur, block, level, bp);
|
|
else
|
|
return xfs_btree_check_sblock(cur, block, level, bp);
|
|
}
|
|
|
|
/* Check that this long pointer is valid and points within the fs. */
|
|
bool
|
|
xfs_btree_check_lptr(
|
|
struct xfs_btree_cur *cur,
|
|
xfs_fsblock_t fsbno,
|
|
int level)
|
|
{
|
|
if (level <= 0)
|
|
return false;
|
|
return xfs_verify_fsbno(cur->bc_mp, fsbno);
|
|
}
|
|
|
|
/* Check that this short pointer is valid and points within the AG. */
|
|
bool
|
|
xfs_btree_check_sptr(
|
|
struct xfs_btree_cur *cur,
|
|
xfs_agblock_t agbno,
|
|
int level)
|
|
{
|
|
if (level <= 0)
|
|
return false;
|
|
return xfs_verify_agbno(cur->bc_mp, cur->bc_private.a.agno, agbno);
|
|
}
|
|
|
|
#ifdef DEBUG
|
|
/*
|
|
* Check that a given (indexed) btree pointer at a certain level of a
|
|
* btree is valid and doesn't point past where it should.
|
|
*/
|
|
static int
|
|
xfs_btree_check_ptr(
|
|
struct xfs_btree_cur *cur,
|
|
union xfs_btree_ptr *ptr,
|
|
int index,
|
|
int level)
|
|
{
|
|
if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
|
|
XFS_WANT_CORRUPTED_RETURN(cur->bc_mp,
|
|
xfs_btree_check_lptr(cur,
|
|
be64_to_cpu((&ptr->l)[index]), level));
|
|
} else {
|
|
XFS_WANT_CORRUPTED_RETURN(cur->bc_mp,
|
|
xfs_btree_check_sptr(cur,
|
|
be32_to_cpu((&ptr->s)[index]), level));
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Calculate CRC on the whole btree block and stuff it into the
|
|
* long-form btree header.
|
|
*
|
|
* Prior to calculting the CRC, pull the LSN out of the buffer log item and put
|
|
* it into the buffer so recovery knows what the last modification was that made
|
|
* it to disk.
|
|
*/
|
|
void
|
|
xfs_btree_lblock_calc_crc(
|
|
struct xfs_buf *bp)
|
|
{
|
|
struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
|
|
struct xfs_buf_log_item *bip = bp->b_log_item;
|
|
|
|
if (!xfs_sb_version_hascrc(&bp->b_target->bt_mount->m_sb))
|
|
return;
|
|
if (bip)
|
|
block->bb_u.l.bb_lsn = cpu_to_be64(bip->bli_item.li_lsn);
|
|
xfs_buf_update_cksum(bp, XFS_BTREE_LBLOCK_CRC_OFF);
|
|
}
|
|
|
|
bool
|
|
xfs_btree_lblock_verify_crc(
|
|
struct xfs_buf *bp)
|
|
{
|
|
struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
|
|
struct xfs_mount *mp = bp->b_target->bt_mount;
|
|
|
|
if (xfs_sb_version_hascrc(&mp->m_sb)) {
|
|
if (!xfs_log_check_lsn(mp, be64_to_cpu(block->bb_u.l.bb_lsn)))
|
|
return false;
|
|
return xfs_buf_verify_cksum(bp, XFS_BTREE_LBLOCK_CRC_OFF);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* Calculate CRC on the whole btree block and stuff it into the
|
|
* short-form btree header.
|
|
*
|
|
* Prior to calculting the CRC, pull the LSN out of the buffer log item and put
|
|
* it into the buffer so recovery knows what the last modification was that made
|
|
* it to disk.
|
|
*/
|
|
void
|
|
xfs_btree_sblock_calc_crc(
|
|
struct xfs_buf *bp)
|
|
{
|
|
struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
|
|
struct xfs_buf_log_item *bip = bp->b_log_item;
|
|
|
|
if (!xfs_sb_version_hascrc(&bp->b_target->bt_mount->m_sb))
|
|
return;
|
|
if (bip)
|
|
block->bb_u.s.bb_lsn = cpu_to_be64(bip->bli_item.li_lsn);
|
|
xfs_buf_update_cksum(bp, XFS_BTREE_SBLOCK_CRC_OFF);
|
|
}
|
|
|
|
bool
|
|
xfs_btree_sblock_verify_crc(
|
|
struct xfs_buf *bp)
|
|
{
|
|
struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
|
|
struct xfs_mount *mp = bp->b_target->bt_mount;
|
|
|
|
if (xfs_sb_version_hascrc(&mp->m_sb)) {
|
|
if (!xfs_log_check_lsn(mp, be64_to_cpu(block->bb_u.s.bb_lsn)))
|
|
return __this_address;
|
|
return xfs_buf_verify_cksum(bp, XFS_BTREE_SBLOCK_CRC_OFF);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static int
|
|
xfs_btree_free_block(
|
|
struct xfs_btree_cur *cur,
|
|
struct xfs_buf *bp)
|
|
{
|
|
int error;
|
|
|
|
error = cur->bc_ops->free_block(cur, bp);
|
|
if (!error) {
|
|
xfs_trans_binval(cur->bc_tp, bp);
|
|
XFS_BTREE_STATS_INC(cur, free);
|
|
}
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* Delete the btree cursor.
|
|
*/
|
|
void
|
|
xfs_btree_del_cursor(
|
|
xfs_btree_cur_t *cur, /* btree cursor */
|
|
int error) /* del because of error */
|
|
{
|
|
int i; /* btree level */
|
|
|
|
/*
|
|
* Clear the buffer pointers, and release the buffers.
|
|
* If we're doing this in the face of an error, we
|
|
* need to make sure to inspect all of the entries
|
|
* in the bc_bufs array for buffers to be unlocked.
|
|
* This is because some of the btree code works from
|
|
* level n down to 0, and if we get an error along
|
|
* the way we won't have initialized all the entries
|
|
* down to 0.
|
|
*/
|
|
for (i = 0; i < cur->bc_nlevels; i++) {
|
|
if (cur->bc_bufs[i])
|
|
xfs_trans_brelse(cur->bc_tp, cur->bc_bufs[i]);
|
|
else if (!error)
|
|
break;
|
|
}
|
|
/*
|
|
* Can't free a bmap cursor without having dealt with the
|
|
* allocated indirect blocks' accounting.
|
|
*/
|
|
ASSERT(cur->bc_btnum != XFS_BTNUM_BMAP ||
|
|
cur->bc_private.b.allocated == 0);
|
|
/*
|
|
* Free the cursor.
|
|
*/
|
|
kmem_zone_free(xfs_btree_cur_zone, cur);
|
|
}
|
|
|
|
/*
|
|
* Duplicate the btree cursor.
|
|
* Allocate a new one, copy the record, re-get the buffers.
|
|
*/
|
|
int /* error */
|
|
xfs_btree_dup_cursor(
|
|
xfs_btree_cur_t *cur, /* input cursor */
|
|
xfs_btree_cur_t **ncur) /* output cursor */
|
|
{
|
|
xfs_buf_t *bp; /* btree block's buffer pointer */
|
|
int error; /* error return value */
|
|
int i; /* level number of btree block */
|
|
xfs_mount_t *mp; /* mount structure for filesystem */
|
|
xfs_btree_cur_t *new; /* new cursor value */
|
|
xfs_trans_t *tp; /* transaction pointer, can be NULL */
|
|
|
|
tp = cur->bc_tp;
|
|
mp = cur->bc_mp;
|
|
|
|
/*
|
|
* Allocate a new cursor like the old one.
|
|
*/
|
|
new = cur->bc_ops->dup_cursor(cur);
|
|
|
|
/*
|
|
* Copy the record currently in the cursor.
|
|
*/
|
|
new->bc_rec = cur->bc_rec;
|
|
|
|
/*
|
|
* For each level current, re-get the buffer and copy the ptr value.
|
|
*/
|
|
for (i = 0; i < new->bc_nlevels; i++) {
|
|
new->bc_ptrs[i] = cur->bc_ptrs[i];
|
|
new->bc_ra[i] = cur->bc_ra[i];
|
|
bp = cur->bc_bufs[i];
|
|
if (bp) {
|
|
error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp,
|
|
XFS_BUF_ADDR(bp), mp->m_bsize,
|
|
0, &bp,
|
|
cur->bc_ops->buf_ops);
|
|
if (error) {
|
|
xfs_btree_del_cursor(new, error);
|
|
*ncur = NULL;
|
|
return error;
|
|
}
|
|
}
|
|
new->bc_bufs[i] = bp;
|
|
}
|
|
*ncur = new;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* XFS btree block layout and addressing:
|
|
*
|
|
* There are two types of blocks in the btree: leaf and non-leaf blocks.
|
|
*
|
|
* The leaf record start with a header then followed by records containing
|
|
* the values. A non-leaf block also starts with the same header, and
|
|
* then first contains lookup keys followed by an equal number of pointers
|
|
* to the btree blocks at the previous level.
|
|
*
|
|
* +--------+-------+-------+-------+-------+-------+-------+
|
|
* Leaf: | header | rec 1 | rec 2 | rec 3 | rec 4 | rec 5 | rec N |
|
|
* +--------+-------+-------+-------+-------+-------+-------+
|
|
*
|
|
* +--------+-------+-------+-------+-------+-------+-------+
|
|
* Non-Leaf: | header | key 1 | key 2 | key N | ptr 1 | ptr 2 | ptr N |
|
|
* +--------+-------+-------+-------+-------+-------+-------+
|
|
*
|
|
* The header is called struct xfs_btree_block for reasons better left unknown
|
|
* and comes in different versions for short (32bit) and long (64bit) block
|
|
* pointers. The record and key structures are defined by the btree instances
|
|
* and opaque to the btree core. The block pointers are simple disk endian
|
|
* integers, available in a short (32bit) and long (64bit) variant.
|
|
*
|
|
* The helpers below calculate the offset of a given record, key or pointer
|
|
* into a btree block (xfs_btree_*_offset) or return a pointer to the given
|
|
* record, key or pointer (xfs_btree_*_addr). Note that all addressing
|
|
* inside the btree block is done using indices starting at one, not zero!
|
|
*
|
|
* If XFS_BTREE_OVERLAPPING is set, then this btree supports keys containing
|
|
* overlapping intervals. In such a tree, records are still sorted lowest to
|
|
* highest and indexed by the smallest key value that refers to the record.
|
|
* However, nodes are different: each pointer has two associated keys -- one
|
|
* indexing the lowest key available in the block(s) below (the same behavior
|
|
* as the key in a regular btree) and another indexing the highest key
|
|
* available in the block(s) below. Because records are /not/ sorted by the
|
|
* highest key, all leaf block updates require us to compute the highest key
|
|
* that matches any record in the leaf and to recursively update the high keys
|
|
* in the nodes going further up in the tree, if necessary. Nodes look like
|
|
* this:
|
|
*
|
|
* +--------+-----+-----+-----+-----+-----+-------+-------+-----+
|
|
* Non-Leaf: | header | lo1 | hi1 | lo2 | hi2 | ... | ptr 1 | ptr 2 | ... |
|
|
* +--------+-----+-----+-----+-----+-----+-------+-------+-----+
|
|
*
|
|
* To perform an interval query on an overlapped tree, perform the usual
|
|
* depth-first search and use the low and high keys to decide if we can skip
|
|
* that particular node. If a leaf node is reached, return the records that
|
|
* intersect the interval. Note that an interval query may return numerous
|
|
* entries. For a non-overlapped tree, simply search for the record associated
|
|
* with the lowest key and iterate forward until a non-matching record is
|
|
* found. Section 14.3 ("Interval Trees") of _Introduction to Algorithms_ by
|
|
* Cormen, Leiserson, Rivest, and Stein (2nd or 3rd ed. only) discuss this in
|
|
* more detail.
|
|
*
|
|
* Why do we care about overlapping intervals? Let's say you have a bunch of
|
|
* reverse mapping records on a reflink filesystem:
|
|
*
|
|
* 1: +- file A startblock B offset C length D -----------+
|
|
* 2: +- file E startblock F offset G length H --------------+
|
|
* 3: +- file I startblock F offset J length K --+
|
|
* 4: +- file L... --+
|
|
*
|
|
* Now say we want to map block (B+D) into file A at offset (C+D). Ideally,
|
|
* we'd simply increment the length of record 1. But how do we find the record
|
|
* that ends at (B+D-1) (i.e. record 1)? A LE lookup of (B+D-1) would return
|
|
* record 3 because the keys are ordered first by startblock. An interval
|
|
* query would return records 1 and 2 because they both overlap (B+D-1), and
|
|
* from that we can pick out record 1 as the appropriate left neighbor.
|
|
*
|
|
* In the non-overlapped case you can do a LE lookup and decrement the cursor
|
|
* because a record's interval must end before the next record.
|
|
*/
|
|
|
|
/*
|
|
* Return size of the btree block header for this btree instance.
|
|
*/
|
|
static inline size_t xfs_btree_block_len(struct xfs_btree_cur *cur)
|
|
{
|
|
if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
|
|
if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS)
|
|
return XFS_BTREE_LBLOCK_CRC_LEN;
|
|
return XFS_BTREE_LBLOCK_LEN;
|
|
}
|
|
if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS)
|
|
return XFS_BTREE_SBLOCK_CRC_LEN;
|
|
return XFS_BTREE_SBLOCK_LEN;
|
|
}
|
|
|
|
/*
|
|
* Return size of btree block pointers for this btree instance.
|
|
*/
|
|
static inline size_t xfs_btree_ptr_len(struct xfs_btree_cur *cur)
|
|
{
|
|
return (cur->bc_flags & XFS_BTREE_LONG_PTRS) ?
|
|
sizeof(__be64) : sizeof(__be32);
|
|
}
|
|
|
|
/*
|
|
* Calculate offset of the n-th record in a btree block.
|
|
*/
|
|
STATIC size_t
|
|
xfs_btree_rec_offset(
|
|
struct xfs_btree_cur *cur,
|
|
int n)
|
|
{
|
|
return xfs_btree_block_len(cur) +
|
|
(n - 1) * cur->bc_ops->rec_len;
|
|
}
|
|
|
|
/*
|
|
* Calculate offset of the n-th key in a btree block.
|
|
*/
|
|
STATIC size_t
|
|
xfs_btree_key_offset(
|
|
struct xfs_btree_cur *cur,
|
|
int n)
|
|
{
|
|
return xfs_btree_block_len(cur) +
|
|
(n - 1) * cur->bc_ops->key_len;
|
|
}
|
|
|
|
/*
|
|
* Calculate offset of the n-th high key in a btree block.
|
|
*/
|
|
STATIC size_t
|
|
xfs_btree_high_key_offset(
|
|
struct xfs_btree_cur *cur,
|
|
int n)
|
|
{
|
|
return xfs_btree_block_len(cur) +
|
|
(n - 1) * cur->bc_ops->key_len + (cur->bc_ops->key_len / 2);
|
|
}
|
|
|
|
/*
|
|
* Calculate offset of the n-th block pointer in a btree block.
|
|
*/
|
|
STATIC size_t
|
|
xfs_btree_ptr_offset(
|
|
struct xfs_btree_cur *cur,
|
|
int n,
|
|
int level)
|
|
{
|
|
return xfs_btree_block_len(cur) +
|
|
cur->bc_ops->get_maxrecs(cur, level) * cur->bc_ops->key_len +
|
|
(n - 1) * xfs_btree_ptr_len(cur);
|
|
}
|
|
|
|
/*
|
|
* Return a pointer to the n-th record in the btree block.
|
|
*/
|
|
union xfs_btree_rec *
|
|
xfs_btree_rec_addr(
|
|
struct xfs_btree_cur *cur,
|
|
int n,
|
|
struct xfs_btree_block *block)
|
|
{
|
|
return (union xfs_btree_rec *)
|
|
((char *)block + xfs_btree_rec_offset(cur, n));
|
|
}
|
|
|
|
/*
|
|
* Return a pointer to the n-th key in the btree block.
|
|
*/
|
|
union xfs_btree_key *
|
|
xfs_btree_key_addr(
|
|
struct xfs_btree_cur *cur,
|
|
int n,
|
|
struct xfs_btree_block *block)
|
|
{
|
|
return (union xfs_btree_key *)
|
|
((char *)block + xfs_btree_key_offset(cur, n));
|
|
}
|
|
|
|
/*
|
|
* Return a pointer to the n-th high key in the btree block.
|
|
*/
|
|
union xfs_btree_key *
|
|
xfs_btree_high_key_addr(
|
|
struct xfs_btree_cur *cur,
|
|
int n,
|
|
struct xfs_btree_block *block)
|
|
{
|
|
return (union xfs_btree_key *)
|
|
((char *)block + xfs_btree_high_key_offset(cur, n));
|
|
}
|
|
|
|
/*
|
|
* Return a pointer to the n-th block pointer in the btree block.
|
|
*/
|
|
union xfs_btree_ptr *
|
|
xfs_btree_ptr_addr(
|
|
struct xfs_btree_cur *cur,
|
|
int n,
|
|
struct xfs_btree_block *block)
|
|
{
|
|
int level = xfs_btree_get_level(block);
|
|
|
|
ASSERT(block->bb_level != 0);
|
|
|
|
return (union xfs_btree_ptr *)
|
|
((char *)block + xfs_btree_ptr_offset(cur, n, level));
|
|
}
|
|
|
|
/*
|
|
* Get the root block which is stored in the inode.
|
|
*
|
|
* For now this btree implementation assumes the btree root is always
|
|
* stored in the if_broot field of an inode fork.
|
|
*/
|
|
STATIC struct xfs_btree_block *
|
|
xfs_btree_get_iroot(
|
|
struct xfs_btree_cur *cur)
|
|
{
|
|
struct xfs_ifork *ifp;
|
|
|
|
ifp = XFS_IFORK_PTR(cur->bc_private.b.ip, cur->bc_private.b.whichfork);
|
|
return (struct xfs_btree_block *)ifp->if_broot;
|
|
}
|
|
|
|
/*
|
|
* Retrieve the block pointer from the cursor at the given level.
|
|
* This may be an inode btree root or from a buffer.
|
|
*/
|
|
struct xfs_btree_block * /* generic btree block pointer */
|
|
xfs_btree_get_block(
|
|
struct xfs_btree_cur *cur, /* btree cursor */
|
|
int level, /* level in btree */
|
|
struct xfs_buf **bpp) /* buffer containing the block */
|
|
{
|
|
if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
|
|
(level == cur->bc_nlevels - 1)) {
|
|
*bpp = NULL;
|
|
return xfs_btree_get_iroot(cur);
|
|
}
|
|
|
|
*bpp = cur->bc_bufs[level];
|
|
return XFS_BUF_TO_BLOCK(*bpp);
|
|
}
|
|
|
|
/*
|
|
* Get a buffer for the block, return it with no data read.
|
|
* Long-form addressing.
|
|
*/
|
|
xfs_buf_t * /* buffer for fsbno */
|
|
xfs_btree_get_bufl(
|
|
xfs_mount_t *mp, /* file system mount point */
|
|
xfs_trans_t *tp, /* transaction pointer */
|
|
xfs_fsblock_t fsbno, /* file system block number */
|
|
uint lock) /* lock flags for get_buf */
|
|
{
|
|
xfs_daddr_t d; /* real disk block address */
|
|
|
|
ASSERT(fsbno != NULLFSBLOCK);
|
|
d = XFS_FSB_TO_DADDR(mp, fsbno);
|
|
return xfs_trans_get_buf(tp, mp->m_ddev_targp, d, mp->m_bsize, lock);
|
|
}
|
|
|
|
/*
|
|
* Get a buffer for the block, return it with no data read.
|
|
* Short-form addressing.
|
|
*/
|
|
xfs_buf_t * /* buffer for agno/agbno */
|
|
xfs_btree_get_bufs(
|
|
xfs_mount_t *mp, /* file system mount point */
|
|
xfs_trans_t *tp, /* transaction pointer */
|
|
xfs_agnumber_t agno, /* allocation group number */
|
|
xfs_agblock_t agbno, /* allocation group block number */
|
|
uint lock) /* lock flags for get_buf */
|
|
{
|
|
xfs_daddr_t d; /* real disk block address */
|
|
|
|
ASSERT(agno != NULLAGNUMBER);
|
|
ASSERT(agbno != NULLAGBLOCK);
|
|
d = XFS_AGB_TO_DADDR(mp, agno, agbno);
|
|
return xfs_trans_get_buf(tp, mp->m_ddev_targp, d, mp->m_bsize, lock);
|
|
}
|
|
|
|
/*
|
|
* Check for the cursor referring to the last block at the given level.
|
|
*/
|
|
int /* 1=is last block, 0=not last block */
|
|
xfs_btree_islastblock(
|
|
xfs_btree_cur_t *cur, /* btree cursor */
|
|
int level) /* level to check */
|
|
{
|
|
struct xfs_btree_block *block; /* generic btree block pointer */
|
|
xfs_buf_t *bp; /* buffer containing block */
|
|
|
|
block = xfs_btree_get_block(cur, level, &bp);
|
|
xfs_btree_check_block(cur, block, level, bp);
|
|
if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
|
|
return block->bb_u.l.bb_rightsib == cpu_to_be64(NULLFSBLOCK);
|
|
else
|
|
return block->bb_u.s.bb_rightsib == cpu_to_be32(NULLAGBLOCK);
|
|
}
|
|
|
|
/*
|
|
* Change the cursor to point to the first record at the given level.
|
|
* Other levels are unaffected.
|
|
*/
|
|
STATIC int /* success=1, failure=0 */
|
|
xfs_btree_firstrec(
|
|
xfs_btree_cur_t *cur, /* btree cursor */
|
|
int level) /* level to change */
|
|
{
|
|
struct xfs_btree_block *block; /* generic btree block pointer */
|
|
xfs_buf_t *bp; /* buffer containing block */
|
|
|
|
/*
|
|
* Get the block pointer for this level.
|
|
*/
|
|
block = xfs_btree_get_block(cur, level, &bp);
|
|
if (xfs_btree_check_block(cur, block, level, bp))
|
|
return 0;
|
|
/*
|
|
* It's empty, there is no such record.
|
|
*/
|
|
if (!block->bb_numrecs)
|
|
return 0;
|
|
/*
|
|
* Set the ptr value to 1, that's the first record/key.
|
|
*/
|
|
cur->bc_ptrs[level] = 1;
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Change the cursor to point to the last record in the current block
|
|
* at the given level. Other levels are unaffected.
|
|
*/
|
|
STATIC int /* success=1, failure=0 */
|
|
xfs_btree_lastrec(
|
|
xfs_btree_cur_t *cur, /* btree cursor */
|
|
int level) /* level to change */
|
|
{
|
|
struct xfs_btree_block *block; /* generic btree block pointer */
|
|
xfs_buf_t *bp; /* buffer containing block */
|
|
|
|
/*
|
|
* Get the block pointer for this level.
|
|
*/
|
|
block = xfs_btree_get_block(cur, level, &bp);
|
|
if (xfs_btree_check_block(cur, block, level, bp))
|
|
return 0;
|
|
/*
|
|
* It's empty, there is no such record.
|
|
*/
|
|
if (!block->bb_numrecs)
|
|
return 0;
|
|
/*
|
|
* Set the ptr value to numrecs, that's the last record/key.
|
|
*/
|
|
cur->bc_ptrs[level] = be16_to_cpu(block->bb_numrecs);
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Compute first and last byte offsets for the fields given.
|
|
* Interprets the offsets table, which contains struct field offsets.
|
|
*/
|
|
void
|
|
xfs_btree_offsets(
|
|
int64_t fields, /* bitmask of fields */
|
|
const short *offsets, /* table of field offsets */
|
|
int nbits, /* number of bits to inspect */
|
|
int *first, /* output: first byte offset */
|
|
int *last) /* output: last byte offset */
|
|
{
|
|
int i; /* current bit number */
|
|
int64_t imask; /* mask for current bit number */
|
|
|
|
ASSERT(fields != 0);
|
|
/*
|
|
* Find the lowest bit, so the first byte offset.
|
|
*/
|
|
for (i = 0, imask = 1LL; ; i++, imask <<= 1) {
|
|
if (imask & fields) {
|
|
*first = offsets[i];
|
|
break;
|
|
}
|
|
}
|
|
/*
|
|
* Find the highest bit, so the last byte offset.
|
|
*/
|
|
for (i = nbits - 1, imask = 1LL << i; ; i--, imask >>= 1) {
|
|
if (imask & fields) {
|
|
*last = offsets[i + 1] - 1;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Get a buffer for the block, return it read in.
|
|
* Long-form addressing.
|
|
*/
|
|
int
|
|
xfs_btree_read_bufl(
|
|
struct xfs_mount *mp, /* file system mount point */
|
|
struct xfs_trans *tp, /* transaction pointer */
|
|
xfs_fsblock_t fsbno, /* file system block number */
|
|
uint lock, /* lock flags for read_buf */
|
|
struct xfs_buf **bpp, /* buffer for fsbno */
|
|
int refval, /* ref count value for buffer */
|
|
const struct xfs_buf_ops *ops)
|
|
{
|
|
struct xfs_buf *bp; /* return value */
|
|
xfs_daddr_t d; /* real disk block address */
|
|
int error;
|
|
|
|
if (!xfs_verify_fsbno(mp, fsbno))
|
|
return -EFSCORRUPTED;
|
|
d = XFS_FSB_TO_DADDR(mp, fsbno);
|
|
error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, d,
|
|
mp->m_bsize, lock, &bp, ops);
|
|
if (error)
|
|
return error;
|
|
if (bp)
|
|
xfs_buf_set_ref(bp, refval);
|
|
*bpp = bp;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Read-ahead the block, don't wait for it, don't return a buffer.
|
|
* Long-form addressing.
|
|
*/
|
|
/* ARGSUSED */
|
|
void
|
|
xfs_btree_reada_bufl(
|
|
struct xfs_mount *mp, /* file system mount point */
|
|
xfs_fsblock_t fsbno, /* file system block number */
|
|
xfs_extlen_t count, /* count of filesystem blocks */
|
|
const struct xfs_buf_ops *ops)
|
|
{
|
|
xfs_daddr_t d;
|
|
|
|
ASSERT(fsbno != NULLFSBLOCK);
|
|
d = XFS_FSB_TO_DADDR(mp, fsbno);
|
|
xfs_buf_readahead(mp->m_ddev_targp, d, mp->m_bsize * count, ops);
|
|
}
|
|
|
|
/*
|
|
* Read-ahead the block, don't wait for it, don't return a buffer.
|
|
* Short-form addressing.
|
|
*/
|
|
/* ARGSUSED */
|
|
void
|
|
xfs_btree_reada_bufs(
|
|
struct xfs_mount *mp, /* file system mount point */
|
|
xfs_agnumber_t agno, /* allocation group number */
|
|
xfs_agblock_t agbno, /* allocation group block number */
|
|
xfs_extlen_t count, /* count of filesystem blocks */
|
|
const struct xfs_buf_ops *ops)
|
|
{
|
|
xfs_daddr_t d;
|
|
|
|
ASSERT(agno != NULLAGNUMBER);
|
|
ASSERT(agbno != NULLAGBLOCK);
|
|
d = XFS_AGB_TO_DADDR(mp, agno, agbno);
|
|
xfs_buf_readahead(mp->m_ddev_targp, d, mp->m_bsize * count, ops);
|
|
}
|
|
|
|
STATIC int
|
|
xfs_btree_readahead_lblock(
|
|
struct xfs_btree_cur *cur,
|
|
int lr,
|
|
struct xfs_btree_block *block)
|
|
{
|
|
int rval = 0;
|
|
xfs_fsblock_t left = be64_to_cpu(block->bb_u.l.bb_leftsib);
|
|
xfs_fsblock_t right = be64_to_cpu(block->bb_u.l.bb_rightsib);
|
|
|
|
if ((lr & XFS_BTCUR_LEFTRA) && left != NULLFSBLOCK) {
|
|
xfs_btree_reada_bufl(cur->bc_mp, left, 1,
|
|
cur->bc_ops->buf_ops);
|
|
rval++;
|
|
}
|
|
|
|
if ((lr & XFS_BTCUR_RIGHTRA) && right != NULLFSBLOCK) {
|
|
xfs_btree_reada_bufl(cur->bc_mp, right, 1,
|
|
cur->bc_ops->buf_ops);
|
|
rval++;
|
|
}
|
|
|
|
return rval;
|
|
}
|
|
|
|
STATIC int
|
|
xfs_btree_readahead_sblock(
|
|
struct xfs_btree_cur *cur,
|
|
int lr,
|
|
struct xfs_btree_block *block)
|
|
{
|
|
int rval = 0;
|
|
xfs_agblock_t left = be32_to_cpu(block->bb_u.s.bb_leftsib);
|
|
xfs_agblock_t right = be32_to_cpu(block->bb_u.s.bb_rightsib);
|
|
|
|
|
|
if ((lr & XFS_BTCUR_LEFTRA) && left != NULLAGBLOCK) {
|
|
xfs_btree_reada_bufs(cur->bc_mp, cur->bc_private.a.agno,
|
|
left, 1, cur->bc_ops->buf_ops);
|
|
rval++;
|
|
}
|
|
|
|
if ((lr & XFS_BTCUR_RIGHTRA) && right != NULLAGBLOCK) {
|
|
xfs_btree_reada_bufs(cur->bc_mp, cur->bc_private.a.agno,
|
|
right, 1, cur->bc_ops->buf_ops);
|
|
rval++;
|
|
}
|
|
|
|
return rval;
|
|
}
|
|
|
|
/*
|
|
* Read-ahead btree blocks, at the given level.
|
|
* Bits in lr are set from XFS_BTCUR_{LEFT,RIGHT}RA.
|
|
*/
|
|
STATIC int
|
|
xfs_btree_readahead(
|
|
struct xfs_btree_cur *cur, /* btree cursor */
|
|
int lev, /* level in btree */
|
|
int lr) /* left/right bits */
|
|
{
|
|
struct xfs_btree_block *block;
|
|
|
|
/*
|
|
* No readahead needed if we are at the root level and the
|
|
* btree root is stored in the inode.
|
|
*/
|
|
if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
|
|
(lev == cur->bc_nlevels - 1))
|
|
return 0;
|
|
|
|
if ((cur->bc_ra[lev] | lr) == cur->bc_ra[lev])
|
|
return 0;
|
|
|
|
cur->bc_ra[lev] |= lr;
|
|
block = XFS_BUF_TO_BLOCK(cur->bc_bufs[lev]);
|
|
|
|
if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
|
|
return xfs_btree_readahead_lblock(cur, lr, block);
|
|
return xfs_btree_readahead_sblock(cur, lr, block);
|
|
}
|
|
|
|
STATIC xfs_daddr_t
|
|
xfs_btree_ptr_to_daddr(
|
|
struct xfs_btree_cur *cur,
|
|
union xfs_btree_ptr *ptr)
|
|
{
|
|
if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
|
|
ASSERT(ptr->l != cpu_to_be64(NULLFSBLOCK));
|
|
|
|
return XFS_FSB_TO_DADDR(cur->bc_mp, be64_to_cpu(ptr->l));
|
|
} else {
|
|
ASSERT(cur->bc_private.a.agno != NULLAGNUMBER);
|
|
ASSERT(ptr->s != cpu_to_be32(NULLAGBLOCK));
|
|
|
|
return XFS_AGB_TO_DADDR(cur->bc_mp, cur->bc_private.a.agno,
|
|
be32_to_cpu(ptr->s));
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Readahead @count btree blocks at the given @ptr location.
|
|
*
|
|
* We don't need to care about long or short form btrees here as we have a
|
|
* method of converting the ptr directly to a daddr available to us.
|
|
*/
|
|
STATIC void
|
|
xfs_btree_readahead_ptr(
|
|
struct xfs_btree_cur *cur,
|
|
union xfs_btree_ptr *ptr,
|
|
xfs_extlen_t count)
|
|
{
|
|
xfs_buf_readahead(cur->bc_mp->m_ddev_targp,
|
|
xfs_btree_ptr_to_daddr(cur, ptr),
|
|
cur->bc_mp->m_bsize * count, cur->bc_ops->buf_ops);
|
|
}
|
|
|
|
/*
|
|
* Set the buffer for level "lev" in the cursor to bp, releasing
|
|
* any previous buffer.
|
|
*/
|
|
STATIC void
|
|
xfs_btree_setbuf(
|
|
xfs_btree_cur_t *cur, /* btree cursor */
|
|
int lev, /* level in btree */
|
|
xfs_buf_t *bp) /* new buffer to set */
|
|
{
|
|
struct xfs_btree_block *b; /* btree block */
|
|
|
|
if (cur->bc_bufs[lev])
|
|
xfs_trans_brelse(cur->bc_tp, cur->bc_bufs[lev]);
|
|
cur->bc_bufs[lev] = bp;
|
|
cur->bc_ra[lev] = 0;
|
|
|
|
b = XFS_BUF_TO_BLOCK(bp);
|
|
if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
|
|
if (b->bb_u.l.bb_leftsib == cpu_to_be64(NULLFSBLOCK))
|
|
cur->bc_ra[lev] |= XFS_BTCUR_LEFTRA;
|
|
if (b->bb_u.l.bb_rightsib == cpu_to_be64(NULLFSBLOCK))
|
|
cur->bc_ra[lev] |= XFS_BTCUR_RIGHTRA;
|
|
} else {
|
|
if (b->bb_u.s.bb_leftsib == cpu_to_be32(NULLAGBLOCK))
|
|
cur->bc_ra[lev] |= XFS_BTCUR_LEFTRA;
|
|
if (b->bb_u.s.bb_rightsib == cpu_to_be32(NULLAGBLOCK))
|
|
cur->bc_ra[lev] |= XFS_BTCUR_RIGHTRA;
|
|
}
|
|
}
|
|
|
|
bool
|
|
xfs_btree_ptr_is_null(
|
|
struct xfs_btree_cur *cur,
|
|
union xfs_btree_ptr *ptr)
|
|
{
|
|
if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
|
|
return ptr->l == cpu_to_be64(NULLFSBLOCK);
|
|
else
|
|
return ptr->s == cpu_to_be32(NULLAGBLOCK);
|
|
}
|
|
|
|
STATIC void
|
|
xfs_btree_set_ptr_null(
|
|
struct xfs_btree_cur *cur,
|
|
union xfs_btree_ptr *ptr)
|
|
{
|
|
if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
|
|
ptr->l = cpu_to_be64(NULLFSBLOCK);
|
|
else
|
|
ptr->s = cpu_to_be32(NULLAGBLOCK);
|
|
}
|
|
|
|
/*
|
|
* Get/set/init sibling pointers
|
|
*/
|
|
void
|
|
xfs_btree_get_sibling(
|
|
struct xfs_btree_cur *cur,
|
|
struct xfs_btree_block *block,
|
|
union xfs_btree_ptr *ptr,
|
|
int lr)
|
|
{
|
|
ASSERT(lr == XFS_BB_LEFTSIB || lr == XFS_BB_RIGHTSIB);
|
|
|
|
if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
|
|
if (lr == XFS_BB_RIGHTSIB)
|
|
ptr->l = block->bb_u.l.bb_rightsib;
|
|
else
|
|
ptr->l = block->bb_u.l.bb_leftsib;
|
|
} else {
|
|
if (lr == XFS_BB_RIGHTSIB)
|
|
ptr->s = block->bb_u.s.bb_rightsib;
|
|
else
|
|
ptr->s = block->bb_u.s.bb_leftsib;
|
|
}
|
|
}
|
|
|
|
STATIC void
|
|
xfs_btree_set_sibling(
|
|
struct xfs_btree_cur *cur,
|
|
struct xfs_btree_block *block,
|
|
union xfs_btree_ptr *ptr,
|
|
int lr)
|
|
{
|
|
ASSERT(lr == XFS_BB_LEFTSIB || lr == XFS_BB_RIGHTSIB);
|
|
|
|
if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
|
|
if (lr == XFS_BB_RIGHTSIB)
|
|
block->bb_u.l.bb_rightsib = ptr->l;
|
|
else
|
|
block->bb_u.l.bb_leftsib = ptr->l;
|
|
} else {
|
|
if (lr == XFS_BB_RIGHTSIB)
|
|
block->bb_u.s.bb_rightsib = ptr->s;
|
|
else
|
|
block->bb_u.s.bb_leftsib = ptr->s;
|
|
}
|
|
}
|
|
|
|
void
|
|
xfs_btree_init_block_int(
|
|
struct xfs_mount *mp,
|
|
struct xfs_btree_block *buf,
|
|
xfs_daddr_t blkno,
|
|
xfs_btnum_t btnum,
|
|
__u16 level,
|
|
__u16 numrecs,
|
|
__u64 owner,
|
|
unsigned int flags)
|
|
{
|
|
int crc = xfs_sb_version_hascrc(&mp->m_sb);
|
|
__u32 magic = xfs_btree_magic(crc, btnum);
|
|
|
|
buf->bb_magic = cpu_to_be32(magic);
|
|
buf->bb_level = cpu_to_be16(level);
|
|
buf->bb_numrecs = cpu_to_be16(numrecs);
|
|
|
|
if (flags & XFS_BTREE_LONG_PTRS) {
|
|
buf->bb_u.l.bb_leftsib = cpu_to_be64(NULLFSBLOCK);
|
|
buf->bb_u.l.bb_rightsib = cpu_to_be64(NULLFSBLOCK);
|
|
if (crc) {
|
|
buf->bb_u.l.bb_blkno = cpu_to_be64(blkno);
|
|
buf->bb_u.l.bb_owner = cpu_to_be64(owner);
|
|
uuid_copy(&buf->bb_u.l.bb_uuid, &mp->m_sb.sb_meta_uuid);
|
|
buf->bb_u.l.bb_pad = 0;
|
|
buf->bb_u.l.bb_lsn = 0;
|
|
}
|
|
} else {
|
|
/* owner is a 32 bit value on short blocks */
|
|
__u32 __owner = (__u32)owner;
|
|
|
|
buf->bb_u.s.bb_leftsib = cpu_to_be32(NULLAGBLOCK);
|
|
buf->bb_u.s.bb_rightsib = cpu_to_be32(NULLAGBLOCK);
|
|
if (crc) {
|
|
buf->bb_u.s.bb_blkno = cpu_to_be64(blkno);
|
|
buf->bb_u.s.bb_owner = cpu_to_be32(__owner);
|
|
uuid_copy(&buf->bb_u.s.bb_uuid, &mp->m_sb.sb_meta_uuid);
|
|
buf->bb_u.s.bb_lsn = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
void
|
|
xfs_btree_init_block(
|
|
struct xfs_mount *mp,
|
|
struct xfs_buf *bp,
|
|
xfs_btnum_t btnum,
|
|
__u16 level,
|
|
__u16 numrecs,
|
|
__u64 owner,
|
|
unsigned int flags)
|
|
{
|
|
xfs_btree_init_block_int(mp, XFS_BUF_TO_BLOCK(bp), bp->b_bn,
|
|
btnum, level, numrecs, owner, flags);
|
|
}
|
|
|
|
STATIC void
|
|
xfs_btree_init_block_cur(
|
|
struct xfs_btree_cur *cur,
|
|
struct xfs_buf *bp,
|
|
int level,
|
|
int numrecs)
|
|
{
|
|
__u64 owner;
|
|
|
|
/*
|
|
* we can pull the owner from the cursor right now as the different
|
|
* owners align directly with the pointer size of the btree. This may
|
|
* change in future, but is safe for current users of the generic btree
|
|
* code.
|
|
*/
|
|
if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
|
|
owner = cur->bc_private.b.ip->i_ino;
|
|
else
|
|
owner = cur->bc_private.a.agno;
|
|
|
|
xfs_btree_init_block_int(cur->bc_mp, XFS_BUF_TO_BLOCK(bp), bp->b_bn,
|
|
cur->bc_btnum, level, numrecs,
|
|
owner, cur->bc_flags);
|
|
}
|
|
|
|
/*
|
|
* Return true if ptr is the last record in the btree and
|
|
* we need to track updates to this record. The decision
|
|
* will be further refined in the update_lastrec method.
|
|
*/
|
|
STATIC int
|
|
xfs_btree_is_lastrec(
|
|
struct xfs_btree_cur *cur,
|
|
struct xfs_btree_block *block,
|
|
int level)
|
|
{
|
|
union xfs_btree_ptr ptr;
|
|
|
|
if (level > 0)
|
|
return 0;
|
|
if (!(cur->bc_flags & XFS_BTREE_LASTREC_UPDATE))
|
|
return 0;
|
|
|
|
xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
|
|
if (!xfs_btree_ptr_is_null(cur, &ptr))
|
|
return 0;
|
|
return 1;
|
|
}
|
|
|
|
STATIC void
|
|
xfs_btree_buf_to_ptr(
|
|
struct xfs_btree_cur *cur,
|
|
struct xfs_buf *bp,
|
|
union xfs_btree_ptr *ptr)
|
|
{
|
|
if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
|
|
ptr->l = cpu_to_be64(XFS_DADDR_TO_FSB(cur->bc_mp,
|
|
XFS_BUF_ADDR(bp)));
|
|
else {
|
|
ptr->s = cpu_to_be32(xfs_daddr_to_agbno(cur->bc_mp,
|
|
XFS_BUF_ADDR(bp)));
|
|
}
|
|
}
|
|
|
|
STATIC void
|
|
xfs_btree_set_refs(
|
|
struct xfs_btree_cur *cur,
|
|
struct xfs_buf *bp)
|
|
{
|
|
switch (cur->bc_btnum) {
|
|
case XFS_BTNUM_BNO:
|
|
case XFS_BTNUM_CNT:
|
|
xfs_buf_set_ref(bp, XFS_ALLOC_BTREE_REF);
|
|
break;
|
|
case XFS_BTNUM_INO:
|
|
case XFS_BTNUM_FINO:
|
|
xfs_buf_set_ref(bp, XFS_INO_BTREE_REF);
|
|
break;
|
|
case XFS_BTNUM_BMAP:
|
|
xfs_buf_set_ref(bp, XFS_BMAP_BTREE_REF);
|
|
break;
|
|
case XFS_BTNUM_RMAP:
|
|
xfs_buf_set_ref(bp, XFS_RMAP_BTREE_REF);
|
|
break;
|
|
case XFS_BTNUM_REFC:
|
|
xfs_buf_set_ref(bp, XFS_REFC_BTREE_REF);
|
|
break;
|
|
default:
|
|
ASSERT(0);
|
|
}
|
|
}
|
|
|
|
STATIC int
|
|
xfs_btree_get_buf_block(
|
|
struct xfs_btree_cur *cur,
|
|
union xfs_btree_ptr *ptr,
|
|
int flags,
|
|
struct xfs_btree_block **block,
|
|
struct xfs_buf **bpp)
|
|
{
|
|
struct xfs_mount *mp = cur->bc_mp;
|
|
xfs_daddr_t d;
|
|
|
|
/* need to sort out how callers deal with failures first */
|
|
ASSERT(!(flags & XBF_TRYLOCK));
|
|
|
|
d = xfs_btree_ptr_to_daddr(cur, ptr);
|
|
*bpp = xfs_trans_get_buf(cur->bc_tp, mp->m_ddev_targp, d,
|
|
mp->m_bsize, flags);
|
|
|
|
if (!*bpp)
|
|
return -ENOMEM;
|
|
|
|
(*bpp)->b_ops = cur->bc_ops->buf_ops;
|
|
*block = XFS_BUF_TO_BLOCK(*bpp);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Read in the buffer at the given ptr and return the buffer and
|
|
* the block pointer within the buffer.
|
|
*/
|
|
STATIC int
|
|
xfs_btree_read_buf_block(
|
|
struct xfs_btree_cur *cur,
|
|
union xfs_btree_ptr *ptr,
|
|
int flags,
|
|
struct xfs_btree_block **block,
|
|
struct xfs_buf **bpp)
|
|
{
|
|
struct xfs_mount *mp = cur->bc_mp;
|
|
xfs_daddr_t d;
|
|
int error;
|
|
|
|
/* need to sort out how callers deal with failures first */
|
|
ASSERT(!(flags & XBF_TRYLOCK));
|
|
|
|
d = xfs_btree_ptr_to_daddr(cur, ptr);
|
|
error = xfs_trans_read_buf(mp, cur->bc_tp, mp->m_ddev_targp, d,
|
|
mp->m_bsize, flags, bpp,
|
|
cur->bc_ops->buf_ops);
|
|
if (error)
|
|
return error;
|
|
|
|
xfs_btree_set_refs(cur, *bpp);
|
|
*block = XFS_BUF_TO_BLOCK(*bpp);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Copy keys from one btree block to another.
|
|
*/
|
|
STATIC void
|
|
xfs_btree_copy_keys(
|
|
struct xfs_btree_cur *cur,
|
|
union xfs_btree_key *dst_key,
|
|
union xfs_btree_key *src_key,
|
|
int numkeys)
|
|
{
|
|
ASSERT(numkeys >= 0);
|
|
memcpy(dst_key, src_key, numkeys * cur->bc_ops->key_len);
|
|
}
|
|
|
|
/*
|
|
* Copy records from one btree block to another.
|
|
*/
|
|
STATIC void
|
|
xfs_btree_copy_recs(
|
|
struct xfs_btree_cur *cur,
|
|
union xfs_btree_rec *dst_rec,
|
|
union xfs_btree_rec *src_rec,
|
|
int numrecs)
|
|
{
|
|
ASSERT(numrecs >= 0);
|
|
memcpy(dst_rec, src_rec, numrecs * cur->bc_ops->rec_len);
|
|
}
|
|
|
|
/*
|
|
* Copy block pointers from one btree block to another.
|
|
*/
|
|
STATIC void
|
|
xfs_btree_copy_ptrs(
|
|
struct xfs_btree_cur *cur,
|
|
union xfs_btree_ptr *dst_ptr,
|
|
union xfs_btree_ptr *src_ptr,
|
|
int numptrs)
|
|
{
|
|
ASSERT(numptrs >= 0);
|
|
memcpy(dst_ptr, src_ptr, numptrs * xfs_btree_ptr_len(cur));
|
|
}
|
|
|
|
/*
|
|
* Shift keys one index left/right inside a single btree block.
|
|
*/
|
|
STATIC void
|
|
xfs_btree_shift_keys(
|
|
struct xfs_btree_cur *cur,
|
|
union xfs_btree_key *key,
|
|
int dir,
|
|
int numkeys)
|
|
{
|
|
char *dst_key;
|
|
|
|
ASSERT(numkeys >= 0);
|
|
ASSERT(dir == 1 || dir == -1);
|
|
|
|
dst_key = (char *)key + (dir * cur->bc_ops->key_len);
|
|
memmove(dst_key, key, numkeys * cur->bc_ops->key_len);
|
|
}
|
|
|
|
/*
|
|
* Shift records one index left/right inside a single btree block.
|
|
*/
|
|
STATIC void
|
|
xfs_btree_shift_recs(
|
|
struct xfs_btree_cur *cur,
|
|
union xfs_btree_rec *rec,
|
|
int dir,
|
|
int numrecs)
|
|
{
|
|
char *dst_rec;
|
|
|
|
ASSERT(numrecs >= 0);
|
|
ASSERT(dir == 1 || dir == -1);
|
|
|
|
dst_rec = (char *)rec + (dir * cur->bc_ops->rec_len);
|
|
memmove(dst_rec, rec, numrecs * cur->bc_ops->rec_len);
|
|
}
|
|
|
|
/*
|
|
* Shift block pointers one index left/right inside a single btree block.
|
|
*/
|
|
STATIC void
|
|
xfs_btree_shift_ptrs(
|
|
struct xfs_btree_cur *cur,
|
|
union xfs_btree_ptr *ptr,
|
|
int dir,
|
|
int numptrs)
|
|
{
|
|
char *dst_ptr;
|
|
|
|
ASSERT(numptrs >= 0);
|
|
ASSERT(dir == 1 || dir == -1);
|
|
|
|
dst_ptr = (char *)ptr + (dir * xfs_btree_ptr_len(cur));
|
|
memmove(dst_ptr, ptr, numptrs * xfs_btree_ptr_len(cur));
|
|
}
|
|
|
|
/*
|
|
* Log key values from the btree block.
|
|
*/
|
|
STATIC void
|
|
xfs_btree_log_keys(
|
|
struct xfs_btree_cur *cur,
|
|
struct xfs_buf *bp,
|
|
int first,
|
|
int last)
|
|
{
|
|
XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
|
|
XFS_BTREE_TRACE_ARGBII(cur, bp, first, last);
|
|
|
|
if (bp) {
|
|
xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
|
|
xfs_trans_log_buf(cur->bc_tp, bp,
|
|
xfs_btree_key_offset(cur, first),
|
|
xfs_btree_key_offset(cur, last + 1) - 1);
|
|
} else {
|
|
xfs_trans_log_inode(cur->bc_tp, cur->bc_private.b.ip,
|
|
xfs_ilog_fbroot(cur->bc_private.b.whichfork));
|
|
}
|
|
|
|
XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
|
|
}
|
|
|
|
/*
|
|
* Log record values from the btree block.
|
|
*/
|
|
void
|
|
xfs_btree_log_recs(
|
|
struct xfs_btree_cur *cur,
|
|
struct xfs_buf *bp,
|
|
int first,
|
|
int last)
|
|
{
|
|
XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
|
|
XFS_BTREE_TRACE_ARGBII(cur, bp, first, last);
|
|
|
|
xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
|
|
xfs_trans_log_buf(cur->bc_tp, bp,
|
|
xfs_btree_rec_offset(cur, first),
|
|
xfs_btree_rec_offset(cur, last + 1) - 1);
|
|
|
|
XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
|
|
}
|
|
|
|
/*
|
|
* Log block pointer fields from a btree block (nonleaf).
|
|
*/
|
|
STATIC void
|
|
xfs_btree_log_ptrs(
|
|
struct xfs_btree_cur *cur, /* btree cursor */
|
|
struct xfs_buf *bp, /* buffer containing btree block */
|
|
int first, /* index of first pointer to log */
|
|
int last) /* index of last pointer to log */
|
|
{
|
|
XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
|
|
XFS_BTREE_TRACE_ARGBII(cur, bp, first, last);
|
|
|
|
if (bp) {
|
|
struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
|
|
int level = xfs_btree_get_level(block);
|
|
|
|
xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
|
|
xfs_trans_log_buf(cur->bc_tp, bp,
|
|
xfs_btree_ptr_offset(cur, first, level),
|
|
xfs_btree_ptr_offset(cur, last + 1, level) - 1);
|
|
} else {
|
|
xfs_trans_log_inode(cur->bc_tp, cur->bc_private.b.ip,
|
|
xfs_ilog_fbroot(cur->bc_private.b.whichfork));
|
|
}
|
|
|
|
XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
|
|
}
|
|
|
|
/*
|
|
* Log fields from a btree block header.
|
|
*/
|
|
void
|
|
xfs_btree_log_block(
|
|
struct xfs_btree_cur *cur, /* btree cursor */
|
|
struct xfs_buf *bp, /* buffer containing btree block */
|
|
int fields) /* mask of fields: XFS_BB_... */
|
|
{
|
|
int first; /* first byte offset logged */
|
|
int last; /* last byte offset logged */
|
|
static const short soffsets[] = { /* table of offsets (short) */
|
|
offsetof(struct xfs_btree_block, bb_magic),
|
|
offsetof(struct xfs_btree_block, bb_level),
|
|
offsetof(struct xfs_btree_block, bb_numrecs),
|
|
offsetof(struct xfs_btree_block, bb_u.s.bb_leftsib),
|
|
offsetof(struct xfs_btree_block, bb_u.s.bb_rightsib),
|
|
offsetof(struct xfs_btree_block, bb_u.s.bb_blkno),
|
|
offsetof(struct xfs_btree_block, bb_u.s.bb_lsn),
|
|
offsetof(struct xfs_btree_block, bb_u.s.bb_uuid),
|
|
offsetof(struct xfs_btree_block, bb_u.s.bb_owner),
|
|
offsetof(struct xfs_btree_block, bb_u.s.bb_crc),
|
|
XFS_BTREE_SBLOCK_CRC_LEN
|
|
};
|
|
static const short loffsets[] = { /* table of offsets (long) */
|
|
offsetof(struct xfs_btree_block, bb_magic),
|
|
offsetof(struct xfs_btree_block, bb_level),
|
|
offsetof(struct xfs_btree_block, bb_numrecs),
|
|
offsetof(struct xfs_btree_block, bb_u.l.bb_leftsib),
|
|
offsetof(struct xfs_btree_block, bb_u.l.bb_rightsib),
|
|
offsetof(struct xfs_btree_block, bb_u.l.bb_blkno),
|
|
offsetof(struct xfs_btree_block, bb_u.l.bb_lsn),
|
|
offsetof(struct xfs_btree_block, bb_u.l.bb_uuid),
|
|
offsetof(struct xfs_btree_block, bb_u.l.bb_owner),
|
|
offsetof(struct xfs_btree_block, bb_u.l.bb_crc),
|
|
offsetof(struct xfs_btree_block, bb_u.l.bb_pad),
|
|
XFS_BTREE_LBLOCK_CRC_LEN
|
|
};
|
|
|
|
XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
|
|
XFS_BTREE_TRACE_ARGBI(cur, bp, fields);
|
|
|
|
if (bp) {
|
|
int nbits;
|
|
|
|
if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS) {
|
|
/*
|
|
* We don't log the CRC when updating a btree
|
|
* block but instead recreate it during log
|
|
* recovery. As the log buffers have checksums
|
|
* of their own this is safe and avoids logging a crc
|
|
* update in a lot of places.
|
|
*/
|
|
if (fields == XFS_BB_ALL_BITS)
|
|
fields = XFS_BB_ALL_BITS_CRC;
|
|
nbits = XFS_BB_NUM_BITS_CRC;
|
|
} else {
|
|
nbits = XFS_BB_NUM_BITS;
|
|
}
|
|
xfs_btree_offsets(fields,
|
|
(cur->bc_flags & XFS_BTREE_LONG_PTRS) ?
|
|
loffsets : soffsets,
|
|
nbits, &first, &last);
|
|
xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
|
|
xfs_trans_log_buf(cur->bc_tp, bp, first, last);
|
|
} else {
|
|
xfs_trans_log_inode(cur->bc_tp, cur->bc_private.b.ip,
|
|
xfs_ilog_fbroot(cur->bc_private.b.whichfork));
|
|
}
|
|
|
|
XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
|
|
}
|
|
|
|
/*
|
|
* Increment cursor by one record at the level.
|
|
* For nonzero levels the leaf-ward information is untouched.
|
|
*/
|
|
int /* error */
|
|
xfs_btree_increment(
|
|
struct xfs_btree_cur *cur,
|
|
int level,
|
|
int *stat) /* success/failure */
|
|
{
|
|
struct xfs_btree_block *block;
|
|
union xfs_btree_ptr ptr;
|
|
struct xfs_buf *bp;
|
|
int error; /* error return value */
|
|
int lev;
|
|
|
|
XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
|
|
XFS_BTREE_TRACE_ARGI(cur, level);
|
|
|
|
ASSERT(level < cur->bc_nlevels);
|
|
|
|
/* Read-ahead to the right at this level. */
|
|
xfs_btree_readahead(cur, level, XFS_BTCUR_RIGHTRA);
|
|
|
|
/* Get a pointer to the btree block. */
|
|
block = xfs_btree_get_block(cur, level, &bp);
|
|
|
|
#ifdef DEBUG
|
|
error = xfs_btree_check_block(cur, block, level, bp);
|
|
if (error)
|
|
goto error0;
|
|
#endif
|
|
|
|
/* We're done if we remain in the block after the increment. */
|
|
if (++cur->bc_ptrs[level] <= xfs_btree_get_numrecs(block))
|
|
goto out1;
|
|
|
|
/* Fail if we just went off the right edge of the tree. */
|
|
xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
|
|
if (xfs_btree_ptr_is_null(cur, &ptr))
|
|
goto out0;
|
|
|
|
XFS_BTREE_STATS_INC(cur, increment);
|
|
|
|
/*
|
|
* March up the tree incrementing pointers.
|
|
* Stop when we don't go off the right edge of a block.
|
|
*/
|
|
for (lev = level + 1; lev < cur->bc_nlevels; lev++) {
|
|
block = xfs_btree_get_block(cur, lev, &bp);
|
|
|
|
#ifdef DEBUG
|
|
error = xfs_btree_check_block(cur, block, lev, bp);
|
|
if (error)
|
|
goto error0;
|
|
#endif
|
|
|
|
if (++cur->bc_ptrs[lev] <= xfs_btree_get_numrecs(block))
|
|
break;
|
|
|
|
/* Read-ahead the right block for the next loop. */
|
|
xfs_btree_readahead(cur, lev, XFS_BTCUR_RIGHTRA);
|
|
}
|
|
|
|
/*
|
|
* If we went off the root then we are either seriously
|
|
* confused or have the tree root in an inode.
|
|
*/
|
|
if (lev == cur->bc_nlevels) {
|
|
if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE)
|
|
goto out0;
|
|
ASSERT(0);
|
|
error = -EFSCORRUPTED;
|
|
goto error0;
|
|
}
|
|
ASSERT(lev < cur->bc_nlevels);
|
|
|
|
/*
|
|
* Now walk back down the tree, fixing up the cursor's buffer
|
|
* pointers and key numbers.
|
|
*/
|
|
for (block = xfs_btree_get_block(cur, lev, &bp); lev > level; ) {
|
|
union xfs_btree_ptr *ptrp;
|
|
|
|
ptrp = xfs_btree_ptr_addr(cur, cur->bc_ptrs[lev], block);
|
|
--lev;
|
|
error = xfs_btree_read_buf_block(cur, ptrp, 0, &block, &bp);
|
|
if (error)
|
|
goto error0;
|
|
|
|
xfs_btree_setbuf(cur, lev, bp);
|
|
cur->bc_ptrs[lev] = 1;
|
|
}
|
|
out1:
|
|
XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
|
|
*stat = 1;
|
|
return 0;
|
|
|
|
out0:
|
|
XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
|
|
*stat = 0;
|
|
return 0;
|
|
|
|
error0:
|
|
XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* Decrement cursor by one record at the level.
|
|
* For nonzero levels the leaf-ward information is untouched.
|
|
*/
|
|
int /* error */
|
|
xfs_btree_decrement(
|
|
struct xfs_btree_cur *cur,
|
|
int level,
|
|
int *stat) /* success/failure */
|
|
{
|
|
struct xfs_btree_block *block;
|
|
xfs_buf_t *bp;
|
|
int error; /* error return value */
|
|
int lev;
|
|
union xfs_btree_ptr ptr;
|
|
|
|
XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
|
|
XFS_BTREE_TRACE_ARGI(cur, level);
|
|
|
|
ASSERT(level < cur->bc_nlevels);
|
|
|
|
/* Read-ahead to the left at this level. */
|
|
xfs_btree_readahead(cur, level, XFS_BTCUR_LEFTRA);
|
|
|
|
/* We're done if we remain in the block after the decrement. */
|
|
if (--cur->bc_ptrs[level] > 0)
|
|
goto out1;
|
|
|
|
/* Get a pointer to the btree block. */
|
|
block = xfs_btree_get_block(cur, level, &bp);
|
|
|
|
#ifdef DEBUG
|
|
error = xfs_btree_check_block(cur, block, level, bp);
|
|
if (error)
|
|
goto error0;
|
|
#endif
|
|
|
|
/* Fail if we just went off the left edge of the tree. */
|
|
xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_LEFTSIB);
|
|
if (xfs_btree_ptr_is_null(cur, &ptr))
|
|
goto out0;
|
|
|
|
XFS_BTREE_STATS_INC(cur, decrement);
|
|
|
|
/*
|
|
* March up the tree decrementing pointers.
|
|
* Stop when we don't go off the left edge of a block.
|
|
*/
|
|
for (lev = level + 1; lev < cur->bc_nlevels; lev++) {
|
|
if (--cur->bc_ptrs[lev] > 0)
|
|
break;
|
|
/* Read-ahead the left block for the next loop. */
|
|
xfs_btree_readahead(cur, lev, XFS_BTCUR_LEFTRA);
|
|
}
|
|
|
|
/*
|
|
* If we went off the root then we are seriously confused.
|
|
* or the root of the tree is in an inode.
|
|
*/
|
|
if (lev == cur->bc_nlevels) {
|
|
if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE)
|
|
goto out0;
|
|
ASSERT(0);
|
|
error = -EFSCORRUPTED;
|
|
goto error0;
|
|
}
|
|
ASSERT(lev < cur->bc_nlevels);
|
|
|
|
/*
|
|
* Now walk back down the tree, fixing up the cursor's buffer
|
|
* pointers and key numbers.
|
|
*/
|
|
for (block = xfs_btree_get_block(cur, lev, &bp); lev > level; ) {
|
|
union xfs_btree_ptr *ptrp;
|
|
|
|
ptrp = xfs_btree_ptr_addr(cur, cur->bc_ptrs[lev], block);
|
|
--lev;
|
|
error = xfs_btree_read_buf_block(cur, ptrp, 0, &block, &bp);
|
|
if (error)
|
|
goto error0;
|
|
xfs_btree_setbuf(cur, lev, bp);
|
|
cur->bc_ptrs[lev] = xfs_btree_get_numrecs(block);
|
|
}
|
|
out1:
|
|
XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
|
|
*stat = 1;
|
|
return 0;
|
|
|
|
out0:
|
|
XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
|
|
*stat = 0;
|
|
return 0;
|
|
|
|
error0:
|
|
XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
|
|
return error;
|
|
}
|
|
|
|
int
|
|
xfs_btree_lookup_get_block(
|
|
struct xfs_btree_cur *cur, /* btree cursor */
|
|
int level, /* level in the btree */
|
|
union xfs_btree_ptr *pp, /* ptr to btree block */
|
|
struct xfs_btree_block **blkp) /* return btree block */
|
|
{
|
|
struct xfs_buf *bp; /* buffer pointer for btree block */
|
|
int error = 0;
|
|
|
|
/* special case the root block if in an inode */
|
|
if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
|
|
(level == cur->bc_nlevels - 1)) {
|
|
*blkp = xfs_btree_get_iroot(cur);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* If the old buffer at this level for the disk address we are
|
|
* looking for re-use it.
|
|
*
|
|
* Otherwise throw it away and get a new one.
|
|
*/
|
|
bp = cur->bc_bufs[level];
|
|
if (bp && XFS_BUF_ADDR(bp) == xfs_btree_ptr_to_daddr(cur, pp)) {
|
|
*blkp = XFS_BUF_TO_BLOCK(bp);
|
|
return 0;
|
|
}
|
|
|
|
error = xfs_btree_read_buf_block(cur, pp, 0, blkp, &bp);
|
|
if (error)
|
|
return error;
|
|
|
|
/* Check the inode owner since the verifiers don't. */
|
|
if (xfs_sb_version_hascrc(&cur->bc_mp->m_sb) &&
|
|
!(cur->bc_private.b.flags & XFS_BTCUR_BPRV_INVALID_OWNER) &&
|
|
(cur->bc_flags & XFS_BTREE_LONG_PTRS) &&
|
|
be64_to_cpu((*blkp)->bb_u.l.bb_owner) !=
|
|
cur->bc_private.b.ip->i_ino)
|
|
goto out_bad;
|
|
|
|
/* Did we get the level we were looking for? */
|
|
if (be16_to_cpu((*blkp)->bb_level) != level)
|
|
goto out_bad;
|
|
|
|
/* Check that internal nodes have at least one record. */
|
|
if (level != 0 && be16_to_cpu((*blkp)->bb_numrecs) == 0)
|
|
goto out_bad;
|
|
|
|
xfs_btree_setbuf(cur, level, bp);
|
|
return 0;
|
|
|
|
out_bad:
|
|
*blkp = NULL;
|
|
xfs_trans_brelse(cur->bc_tp, bp);
|
|
return -EFSCORRUPTED;
|
|
}
|
|
|
|
/*
|
|
* Get current search key. For level 0 we don't actually have a key
|
|
* structure so we make one up from the record. For all other levels
|
|
* we just return the right key.
|
|
*/
|
|
STATIC union xfs_btree_key *
|
|
xfs_lookup_get_search_key(
|
|
struct xfs_btree_cur *cur,
|
|
int level,
|
|
int keyno,
|
|
struct xfs_btree_block *block,
|
|
union xfs_btree_key *kp)
|
|
{
|
|
if (level == 0) {
|
|
cur->bc_ops->init_key_from_rec(kp,
|
|
xfs_btree_rec_addr(cur, keyno, block));
|
|
return kp;
|
|
}
|
|
|
|
return xfs_btree_key_addr(cur, keyno, block);
|
|
}
|
|
|
|
/*
|
|
* Lookup the record. The cursor is made to point to it, based on dir.
|
|
* stat is set to 0 if can't find any such record, 1 for success.
|
|
*/
|
|
int /* error */
|
|
xfs_btree_lookup(
|
|
struct xfs_btree_cur *cur, /* btree cursor */
|
|
xfs_lookup_t dir, /* <=, ==, or >= */
|
|
int *stat) /* success/failure */
|
|
{
|
|
struct xfs_btree_block *block; /* current btree block */
|
|
int64_t diff; /* difference for the current key */
|
|
int error; /* error return value */
|
|
int keyno; /* current key number */
|
|
int level; /* level in the btree */
|
|
union xfs_btree_ptr *pp; /* ptr to btree block */
|
|
union xfs_btree_ptr ptr; /* ptr to btree block */
|
|
|
|
XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
|
|
XFS_BTREE_TRACE_ARGI(cur, dir);
|
|
|
|
XFS_BTREE_STATS_INC(cur, lookup);
|
|
|
|
/* No such thing as a zero-level tree. */
|
|
if (cur->bc_nlevels == 0)
|
|
return -EFSCORRUPTED;
|
|
|
|
block = NULL;
|
|
keyno = 0;
|
|
|
|
/* initialise start pointer from cursor */
|
|
cur->bc_ops->init_ptr_from_cur(cur, &ptr);
|
|
pp = &ptr;
|
|
|
|
/*
|
|
* Iterate over each level in the btree, starting at the root.
|
|
* For each level above the leaves, find the key we need, based
|
|
* on the lookup record, then follow the corresponding block
|
|
* pointer down to the next level.
|
|
*/
|
|
for (level = cur->bc_nlevels - 1, diff = 1; level >= 0; level--) {
|
|
/* Get the block we need to do the lookup on. */
|
|
error = xfs_btree_lookup_get_block(cur, level, pp, &block);
|
|
if (error)
|
|
goto error0;
|
|
|
|
if (diff == 0) {
|
|
/*
|
|
* If we already had a key match at a higher level, we
|
|
* know we need to use the first entry in this block.
|
|
*/
|
|
keyno = 1;
|
|
} else {
|
|
/* Otherwise search this block. Do a binary search. */
|
|
|
|
int high; /* high entry number */
|
|
int low; /* low entry number */
|
|
|
|
/* Set low and high entry numbers, 1-based. */
|
|
low = 1;
|
|
high = xfs_btree_get_numrecs(block);
|
|
if (!high) {
|
|
/* Block is empty, must be an empty leaf. */
|
|
ASSERT(level == 0 && cur->bc_nlevels == 1);
|
|
|
|
cur->bc_ptrs[0] = dir != XFS_LOOKUP_LE;
|
|
XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
|
|
*stat = 0;
|
|
return 0;
|
|
}
|
|
|
|
/* Binary search the block. */
|
|
while (low <= high) {
|
|
union xfs_btree_key key;
|
|
union xfs_btree_key *kp;
|
|
|
|
XFS_BTREE_STATS_INC(cur, compare);
|
|
|
|
/* keyno is average of low and high. */
|
|
keyno = (low + high) >> 1;
|
|
|
|
/* Get current search key */
|
|
kp = xfs_lookup_get_search_key(cur, level,
|
|
keyno, block, &key);
|
|
|
|
/*
|
|
* Compute difference to get next direction:
|
|
* - less than, move right
|
|
* - greater than, move left
|
|
* - equal, we're done
|
|
*/
|
|
diff = cur->bc_ops->key_diff(cur, kp);
|
|
if (diff < 0)
|
|
low = keyno + 1;
|
|
else if (diff > 0)
|
|
high = keyno - 1;
|
|
else
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If there are more levels, set up for the next level
|
|
* by getting the block number and filling in the cursor.
|
|
*/
|
|
if (level > 0) {
|
|
/*
|
|
* If we moved left, need the previous key number,
|
|
* unless there isn't one.
|
|
*/
|
|
if (diff > 0 && --keyno < 1)
|
|
keyno = 1;
|
|
pp = xfs_btree_ptr_addr(cur, keyno, block);
|
|
|
|
#ifdef DEBUG
|
|
error = xfs_btree_check_ptr(cur, pp, 0, level);
|
|
if (error)
|
|
goto error0;
|
|
#endif
|
|
cur->bc_ptrs[level] = keyno;
|
|
}
|
|
}
|
|
|
|
/* Done with the search. See if we need to adjust the results. */
|
|
if (dir != XFS_LOOKUP_LE && diff < 0) {
|
|
keyno++;
|
|
/*
|
|
* If ge search and we went off the end of the block, but it's
|
|
* not the last block, we're in the wrong block.
|
|
*/
|
|
xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
|
|
if (dir == XFS_LOOKUP_GE &&
|
|
keyno > xfs_btree_get_numrecs(block) &&
|
|
!xfs_btree_ptr_is_null(cur, &ptr)) {
|
|
int i;
|
|
|
|
cur->bc_ptrs[0] = keyno;
|
|
error = xfs_btree_increment(cur, 0, &i);
|
|
if (error)
|
|
goto error0;
|
|
XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
|
|
XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
|
|
*stat = 1;
|
|
return 0;
|
|
}
|
|
} else if (dir == XFS_LOOKUP_LE && diff > 0)
|
|
keyno--;
|
|
cur->bc_ptrs[0] = keyno;
|
|
|
|
/* Return if we succeeded or not. */
|
|
if (keyno == 0 || keyno > xfs_btree_get_numrecs(block))
|
|
*stat = 0;
|
|
else if (dir != XFS_LOOKUP_EQ || diff == 0)
|
|
*stat = 1;
|
|
else
|
|
*stat = 0;
|
|
XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
|
|
return 0;
|
|
|
|
error0:
|
|
XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
|
|
return error;
|
|
}
|
|
|
|
/* Find the high key storage area from a regular key. */
|
|
union xfs_btree_key *
|
|
xfs_btree_high_key_from_key(
|
|
struct xfs_btree_cur *cur,
|
|
union xfs_btree_key *key)
|
|
{
|
|
ASSERT(cur->bc_flags & XFS_BTREE_OVERLAPPING);
|
|
return (union xfs_btree_key *)((char *)key +
|
|
(cur->bc_ops->key_len / 2));
|
|
}
|
|
|
|
/* Determine the low (and high if overlapped) keys of a leaf block */
|
|
STATIC void
|
|
xfs_btree_get_leaf_keys(
|
|
struct xfs_btree_cur *cur,
|
|
struct xfs_btree_block *block,
|
|
union xfs_btree_key *key)
|
|
{
|
|
union xfs_btree_key max_hkey;
|
|
union xfs_btree_key hkey;
|
|
union xfs_btree_rec *rec;
|
|
union xfs_btree_key *high;
|
|
int n;
|
|
|
|
rec = xfs_btree_rec_addr(cur, 1, block);
|
|
cur->bc_ops->init_key_from_rec(key, rec);
|
|
|
|
if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
|
|
|
|
cur->bc_ops->init_high_key_from_rec(&max_hkey, rec);
|
|
for (n = 2; n <= xfs_btree_get_numrecs(block); n++) {
|
|
rec = xfs_btree_rec_addr(cur, n, block);
|
|
cur->bc_ops->init_high_key_from_rec(&hkey, rec);
|
|
if (cur->bc_ops->diff_two_keys(cur, &hkey, &max_hkey)
|
|
> 0)
|
|
max_hkey = hkey;
|
|
}
|
|
|
|
high = xfs_btree_high_key_from_key(cur, key);
|
|
memcpy(high, &max_hkey, cur->bc_ops->key_len / 2);
|
|
}
|
|
}
|
|
|
|
/* Determine the low (and high if overlapped) keys of a node block */
|
|
STATIC void
|
|
xfs_btree_get_node_keys(
|
|
struct xfs_btree_cur *cur,
|
|
struct xfs_btree_block *block,
|
|
union xfs_btree_key *key)
|
|
{
|
|
union xfs_btree_key *hkey;
|
|
union xfs_btree_key *max_hkey;
|
|
union xfs_btree_key *high;
|
|
int n;
|
|
|
|
if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
|
|
memcpy(key, xfs_btree_key_addr(cur, 1, block),
|
|
cur->bc_ops->key_len / 2);
|
|
|
|
max_hkey = xfs_btree_high_key_addr(cur, 1, block);
|
|
for (n = 2; n <= xfs_btree_get_numrecs(block); n++) {
|
|
hkey = xfs_btree_high_key_addr(cur, n, block);
|
|
if (cur->bc_ops->diff_two_keys(cur, hkey, max_hkey) > 0)
|
|
max_hkey = hkey;
|
|
}
|
|
|
|
high = xfs_btree_high_key_from_key(cur, key);
|
|
memcpy(high, max_hkey, cur->bc_ops->key_len / 2);
|
|
} else {
|
|
memcpy(key, xfs_btree_key_addr(cur, 1, block),
|
|
cur->bc_ops->key_len);
|
|
}
|
|
}
|
|
|
|
/* Derive the keys for any btree block. */
|
|
void
|
|
xfs_btree_get_keys(
|
|
struct xfs_btree_cur *cur,
|
|
struct xfs_btree_block *block,
|
|
union xfs_btree_key *key)
|
|
{
|
|
if (be16_to_cpu(block->bb_level) == 0)
|
|
xfs_btree_get_leaf_keys(cur, block, key);
|
|
else
|
|
xfs_btree_get_node_keys(cur, block, key);
|
|
}
|
|
|
|
/*
|
|
* Decide if we need to update the parent keys of a btree block. For
|
|
* a standard btree this is only necessary if we're updating the first
|
|
* record/key. For an overlapping btree, we must always update the
|
|
* keys because the highest key can be in any of the records or keys
|
|
* in the block.
|
|
*/
|
|
static inline bool
|
|
xfs_btree_needs_key_update(
|
|
struct xfs_btree_cur *cur,
|
|
int ptr)
|
|
{
|
|
return (cur->bc_flags & XFS_BTREE_OVERLAPPING) || ptr == 1;
|
|
}
|
|
|
|
/*
|
|
* Update the low and high parent keys of the given level, progressing
|
|
* towards the root. If force_all is false, stop if the keys for a given
|
|
* level do not need updating.
|
|
*/
|
|
STATIC int
|
|
__xfs_btree_updkeys(
|
|
struct xfs_btree_cur *cur,
|
|
int level,
|
|
struct xfs_btree_block *block,
|
|
struct xfs_buf *bp0,
|
|
bool force_all)
|
|
{
|
|
union xfs_btree_key key; /* keys from current level */
|
|
union xfs_btree_key *lkey; /* keys from the next level up */
|
|
union xfs_btree_key *hkey;
|
|
union xfs_btree_key *nlkey; /* keys from the next level up */
|
|
union xfs_btree_key *nhkey;
|
|
struct xfs_buf *bp;
|
|
int ptr;
|
|
|
|
ASSERT(cur->bc_flags & XFS_BTREE_OVERLAPPING);
|
|
|
|
/* Exit if there aren't any parent levels to update. */
|
|
if (level + 1 >= cur->bc_nlevels)
|
|
return 0;
|
|
|
|
trace_xfs_btree_updkeys(cur, level, bp0);
|
|
|
|
lkey = &key;
|
|
hkey = xfs_btree_high_key_from_key(cur, lkey);
|
|
xfs_btree_get_keys(cur, block, lkey);
|
|
for (level++; level < cur->bc_nlevels; level++) {
|
|
#ifdef DEBUG
|
|
int error;
|
|
#endif
|
|
block = xfs_btree_get_block(cur, level, &bp);
|
|
trace_xfs_btree_updkeys(cur, level, bp);
|
|
#ifdef DEBUG
|
|
error = xfs_btree_check_block(cur, block, level, bp);
|
|
if (error) {
|
|
XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
|
|
return error;
|
|
}
|
|
#endif
|
|
ptr = cur->bc_ptrs[level];
|
|
nlkey = xfs_btree_key_addr(cur, ptr, block);
|
|
nhkey = xfs_btree_high_key_addr(cur, ptr, block);
|
|
if (!force_all &&
|
|
!(cur->bc_ops->diff_two_keys(cur, nlkey, lkey) != 0 ||
|
|
cur->bc_ops->diff_two_keys(cur, nhkey, hkey) != 0))
|
|
break;
|
|
xfs_btree_copy_keys(cur, nlkey, lkey, 1);
|
|
xfs_btree_log_keys(cur, bp, ptr, ptr);
|
|
if (level + 1 >= cur->bc_nlevels)
|
|
break;
|
|
xfs_btree_get_node_keys(cur, block, lkey);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Update all the keys from some level in cursor back to the root. */
|
|
STATIC int
|
|
xfs_btree_updkeys_force(
|
|
struct xfs_btree_cur *cur,
|
|
int level)
|
|
{
|
|
struct xfs_buf *bp;
|
|
struct xfs_btree_block *block;
|
|
|
|
block = xfs_btree_get_block(cur, level, &bp);
|
|
return __xfs_btree_updkeys(cur, level, block, bp, true);
|
|
}
|
|
|
|
/*
|
|
* Update the parent keys of the given level, progressing towards the root.
|
|
*/
|
|
STATIC int
|
|
xfs_btree_update_keys(
|
|
struct xfs_btree_cur *cur,
|
|
int level)
|
|
{
|
|
struct xfs_btree_block *block;
|
|
struct xfs_buf *bp;
|
|
union xfs_btree_key *kp;
|
|
union xfs_btree_key key;
|
|
int ptr;
|
|
|
|
ASSERT(level >= 0);
|
|
|
|
block = xfs_btree_get_block(cur, level, &bp);
|
|
if (cur->bc_flags & XFS_BTREE_OVERLAPPING)
|
|
return __xfs_btree_updkeys(cur, level, block, bp, false);
|
|
|
|
XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
|
|
XFS_BTREE_TRACE_ARGIK(cur, level, keyp);
|
|
|
|
/*
|
|
* Go up the tree from this level toward the root.
|
|
* At each level, update the key value to the value input.
|
|
* Stop when we reach a level where the cursor isn't pointing
|
|
* at the first entry in the block.
|
|
*/
|
|
xfs_btree_get_keys(cur, block, &key);
|
|
for (level++, ptr = 1; ptr == 1 && level < cur->bc_nlevels; level++) {
|
|
#ifdef DEBUG
|
|
int error;
|
|
#endif
|
|
block = xfs_btree_get_block(cur, level, &bp);
|
|
#ifdef DEBUG
|
|
error = xfs_btree_check_block(cur, block, level, bp);
|
|
if (error) {
|
|
XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
|
|
return error;
|
|
}
|
|
#endif
|
|
ptr = cur->bc_ptrs[level];
|
|
kp = xfs_btree_key_addr(cur, ptr, block);
|
|
xfs_btree_copy_keys(cur, kp, &key, 1);
|
|
xfs_btree_log_keys(cur, bp, ptr, ptr);
|
|
}
|
|
|
|
XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Update the record referred to by cur to the value in the
|
|
* given record. This either works (return 0) or gets an
|
|
* EFSCORRUPTED error.
|
|
*/
|
|
int
|
|
xfs_btree_update(
|
|
struct xfs_btree_cur *cur,
|
|
union xfs_btree_rec *rec)
|
|
{
|
|
struct xfs_btree_block *block;
|
|
struct xfs_buf *bp;
|
|
int error;
|
|
int ptr;
|
|
union xfs_btree_rec *rp;
|
|
|
|
XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
|
|
XFS_BTREE_TRACE_ARGR(cur, rec);
|
|
|
|
/* Pick up the current block. */
|
|
block = xfs_btree_get_block(cur, 0, &bp);
|
|
|
|
#ifdef DEBUG
|
|
error = xfs_btree_check_block(cur, block, 0, bp);
|
|
if (error)
|
|
goto error0;
|
|
#endif
|
|
/* Get the address of the rec to be updated. */
|
|
ptr = cur->bc_ptrs[0];
|
|
rp = xfs_btree_rec_addr(cur, ptr, block);
|
|
|
|
/* Fill in the new contents and log them. */
|
|
xfs_btree_copy_recs(cur, rp, rec, 1);
|
|
xfs_btree_log_recs(cur, bp, ptr, ptr);
|
|
|
|
/*
|
|
* If we are tracking the last record in the tree and
|
|
* we are at the far right edge of the tree, update it.
|
|
*/
|
|
if (xfs_btree_is_lastrec(cur, block, 0)) {
|
|
cur->bc_ops->update_lastrec(cur, block, rec,
|
|
ptr, LASTREC_UPDATE);
|
|
}
|
|
|
|
/* Pass new key value up to our parent. */
|
|
if (xfs_btree_needs_key_update(cur, ptr)) {
|
|
error = xfs_btree_update_keys(cur, 0);
|
|
if (error)
|
|
goto error0;
|
|
}
|
|
|
|
XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
|
|
return 0;
|
|
|
|
error0:
|
|
XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* Move 1 record left from cur/level if possible.
|
|
* Update cur to reflect the new path.
|
|
*/
|
|
STATIC int /* error */
|
|
xfs_btree_lshift(
|
|
struct xfs_btree_cur *cur,
|
|
int level,
|
|
int *stat) /* success/failure */
|
|
{
|
|
struct xfs_buf *lbp; /* left buffer pointer */
|
|
struct xfs_btree_block *left; /* left btree block */
|
|
int lrecs; /* left record count */
|
|
struct xfs_buf *rbp; /* right buffer pointer */
|
|
struct xfs_btree_block *right; /* right btree block */
|
|
struct xfs_btree_cur *tcur; /* temporary btree cursor */
|
|
int rrecs; /* right record count */
|
|
union xfs_btree_ptr lptr; /* left btree pointer */
|
|
union xfs_btree_key *rkp = NULL; /* right btree key */
|
|
union xfs_btree_ptr *rpp = NULL; /* right address pointer */
|
|
union xfs_btree_rec *rrp = NULL; /* right record pointer */
|
|
int error; /* error return value */
|
|
int i;
|
|
|
|
XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
|
|
XFS_BTREE_TRACE_ARGI(cur, level);
|
|
|
|
if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
|
|
level == cur->bc_nlevels - 1)
|
|
goto out0;
|
|
|
|
/* Set up variables for this block as "right". */
|
|
right = xfs_btree_get_block(cur, level, &rbp);
|
|
|
|
#ifdef DEBUG
|
|
error = xfs_btree_check_block(cur, right, level, rbp);
|
|
if (error)
|
|
goto error0;
|
|
#endif
|
|
|
|
/* If we've got no left sibling then we can't shift an entry left. */
|
|
xfs_btree_get_sibling(cur, right, &lptr, XFS_BB_LEFTSIB);
|
|
if (xfs_btree_ptr_is_null(cur, &lptr))
|
|
goto out0;
|
|
|
|
/*
|
|
* If the cursor entry is the one that would be moved, don't
|
|
* do it... it's too complicated.
|
|
*/
|
|
if (cur->bc_ptrs[level] <= 1)
|
|
goto out0;
|
|
|
|
/* Set up the left neighbor as "left". */
|
|
error = xfs_btree_read_buf_block(cur, &lptr, 0, &left, &lbp);
|
|
if (error)
|
|
goto error0;
|
|
|
|
/* If it's full, it can't take another entry. */
|
|
lrecs = xfs_btree_get_numrecs(left);
|
|
if (lrecs == cur->bc_ops->get_maxrecs(cur, level))
|
|
goto out0;
|
|
|
|
rrecs = xfs_btree_get_numrecs(right);
|
|
|
|
/*
|
|
* We add one entry to the left side and remove one for the right side.
|
|
* Account for it here, the changes will be updated on disk and logged
|
|
* later.
|
|
*/
|
|
lrecs++;
|
|
rrecs--;
|
|
|
|
XFS_BTREE_STATS_INC(cur, lshift);
|
|
XFS_BTREE_STATS_ADD(cur, moves, 1);
|
|
|
|
/*
|
|
* If non-leaf, copy a key and a ptr to the left block.
|
|
* Log the changes to the left block.
|
|
*/
|
|
if (level > 0) {
|
|
/* It's a non-leaf. Move keys and pointers. */
|
|
union xfs_btree_key *lkp; /* left btree key */
|
|
union xfs_btree_ptr *lpp; /* left address pointer */
|
|
|
|
lkp = xfs_btree_key_addr(cur, lrecs, left);
|
|
rkp = xfs_btree_key_addr(cur, 1, right);
|
|
|
|
lpp = xfs_btree_ptr_addr(cur, lrecs, left);
|
|
rpp = xfs_btree_ptr_addr(cur, 1, right);
|
|
#ifdef DEBUG
|
|
error = xfs_btree_check_ptr(cur, rpp, 0, level);
|
|
if (error)
|
|
goto error0;
|
|
#endif
|
|
xfs_btree_copy_keys(cur, lkp, rkp, 1);
|
|
xfs_btree_copy_ptrs(cur, lpp, rpp, 1);
|
|
|
|
xfs_btree_log_keys(cur, lbp, lrecs, lrecs);
|
|
xfs_btree_log_ptrs(cur, lbp, lrecs, lrecs);
|
|
|
|
ASSERT(cur->bc_ops->keys_inorder(cur,
|
|
xfs_btree_key_addr(cur, lrecs - 1, left), lkp));
|
|
} else {
|
|
/* It's a leaf. Move records. */
|
|
union xfs_btree_rec *lrp; /* left record pointer */
|
|
|
|
lrp = xfs_btree_rec_addr(cur, lrecs, left);
|
|
rrp = xfs_btree_rec_addr(cur, 1, right);
|
|
|
|
xfs_btree_copy_recs(cur, lrp, rrp, 1);
|
|
xfs_btree_log_recs(cur, lbp, lrecs, lrecs);
|
|
|
|
ASSERT(cur->bc_ops->recs_inorder(cur,
|
|
xfs_btree_rec_addr(cur, lrecs - 1, left), lrp));
|
|
}
|
|
|
|
xfs_btree_set_numrecs(left, lrecs);
|
|
xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS);
|
|
|
|
xfs_btree_set_numrecs(right, rrecs);
|
|
xfs_btree_log_block(cur, rbp, XFS_BB_NUMRECS);
|
|
|
|
/*
|
|
* Slide the contents of right down one entry.
|
|
*/
|
|
XFS_BTREE_STATS_ADD(cur, moves, rrecs - 1);
|
|
if (level > 0) {
|
|
/* It's a nonleaf. operate on keys and ptrs */
|
|
#ifdef DEBUG
|
|
int i; /* loop index */
|
|
|
|
for (i = 0; i < rrecs; i++) {
|
|
error = xfs_btree_check_ptr(cur, rpp, i + 1, level);
|
|
if (error)
|
|
goto error0;
|
|
}
|
|
#endif
|
|
xfs_btree_shift_keys(cur,
|
|
xfs_btree_key_addr(cur, 2, right),
|
|
-1, rrecs);
|
|
xfs_btree_shift_ptrs(cur,
|
|
xfs_btree_ptr_addr(cur, 2, right),
|
|
-1, rrecs);
|
|
|
|
xfs_btree_log_keys(cur, rbp, 1, rrecs);
|
|
xfs_btree_log_ptrs(cur, rbp, 1, rrecs);
|
|
} else {
|
|
/* It's a leaf. operate on records */
|
|
xfs_btree_shift_recs(cur,
|
|
xfs_btree_rec_addr(cur, 2, right),
|
|
-1, rrecs);
|
|
xfs_btree_log_recs(cur, rbp, 1, rrecs);
|
|
}
|
|
|
|
/*
|
|
* Using a temporary cursor, update the parent key values of the
|
|
* block on the left.
|
|
*/
|
|
if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
|
|
error = xfs_btree_dup_cursor(cur, &tcur);
|
|
if (error)
|
|
goto error0;
|
|
i = xfs_btree_firstrec(tcur, level);
|
|
XFS_WANT_CORRUPTED_GOTO(tcur->bc_mp, i == 1, error0);
|
|
|
|
error = xfs_btree_decrement(tcur, level, &i);
|
|
if (error)
|
|
goto error1;
|
|
|
|
/* Update the parent high keys of the left block, if needed. */
|
|
error = xfs_btree_update_keys(tcur, level);
|
|
if (error)
|
|
goto error1;
|
|
|
|
xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
|
|
}
|
|
|
|
/* Update the parent keys of the right block. */
|
|
error = xfs_btree_update_keys(cur, level);
|
|
if (error)
|
|
goto error0;
|
|
|
|
/* Slide the cursor value left one. */
|
|
cur->bc_ptrs[level]--;
|
|
|
|
XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
|
|
*stat = 1;
|
|
return 0;
|
|
|
|
out0:
|
|
XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
|
|
*stat = 0;
|
|
return 0;
|
|
|
|
error0:
|
|
XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
|
|
return error;
|
|
|
|
error1:
|
|
XFS_BTREE_TRACE_CURSOR(tcur, XBT_ERROR);
|
|
xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* Move 1 record right from cur/level if possible.
|
|
* Update cur to reflect the new path.
|
|
*/
|
|
STATIC int /* error */
|
|
xfs_btree_rshift(
|
|
struct xfs_btree_cur *cur,
|
|
int level,
|
|
int *stat) /* success/failure */
|
|
{
|
|
struct xfs_buf *lbp; /* left buffer pointer */
|
|
struct xfs_btree_block *left; /* left btree block */
|
|
struct xfs_buf *rbp; /* right buffer pointer */
|
|
struct xfs_btree_block *right; /* right btree block */
|
|
struct xfs_btree_cur *tcur; /* temporary btree cursor */
|
|
union xfs_btree_ptr rptr; /* right block pointer */
|
|
union xfs_btree_key *rkp; /* right btree key */
|
|
int rrecs; /* right record count */
|
|
int lrecs; /* left record count */
|
|
int error; /* error return value */
|
|
int i; /* loop counter */
|
|
|
|
XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
|
|
XFS_BTREE_TRACE_ARGI(cur, level);
|
|
|
|
if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
|
|
(level == cur->bc_nlevels - 1))
|
|
goto out0;
|
|
|
|
/* Set up variables for this block as "left". */
|
|
left = xfs_btree_get_block(cur, level, &lbp);
|
|
|
|
#ifdef DEBUG
|
|
error = xfs_btree_check_block(cur, left, level, lbp);
|
|
if (error)
|
|
goto error0;
|
|
#endif
|
|
|
|
/* If we've got no right sibling then we can't shift an entry right. */
|
|
xfs_btree_get_sibling(cur, left, &rptr, XFS_BB_RIGHTSIB);
|
|
if (xfs_btree_ptr_is_null(cur, &rptr))
|
|
goto out0;
|
|
|
|
/*
|
|
* If the cursor entry is the one that would be moved, don't
|
|
* do it... it's too complicated.
|
|
*/
|
|
lrecs = xfs_btree_get_numrecs(left);
|
|
if (cur->bc_ptrs[level] >= lrecs)
|
|
goto out0;
|
|
|
|
/* Set up the right neighbor as "right". */
|
|
error = xfs_btree_read_buf_block(cur, &rptr, 0, &right, &rbp);
|
|
if (error)
|
|
goto error0;
|
|
|
|
/* If it's full, it can't take another entry. */
|
|
rrecs = xfs_btree_get_numrecs(right);
|
|
if (rrecs == cur->bc_ops->get_maxrecs(cur, level))
|
|
goto out0;
|
|
|
|
XFS_BTREE_STATS_INC(cur, rshift);
|
|
XFS_BTREE_STATS_ADD(cur, moves, rrecs);
|
|
|
|
/*
|
|
* Make a hole at the start of the right neighbor block, then
|
|
* copy the last left block entry to the hole.
|
|
*/
|
|
if (level > 0) {
|
|
/* It's a nonleaf. make a hole in the keys and ptrs */
|
|
union xfs_btree_key *lkp;
|
|
union xfs_btree_ptr *lpp;
|
|
union xfs_btree_ptr *rpp;
|
|
|
|
lkp = xfs_btree_key_addr(cur, lrecs, left);
|
|
lpp = xfs_btree_ptr_addr(cur, lrecs, left);
|
|
rkp = xfs_btree_key_addr(cur, 1, right);
|
|
rpp = xfs_btree_ptr_addr(cur, 1, right);
|
|
|
|
#ifdef DEBUG
|
|
for (i = rrecs - 1; i >= 0; i--) {
|
|
error = xfs_btree_check_ptr(cur, rpp, i, level);
|
|
if (error)
|
|
goto error0;
|
|
}
|
|
#endif
|
|
|
|
xfs_btree_shift_keys(cur, rkp, 1, rrecs);
|
|
xfs_btree_shift_ptrs(cur, rpp, 1, rrecs);
|
|
|
|
#ifdef DEBUG
|
|
error = xfs_btree_check_ptr(cur, lpp, 0, level);
|
|
if (error)
|
|
goto error0;
|
|
#endif
|
|
|
|
/* Now put the new data in, and log it. */
|
|
xfs_btree_copy_keys(cur, rkp, lkp, 1);
|
|
xfs_btree_copy_ptrs(cur, rpp, lpp, 1);
|
|
|
|
xfs_btree_log_keys(cur, rbp, 1, rrecs + 1);
|
|
xfs_btree_log_ptrs(cur, rbp, 1, rrecs + 1);
|
|
|
|
ASSERT(cur->bc_ops->keys_inorder(cur, rkp,
|
|
xfs_btree_key_addr(cur, 2, right)));
|
|
} else {
|
|
/* It's a leaf. make a hole in the records */
|
|
union xfs_btree_rec *lrp;
|
|
union xfs_btree_rec *rrp;
|
|
|
|
lrp = xfs_btree_rec_addr(cur, lrecs, left);
|
|
rrp = xfs_btree_rec_addr(cur, 1, right);
|
|
|
|
xfs_btree_shift_recs(cur, rrp, 1, rrecs);
|
|
|
|
/* Now put the new data in, and log it. */
|
|
xfs_btree_copy_recs(cur, rrp, lrp, 1);
|
|
xfs_btree_log_recs(cur, rbp, 1, rrecs + 1);
|
|
}
|
|
|
|
/*
|
|
* Decrement and log left's numrecs, bump and log right's numrecs.
|
|
*/
|
|
xfs_btree_set_numrecs(left, --lrecs);
|
|
xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS);
|
|
|
|
xfs_btree_set_numrecs(right, ++rrecs);
|
|
xfs_btree_log_block(cur, rbp, XFS_BB_NUMRECS);
|
|
|
|
/*
|
|
* Using a temporary cursor, update the parent key values of the
|
|
* block on the right.
|
|
*/
|
|
error = xfs_btree_dup_cursor(cur, &tcur);
|
|
if (error)
|
|
goto error0;
|
|
i = xfs_btree_lastrec(tcur, level);
|
|
XFS_WANT_CORRUPTED_GOTO(tcur->bc_mp, i == 1, error0);
|
|
|
|
error = xfs_btree_increment(tcur, level, &i);
|
|
if (error)
|
|
goto error1;
|
|
|
|
/* Update the parent high keys of the left block, if needed. */
|
|
if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
|
|
error = xfs_btree_update_keys(cur, level);
|
|
if (error)
|
|
goto error1;
|
|
}
|
|
|
|
/* Update the parent keys of the right block. */
|
|
error = xfs_btree_update_keys(tcur, level);
|
|
if (error)
|
|
goto error1;
|
|
|
|
xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
|
|
|
|
XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
|
|
*stat = 1;
|
|
return 0;
|
|
|
|
out0:
|
|
XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
|
|
*stat = 0;
|
|
return 0;
|
|
|
|
error0:
|
|
XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
|
|
return error;
|
|
|
|
error1:
|
|
XFS_BTREE_TRACE_CURSOR(tcur, XBT_ERROR);
|
|
xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* Split cur/level block in half.
|
|
* Return new block number and the key to its first
|
|
* record (to be inserted into parent).
|
|
*/
|
|
STATIC int /* error */
|
|
__xfs_btree_split(
|
|
struct xfs_btree_cur *cur,
|
|
int level,
|
|
union xfs_btree_ptr *ptrp,
|
|
union xfs_btree_key *key,
|
|
struct xfs_btree_cur **curp,
|
|
int *stat) /* success/failure */
|
|
{
|
|
union xfs_btree_ptr lptr; /* left sibling block ptr */
|
|
struct xfs_buf *lbp; /* left buffer pointer */
|
|
struct xfs_btree_block *left; /* left btree block */
|
|
union xfs_btree_ptr rptr; /* right sibling block ptr */
|
|
struct xfs_buf *rbp; /* right buffer pointer */
|
|
struct xfs_btree_block *right; /* right btree block */
|
|
union xfs_btree_ptr rrptr; /* right-right sibling ptr */
|
|
struct xfs_buf *rrbp; /* right-right buffer pointer */
|
|
struct xfs_btree_block *rrblock; /* right-right btree block */
|
|
int lrecs;
|
|
int rrecs;
|
|
int src_index;
|
|
int error; /* error return value */
|
|
#ifdef DEBUG
|
|
int i;
|
|
#endif
|
|
|
|
XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
|
|
XFS_BTREE_TRACE_ARGIPK(cur, level, *ptrp, key);
|
|
|
|
XFS_BTREE_STATS_INC(cur, split);
|
|
|
|
/* Set up left block (current one). */
|
|
left = xfs_btree_get_block(cur, level, &lbp);
|
|
|
|
#ifdef DEBUG
|
|
error = xfs_btree_check_block(cur, left, level, lbp);
|
|
if (error)
|
|
goto error0;
|
|
#endif
|
|
|
|
xfs_btree_buf_to_ptr(cur, lbp, &lptr);
|
|
|
|
/* Allocate the new block. If we can't do it, we're toast. Give up. */
|
|
error = cur->bc_ops->alloc_block(cur, &lptr, &rptr, stat);
|
|
if (error)
|
|
goto error0;
|
|
if (*stat == 0)
|
|
goto out0;
|
|
XFS_BTREE_STATS_INC(cur, alloc);
|
|
|
|
/* Set up the new block as "right". */
|
|
error = xfs_btree_get_buf_block(cur, &rptr, 0, &right, &rbp);
|
|
if (error)
|
|
goto error0;
|
|
|
|
/* Fill in the btree header for the new right block. */
|
|
xfs_btree_init_block_cur(cur, rbp, xfs_btree_get_level(left), 0);
|
|
|
|
/*
|
|
* Split the entries between the old and the new block evenly.
|
|
* Make sure that if there's an odd number of entries now, that
|
|
* each new block will have the same number of entries.
|
|
*/
|
|
lrecs = xfs_btree_get_numrecs(left);
|
|
rrecs = lrecs / 2;
|
|
if ((lrecs & 1) && cur->bc_ptrs[level] <= rrecs + 1)
|
|
rrecs++;
|
|
src_index = (lrecs - rrecs + 1);
|
|
|
|
XFS_BTREE_STATS_ADD(cur, moves, rrecs);
|
|
|
|
/* Adjust numrecs for the later get_*_keys() calls. */
|
|
lrecs -= rrecs;
|
|
xfs_btree_set_numrecs(left, lrecs);
|
|
xfs_btree_set_numrecs(right, xfs_btree_get_numrecs(right) + rrecs);
|
|
|
|
/*
|
|
* Copy btree block entries from the left block over to the
|
|
* new block, the right. Update the right block and log the
|
|
* changes.
|
|
*/
|
|
if (level > 0) {
|
|
/* It's a non-leaf. Move keys and pointers. */
|
|
union xfs_btree_key *lkp; /* left btree key */
|
|
union xfs_btree_ptr *lpp; /* left address pointer */
|
|
union xfs_btree_key *rkp; /* right btree key */
|
|
union xfs_btree_ptr *rpp; /* right address pointer */
|
|
|
|
lkp = xfs_btree_key_addr(cur, src_index, left);
|
|
lpp = xfs_btree_ptr_addr(cur, src_index, left);
|
|
rkp = xfs_btree_key_addr(cur, 1, right);
|
|
rpp = xfs_btree_ptr_addr(cur, 1, right);
|
|
|
|
#ifdef DEBUG
|
|
for (i = src_index; i < rrecs; i++) {
|
|
error = xfs_btree_check_ptr(cur, lpp, i, level);
|
|
if (error)
|
|
goto error0;
|
|
}
|
|
#endif
|
|
|
|
/* Copy the keys & pointers to the new block. */
|
|
xfs_btree_copy_keys(cur, rkp, lkp, rrecs);
|
|
xfs_btree_copy_ptrs(cur, rpp, lpp, rrecs);
|
|
|
|
xfs_btree_log_keys(cur, rbp, 1, rrecs);
|
|
xfs_btree_log_ptrs(cur, rbp, 1, rrecs);
|
|
|
|
/* Stash the keys of the new block for later insertion. */
|
|
xfs_btree_get_node_keys(cur, right, key);
|
|
} else {
|
|
/* It's a leaf. Move records. */
|
|
union xfs_btree_rec *lrp; /* left record pointer */
|
|
union xfs_btree_rec *rrp; /* right record pointer */
|
|
|
|
lrp = xfs_btree_rec_addr(cur, src_index, left);
|
|
rrp = xfs_btree_rec_addr(cur, 1, right);
|
|
|
|
/* Copy records to the new block. */
|
|
xfs_btree_copy_recs(cur, rrp, lrp, rrecs);
|
|
xfs_btree_log_recs(cur, rbp, 1, rrecs);
|
|
|
|
/* Stash the keys of the new block for later insertion. */
|
|
xfs_btree_get_leaf_keys(cur, right, key);
|
|
}
|
|
|
|
/*
|
|
* Find the left block number by looking in the buffer.
|
|
* Adjust sibling pointers.
|
|
*/
|
|
xfs_btree_get_sibling(cur, left, &rrptr, XFS_BB_RIGHTSIB);
|
|
xfs_btree_set_sibling(cur, right, &rrptr, XFS_BB_RIGHTSIB);
|
|
xfs_btree_set_sibling(cur, right, &lptr, XFS_BB_LEFTSIB);
|
|
xfs_btree_set_sibling(cur, left, &rptr, XFS_BB_RIGHTSIB);
|
|
|
|
xfs_btree_log_block(cur, rbp, XFS_BB_ALL_BITS);
|
|
xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS | XFS_BB_RIGHTSIB);
|
|
|
|
/*
|
|
* If there's a block to the new block's right, make that block
|
|
* point back to right instead of to left.
|
|
*/
|
|
if (!xfs_btree_ptr_is_null(cur, &rrptr)) {
|
|
error = xfs_btree_read_buf_block(cur, &rrptr,
|
|
0, &rrblock, &rrbp);
|
|
if (error)
|
|
goto error0;
|
|
xfs_btree_set_sibling(cur, rrblock, &rptr, XFS_BB_LEFTSIB);
|
|
xfs_btree_log_block(cur, rrbp, XFS_BB_LEFTSIB);
|
|
}
|
|
|
|
/* Update the parent high keys of the left block, if needed. */
|
|
if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
|
|
error = xfs_btree_update_keys(cur, level);
|
|
if (error)
|
|
goto error0;
|
|
}
|
|
|
|
/*
|
|
* If the cursor is really in the right block, move it there.
|
|
* If it's just pointing past the last entry in left, then we'll
|
|
* insert there, so don't change anything in that case.
|
|
*/
|
|
if (cur->bc_ptrs[level] > lrecs + 1) {
|
|
xfs_btree_setbuf(cur, level, rbp);
|
|
cur->bc_ptrs[level] -= lrecs;
|
|
}
|
|
/*
|
|
* If there are more levels, we'll need another cursor which refers
|
|
* the right block, no matter where this cursor was.
|
|
*/
|
|
if (level + 1 < cur->bc_nlevels) {
|
|
error = xfs_btree_dup_cursor(cur, curp);
|
|
if (error)
|
|
goto error0;
|
|
(*curp)->bc_ptrs[level + 1]++;
|
|
}
|
|
*ptrp = rptr;
|
|
XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
|
|
*stat = 1;
|
|
return 0;
|
|
out0:
|
|
XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
|
|
*stat = 0;
|
|
return 0;
|
|
|
|
error0:
|
|
XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
|
|
return error;
|
|
}
|
|
|
|
struct xfs_btree_split_args {
|
|
struct xfs_btree_cur *cur;
|
|
int level;
|
|
union xfs_btree_ptr *ptrp;
|
|
union xfs_btree_key *key;
|
|
struct xfs_btree_cur **curp;
|
|
int *stat; /* success/failure */
|
|
int result;
|
|
bool kswapd; /* allocation in kswapd context */
|
|
struct completion *done;
|
|
struct work_struct work;
|
|
};
|
|
|
|
/*
|
|
* Stack switching interfaces for allocation
|
|
*/
|
|
static void
|
|
xfs_btree_split_worker(
|
|
struct work_struct *work)
|
|
{
|
|
struct xfs_btree_split_args *args = container_of(work,
|
|
struct xfs_btree_split_args, work);
|
|
unsigned long pflags;
|
|
unsigned long new_pflags = PF_MEMALLOC_NOFS;
|
|
|
|
/*
|
|
* we are in a transaction context here, but may also be doing work
|
|
* in kswapd context, and hence we may need to inherit that state
|
|
* temporarily to ensure that we don't block waiting for memory reclaim
|
|
* in any way.
|
|
*/
|
|
if (args->kswapd)
|
|
new_pflags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
|
|
|
|
current_set_flags_nested(&pflags, new_pflags);
|
|
|
|
args->result = __xfs_btree_split(args->cur, args->level, args->ptrp,
|
|
args->key, args->curp, args->stat);
|
|
complete(args->done);
|
|
|
|
current_restore_flags_nested(&pflags, new_pflags);
|
|
}
|
|
|
|
/*
|
|
* BMBT split requests often come in with little stack to work on. Push
|
|
* them off to a worker thread so there is lots of stack to use. For the other
|
|
* btree types, just call directly to avoid the context switch overhead here.
|
|
*/
|
|
STATIC int /* error */
|
|
xfs_btree_split(
|
|
struct xfs_btree_cur *cur,
|
|
int level,
|
|
union xfs_btree_ptr *ptrp,
|
|
union xfs_btree_key *key,
|
|
struct xfs_btree_cur **curp,
|
|
int *stat) /* success/failure */
|
|
{
|
|
struct xfs_btree_split_args args;
|
|
DECLARE_COMPLETION_ONSTACK(done);
|
|
|
|
if (cur->bc_btnum != XFS_BTNUM_BMAP)
|
|
return __xfs_btree_split(cur, level, ptrp, key, curp, stat);
|
|
|
|
args.cur = cur;
|
|
args.level = level;
|
|
args.ptrp = ptrp;
|
|
args.key = key;
|
|
args.curp = curp;
|
|
args.stat = stat;
|
|
args.done = &done;
|
|
args.kswapd = current_is_kswapd();
|
|
INIT_WORK_ONSTACK(&args.work, xfs_btree_split_worker);
|
|
queue_work(xfs_alloc_wq, &args.work);
|
|
wait_for_completion(&done);
|
|
destroy_work_on_stack(&args.work);
|
|
return args.result;
|
|
}
|
|
|
|
|
|
/*
|
|
* Copy the old inode root contents into a real block and make the
|
|
* broot point to it.
|
|
*/
|
|
int /* error */
|
|
xfs_btree_new_iroot(
|
|
struct xfs_btree_cur *cur, /* btree cursor */
|
|
int *logflags, /* logging flags for inode */
|
|
int *stat) /* return status - 0 fail */
|
|
{
|
|
struct xfs_buf *cbp; /* buffer for cblock */
|
|
struct xfs_btree_block *block; /* btree block */
|
|
struct xfs_btree_block *cblock; /* child btree block */
|
|
union xfs_btree_key *ckp; /* child key pointer */
|
|
union xfs_btree_ptr *cpp; /* child ptr pointer */
|
|
union xfs_btree_key *kp; /* pointer to btree key */
|
|
union xfs_btree_ptr *pp; /* pointer to block addr */
|
|
union xfs_btree_ptr nptr; /* new block addr */
|
|
int level; /* btree level */
|
|
int error; /* error return code */
|
|
#ifdef DEBUG
|
|
int i; /* loop counter */
|
|
#endif
|
|
|
|
XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
|
|
XFS_BTREE_STATS_INC(cur, newroot);
|
|
|
|
ASSERT(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE);
|
|
|
|
level = cur->bc_nlevels - 1;
|
|
|
|
block = xfs_btree_get_iroot(cur);
|
|
pp = xfs_btree_ptr_addr(cur, 1, block);
|
|
|
|
/* Allocate the new block. If we can't do it, we're toast. Give up. */
|
|
error = cur->bc_ops->alloc_block(cur, pp, &nptr, stat);
|
|
if (error)
|
|
goto error0;
|
|
if (*stat == 0) {
|
|
XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
|
|
return 0;
|
|
}
|
|
XFS_BTREE_STATS_INC(cur, alloc);
|
|
|
|
/* Copy the root into a real block. */
|
|
error = xfs_btree_get_buf_block(cur, &nptr, 0, &cblock, &cbp);
|
|
if (error)
|
|
goto error0;
|
|
|
|
/*
|
|
* we can't just memcpy() the root in for CRC enabled btree blocks.
|
|
* In that case have to also ensure the blkno remains correct
|
|
*/
|
|
memcpy(cblock, block, xfs_btree_block_len(cur));
|
|
if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS) {
|
|
if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
|
|
cblock->bb_u.l.bb_blkno = cpu_to_be64(cbp->b_bn);
|
|
else
|
|
cblock->bb_u.s.bb_blkno = cpu_to_be64(cbp->b_bn);
|
|
}
|
|
|
|
be16_add_cpu(&block->bb_level, 1);
|
|
xfs_btree_set_numrecs(block, 1);
|
|
cur->bc_nlevels++;
|
|
cur->bc_ptrs[level + 1] = 1;
|
|
|
|
kp = xfs_btree_key_addr(cur, 1, block);
|
|
ckp = xfs_btree_key_addr(cur, 1, cblock);
|
|
xfs_btree_copy_keys(cur, ckp, kp, xfs_btree_get_numrecs(cblock));
|
|
|
|
cpp = xfs_btree_ptr_addr(cur, 1, cblock);
|
|
#ifdef DEBUG
|
|
for (i = 0; i < be16_to_cpu(cblock->bb_numrecs); i++) {
|
|
error = xfs_btree_check_ptr(cur, pp, i, level);
|
|
if (error)
|
|
goto error0;
|
|
}
|
|
#endif
|
|
xfs_btree_copy_ptrs(cur, cpp, pp, xfs_btree_get_numrecs(cblock));
|
|
|
|
#ifdef DEBUG
|
|
error = xfs_btree_check_ptr(cur, &nptr, 0, level);
|
|
if (error)
|
|
goto error0;
|
|
#endif
|
|
xfs_btree_copy_ptrs(cur, pp, &nptr, 1);
|
|
|
|
xfs_iroot_realloc(cur->bc_private.b.ip,
|
|
1 - xfs_btree_get_numrecs(cblock),
|
|
cur->bc_private.b.whichfork);
|
|
|
|
xfs_btree_setbuf(cur, level, cbp);
|
|
|
|
/*
|
|
* Do all this logging at the end so that
|
|
* the root is at the right level.
|
|
*/
|
|
xfs_btree_log_block(cur, cbp, XFS_BB_ALL_BITS);
|
|
xfs_btree_log_keys(cur, cbp, 1, be16_to_cpu(cblock->bb_numrecs));
|
|
xfs_btree_log_ptrs(cur, cbp, 1, be16_to_cpu(cblock->bb_numrecs));
|
|
|
|
*logflags |=
|
|
XFS_ILOG_CORE | xfs_ilog_fbroot(cur->bc_private.b.whichfork);
|
|
*stat = 1;
|
|
XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
|
|
return 0;
|
|
error0:
|
|
XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* Allocate a new root block, fill it in.
|
|
*/
|
|
STATIC int /* error */
|
|
xfs_btree_new_root(
|
|
struct xfs_btree_cur *cur, /* btree cursor */
|
|
int *stat) /* success/failure */
|
|
{
|
|
struct xfs_btree_block *block; /* one half of the old root block */
|
|
struct xfs_buf *bp; /* buffer containing block */
|
|
int error; /* error return value */
|
|
struct xfs_buf *lbp; /* left buffer pointer */
|
|
struct xfs_btree_block *left; /* left btree block */
|
|
struct xfs_buf *nbp; /* new (root) buffer */
|
|
struct xfs_btree_block *new; /* new (root) btree block */
|
|
int nptr; /* new value for key index, 1 or 2 */
|
|
struct xfs_buf *rbp; /* right buffer pointer */
|
|
struct xfs_btree_block *right; /* right btree block */
|
|
union xfs_btree_ptr rptr;
|
|
union xfs_btree_ptr lptr;
|
|
|
|
XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
|
|
XFS_BTREE_STATS_INC(cur, newroot);
|
|
|
|
/* initialise our start point from the cursor */
|
|
cur->bc_ops->init_ptr_from_cur(cur, &rptr);
|
|
|
|
/* Allocate the new block. If we can't do it, we're toast. Give up. */
|
|
error = cur->bc_ops->alloc_block(cur, &rptr, &lptr, stat);
|
|
if (error)
|
|
goto error0;
|
|
if (*stat == 0)
|
|
goto out0;
|
|
XFS_BTREE_STATS_INC(cur, alloc);
|
|
|
|
/* Set up the new block. */
|
|
error = xfs_btree_get_buf_block(cur, &lptr, 0, &new, &nbp);
|
|
if (error)
|
|
goto error0;
|
|
|
|
/* Set the root in the holding structure increasing the level by 1. */
|
|
cur->bc_ops->set_root(cur, &lptr, 1);
|
|
|
|
/*
|
|
* At the previous root level there are now two blocks: the old root,
|
|
* and the new block generated when it was split. We don't know which
|
|
* one the cursor is pointing at, so we set up variables "left" and
|
|
* "right" for each case.
|
|
*/
|
|
block = xfs_btree_get_block(cur, cur->bc_nlevels - 1, &bp);
|
|
|
|
#ifdef DEBUG
|
|
error = xfs_btree_check_block(cur, block, cur->bc_nlevels - 1, bp);
|
|
if (error)
|
|
goto error0;
|
|
#endif
|
|
|
|
xfs_btree_get_sibling(cur, block, &rptr, XFS_BB_RIGHTSIB);
|
|
if (!xfs_btree_ptr_is_null(cur, &rptr)) {
|
|
/* Our block is left, pick up the right block. */
|
|
lbp = bp;
|
|
xfs_btree_buf_to_ptr(cur, lbp, &lptr);
|
|
left = block;
|
|
error = xfs_btree_read_buf_block(cur, &rptr, 0, &right, &rbp);
|
|
if (error)
|
|
goto error0;
|
|
bp = rbp;
|
|
nptr = 1;
|
|
} else {
|
|
/* Our block is right, pick up the left block. */
|
|
rbp = bp;
|
|
xfs_btree_buf_to_ptr(cur, rbp, &rptr);
|
|
right = block;
|
|
xfs_btree_get_sibling(cur, right, &lptr, XFS_BB_LEFTSIB);
|
|
error = xfs_btree_read_buf_block(cur, &lptr, 0, &left, &lbp);
|
|
if (error)
|
|
goto error0;
|
|
bp = lbp;
|
|
nptr = 2;
|
|
}
|
|
|
|
/* Fill in the new block's btree header and log it. */
|
|
xfs_btree_init_block_cur(cur, nbp, cur->bc_nlevels, 2);
|
|
xfs_btree_log_block(cur, nbp, XFS_BB_ALL_BITS);
|
|
ASSERT(!xfs_btree_ptr_is_null(cur, &lptr) &&
|
|
!xfs_btree_ptr_is_null(cur, &rptr));
|
|
|
|
/* Fill in the key data in the new root. */
|
|
if (xfs_btree_get_level(left) > 0) {
|
|
/*
|
|
* Get the keys for the left block's keys and put them directly
|
|
* in the parent block. Do the same for the right block.
|
|
*/
|
|
xfs_btree_get_node_keys(cur, left,
|
|
xfs_btree_key_addr(cur, 1, new));
|
|
xfs_btree_get_node_keys(cur, right,
|
|
xfs_btree_key_addr(cur, 2, new));
|
|
} else {
|
|
/*
|
|
* Get the keys for the left block's records and put them
|
|
* directly in the parent block. Do the same for the right
|
|
* block.
|
|
*/
|
|
xfs_btree_get_leaf_keys(cur, left,
|
|
xfs_btree_key_addr(cur, 1, new));
|
|
xfs_btree_get_leaf_keys(cur, right,
|
|
xfs_btree_key_addr(cur, 2, new));
|
|
}
|
|
xfs_btree_log_keys(cur, nbp, 1, 2);
|
|
|
|
/* Fill in the pointer data in the new root. */
|
|
xfs_btree_copy_ptrs(cur,
|
|
xfs_btree_ptr_addr(cur, 1, new), &lptr, 1);
|
|
xfs_btree_copy_ptrs(cur,
|
|
xfs_btree_ptr_addr(cur, 2, new), &rptr, 1);
|
|
xfs_btree_log_ptrs(cur, nbp, 1, 2);
|
|
|
|
/* Fix up the cursor. */
|
|
xfs_btree_setbuf(cur, cur->bc_nlevels, nbp);
|
|
cur->bc_ptrs[cur->bc_nlevels] = nptr;
|
|
cur->bc_nlevels++;
|
|
XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
|
|
*stat = 1;
|
|
return 0;
|
|
error0:
|
|
XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
|
|
return error;
|
|
out0:
|
|
XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
|
|
*stat = 0;
|
|
return 0;
|
|
}
|
|
|
|
STATIC int
|
|
xfs_btree_make_block_unfull(
|
|
struct xfs_btree_cur *cur, /* btree cursor */
|
|
int level, /* btree level */
|
|
int numrecs,/* # of recs in block */
|
|
int *oindex,/* old tree index */
|
|
int *index, /* new tree index */
|
|
union xfs_btree_ptr *nptr, /* new btree ptr */
|
|
struct xfs_btree_cur **ncur, /* new btree cursor */
|
|
union xfs_btree_key *key, /* key of new block */
|
|
int *stat)
|
|
{
|
|
int error = 0;
|
|
|
|
if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
|
|
level == cur->bc_nlevels - 1) {
|
|
struct xfs_inode *ip = cur->bc_private.b.ip;
|
|
|
|
if (numrecs < cur->bc_ops->get_dmaxrecs(cur, level)) {
|
|
/* A root block that can be made bigger. */
|
|
xfs_iroot_realloc(ip, 1, cur->bc_private.b.whichfork);
|
|
*stat = 1;
|
|
} else {
|
|
/* A root block that needs replacing */
|
|
int logflags = 0;
|
|
|
|
error = xfs_btree_new_iroot(cur, &logflags, stat);
|
|
if (error || *stat == 0)
|
|
return error;
|
|
|
|
xfs_trans_log_inode(cur->bc_tp, ip, logflags);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* First, try shifting an entry to the right neighbor. */
|
|
error = xfs_btree_rshift(cur, level, stat);
|
|
if (error || *stat)
|
|
return error;
|
|
|
|
/* Next, try shifting an entry to the left neighbor. */
|
|
error = xfs_btree_lshift(cur, level, stat);
|
|
if (error)
|
|
return error;
|
|
|
|
if (*stat) {
|
|
*oindex = *index = cur->bc_ptrs[level];
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Next, try splitting the current block in half.
|
|
*
|
|
* If this works we have to re-set our variables because we
|
|
* could be in a different block now.
|
|
*/
|
|
error = xfs_btree_split(cur, level, nptr, key, ncur, stat);
|
|
if (error || *stat == 0)
|
|
return error;
|
|
|
|
|
|
*index = cur->bc_ptrs[level];
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Insert one record/level. Return information to the caller
|
|
* allowing the next level up to proceed if necessary.
|
|
*/
|
|
STATIC int
|
|
xfs_btree_insrec(
|
|
struct xfs_btree_cur *cur, /* btree cursor */
|
|
int level, /* level to insert record at */
|
|
union xfs_btree_ptr *ptrp, /* i/o: block number inserted */
|
|
union xfs_btree_rec *rec, /* record to insert */
|
|
union xfs_btree_key *key, /* i/o: block key for ptrp */
|
|
struct xfs_btree_cur **curp, /* output: new cursor replacing cur */
|
|
int *stat) /* success/failure */
|
|
{
|
|
struct xfs_btree_block *block; /* btree block */
|
|
struct xfs_buf *bp; /* buffer for block */
|
|
union xfs_btree_ptr nptr; /* new block ptr */
|
|
struct xfs_btree_cur *ncur; /* new btree cursor */
|
|
union xfs_btree_key nkey; /* new block key */
|
|
union xfs_btree_key *lkey;
|
|
int optr; /* old key/record index */
|
|
int ptr; /* key/record index */
|
|
int numrecs;/* number of records */
|
|
int error; /* error return value */
|
|
#ifdef DEBUG
|
|
int i;
|
|
#endif
|
|
xfs_daddr_t old_bn;
|
|
|
|
XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
|
|
XFS_BTREE_TRACE_ARGIPR(cur, level, *ptrp, &rec);
|
|
|
|
ncur = NULL;
|
|
lkey = &nkey;
|
|
|
|
/*
|
|
* If we have an external root pointer, and we've made it to the
|
|
* root level, allocate a new root block and we're done.
|
|
*/
|
|
if (!(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
|
|
(level >= cur->bc_nlevels)) {
|
|
error = xfs_btree_new_root(cur, stat);
|
|
xfs_btree_set_ptr_null(cur, ptrp);
|
|
|
|
XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
|
|
return error;
|
|
}
|
|
|
|
/* If we're off the left edge, return failure. */
|
|
ptr = cur->bc_ptrs[level];
|
|
if (ptr == 0) {
|
|
XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
|
|
*stat = 0;
|
|
return 0;
|
|
}
|
|
|
|
optr = ptr;
|
|
|
|
XFS_BTREE_STATS_INC(cur, insrec);
|
|
|
|
/* Get pointers to the btree buffer and block. */
|
|
block = xfs_btree_get_block(cur, level, &bp);
|
|
old_bn = bp ? bp->b_bn : XFS_BUF_DADDR_NULL;
|
|
numrecs = xfs_btree_get_numrecs(block);
|
|
|
|
#ifdef DEBUG
|
|
error = xfs_btree_check_block(cur, block, level, bp);
|
|
if (error)
|
|
goto error0;
|
|
|
|
/* Check that the new entry is being inserted in the right place. */
|
|
if (ptr <= numrecs) {
|
|
if (level == 0) {
|
|
ASSERT(cur->bc_ops->recs_inorder(cur, rec,
|
|
xfs_btree_rec_addr(cur, ptr, block)));
|
|
} else {
|
|
ASSERT(cur->bc_ops->keys_inorder(cur, key,
|
|
xfs_btree_key_addr(cur, ptr, block)));
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* If the block is full, we can't insert the new entry until we
|
|
* make the block un-full.
|
|
*/
|
|
xfs_btree_set_ptr_null(cur, &nptr);
|
|
if (numrecs == cur->bc_ops->get_maxrecs(cur, level)) {
|
|
error = xfs_btree_make_block_unfull(cur, level, numrecs,
|
|
&optr, &ptr, &nptr, &ncur, lkey, stat);
|
|
if (error || *stat == 0)
|
|
goto error0;
|
|
}
|
|
|
|
/*
|
|
* The current block may have changed if the block was
|
|
* previously full and we have just made space in it.
|
|
*/
|
|
block = xfs_btree_get_block(cur, level, &bp);
|
|
numrecs = xfs_btree_get_numrecs(block);
|
|
|
|
#ifdef DEBUG
|
|
error = xfs_btree_check_block(cur, block, level, bp);
|
|
if (error)
|
|
return error;
|
|
#endif
|
|
|
|
/*
|
|
* At this point we know there's room for our new entry in the block
|
|
* we're pointing at.
|
|
*/
|
|
XFS_BTREE_STATS_ADD(cur, moves, numrecs - ptr + 1);
|
|
|
|
if (level > 0) {
|
|
/* It's a nonleaf. make a hole in the keys and ptrs */
|
|
union xfs_btree_key *kp;
|
|
union xfs_btree_ptr *pp;
|
|
|
|
kp = xfs_btree_key_addr(cur, ptr, block);
|
|
pp = xfs_btree_ptr_addr(cur, ptr, block);
|
|
|
|
#ifdef DEBUG
|
|
for (i = numrecs - ptr; i >= 0; i--) {
|
|
error = xfs_btree_check_ptr(cur, pp, i, level);
|
|
if (error)
|
|
return error;
|
|
}
|
|
#endif
|
|
|
|
xfs_btree_shift_keys(cur, kp, 1, numrecs - ptr + 1);
|
|
xfs_btree_shift_ptrs(cur, pp, 1, numrecs - ptr + 1);
|
|
|
|
#ifdef DEBUG
|
|
error = xfs_btree_check_ptr(cur, ptrp, 0, level);
|
|
if (error)
|
|
goto error0;
|
|
#endif
|
|
|
|
/* Now put the new data in, bump numrecs and log it. */
|
|
xfs_btree_copy_keys(cur, kp, key, 1);
|
|
xfs_btree_copy_ptrs(cur, pp, ptrp, 1);
|
|
numrecs++;
|
|
xfs_btree_set_numrecs(block, numrecs);
|
|
xfs_btree_log_ptrs(cur, bp, ptr, numrecs);
|
|
xfs_btree_log_keys(cur, bp, ptr, numrecs);
|
|
#ifdef DEBUG
|
|
if (ptr < numrecs) {
|
|
ASSERT(cur->bc_ops->keys_inorder(cur, kp,
|
|
xfs_btree_key_addr(cur, ptr + 1, block)));
|
|
}
|
|
#endif
|
|
} else {
|
|
/* It's a leaf. make a hole in the records */
|
|
union xfs_btree_rec *rp;
|
|
|
|
rp = xfs_btree_rec_addr(cur, ptr, block);
|
|
|
|
xfs_btree_shift_recs(cur, rp, 1, numrecs - ptr + 1);
|
|
|
|
/* Now put the new data in, bump numrecs and log it. */
|
|
xfs_btree_copy_recs(cur, rp, rec, 1);
|
|
xfs_btree_set_numrecs(block, ++numrecs);
|
|
xfs_btree_log_recs(cur, bp, ptr, numrecs);
|
|
#ifdef DEBUG
|
|
if (ptr < numrecs) {
|
|
ASSERT(cur->bc_ops->recs_inorder(cur, rp,
|
|
xfs_btree_rec_addr(cur, ptr + 1, block)));
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/* Log the new number of records in the btree header. */
|
|
xfs_btree_log_block(cur, bp, XFS_BB_NUMRECS);
|
|
|
|
/*
|
|
* If we just inserted into a new tree block, we have to
|
|
* recalculate nkey here because nkey is out of date.
|
|
*
|
|
* Otherwise we're just updating an existing block (having shoved
|
|
* some records into the new tree block), so use the regular key
|
|
* update mechanism.
|
|
*/
|
|
if (bp && bp->b_bn != old_bn) {
|
|
xfs_btree_get_keys(cur, block, lkey);
|
|
} else if (xfs_btree_needs_key_update(cur, optr)) {
|
|
error = xfs_btree_update_keys(cur, level);
|
|
if (error)
|
|
goto error0;
|
|
}
|
|
|
|
/*
|
|
* If we are tracking the last record in the tree and
|
|
* we are at the far right edge of the tree, update it.
|
|
*/
|
|
if (xfs_btree_is_lastrec(cur, block, level)) {
|
|
cur->bc_ops->update_lastrec(cur, block, rec,
|
|
ptr, LASTREC_INSREC);
|
|
}
|
|
|
|
/*
|
|
* Return the new block number, if any.
|
|
* If there is one, give back a record value and a cursor too.
|
|
*/
|
|
*ptrp = nptr;
|
|
if (!xfs_btree_ptr_is_null(cur, &nptr)) {
|
|
xfs_btree_copy_keys(cur, key, lkey, 1);
|
|
*curp = ncur;
|
|
}
|
|
|
|
XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
|
|
*stat = 1;
|
|
return 0;
|
|
|
|
error0:
|
|
XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* Insert the record at the point referenced by cur.
|
|
*
|
|
* A multi-level split of the tree on insert will invalidate the original
|
|
* cursor. All callers of this function should assume that the cursor is
|
|
* no longer valid and revalidate it.
|
|
*/
|
|
int
|
|
xfs_btree_insert(
|
|
struct xfs_btree_cur *cur,
|
|
int *stat)
|
|
{
|
|
int error; /* error return value */
|
|
int i; /* result value, 0 for failure */
|
|
int level; /* current level number in btree */
|
|
union xfs_btree_ptr nptr; /* new block number (split result) */
|
|
struct xfs_btree_cur *ncur; /* new cursor (split result) */
|
|
struct xfs_btree_cur *pcur; /* previous level's cursor */
|
|
union xfs_btree_key bkey; /* key of block to insert */
|
|
union xfs_btree_key *key;
|
|
union xfs_btree_rec rec; /* record to insert */
|
|
|
|
level = 0;
|
|
ncur = NULL;
|
|
pcur = cur;
|
|
key = &bkey;
|
|
|
|
xfs_btree_set_ptr_null(cur, &nptr);
|
|
|
|
/* Make a key out of the record data to be inserted, and save it. */
|
|
cur->bc_ops->init_rec_from_cur(cur, &rec);
|
|
cur->bc_ops->init_key_from_rec(key, &rec);
|
|
|
|
/*
|
|
* Loop going up the tree, starting at the leaf level.
|
|
* Stop when we don't get a split block, that must mean that
|
|
* the insert is finished with this level.
|
|
*/
|
|
do {
|
|
/*
|
|
* Insert nrec/nptr into this level of the tree.
|
|
* Note if we fail, nptr will be null.
|
|
*/
|
|
error = xfs_btree_insrec(pcur, level, &nptr, &rec, key,
|
|
&ncur, &i);
|
|
if (error) {
|
|
if (pcur != cur)
|
|
xfs_btree_del_cursor(pcur, XFS_BTREE_ERROR);
|
|
goto error0;
|
|
}
|
|
|
|
XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
|
|
level++;
|
|
|
|
/*
|
|
* See if the cursor we just used is trash.
|
|
* Can't trash the caller's cursor, but otherwise we should
|
|
* if ncur is a new cursor or we're about to be done.
|
|
*/
|
|
if (pcur != cur &&
|
|
(ncur || xfs_btree_ptr_is_null(cur, &nptr))) {
|
|
/* Save the state from the cursor before we trash it */
|
|
if (cur->bc_ops->update_cursor)
|
|
cur->bc_ops->update_cursor(pcur, cur);
|
|
cur->bc_nlevels = pcur->bc_nlevels;
|
|
xfs_btree_del_cursor(pcur, XFS_BTREE_NOERROR);
|
|
}
|
|
/* If we got a new cursor, switch to it. */
|
|
if (ncur) {
|
|
pcur = ncur;
|
|
ncur = NULL;
|
|
}
|
|
} while (!xfs_btree_ptr_is_null(cur, &nptr));
|
|
|
|
XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
|
|
*stat = i;
|
|
return 0;
|
|
error0:
|
|
XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* Try to merge a non-leaf block back into the inode root.
|
|
*
|
|
* Note: the killroot names comes from the fact that we're effectively
|
|
* killing the old root block. But because we can't just delete the
|
|
* inode we have to copy the single block it was pointing to into the
|
|
* inode.
|
|
*/
|
|
STATIC int
|
|
xfs_btree_kill_iroot(
|
|
struct xfs_btree_cur *cur)
|
|
{
|
|
int whichfork = cur->bc_private.b.whichfork;
|
|
struct xfs_inode *ip = cur->bc_private.b.ip;
|
|
struct xfs_ifork *ifp = XFS_IFORK_PTR(ip, whichfork);
|
|
struct xfs_btree_block *block;
|
|
struct xfs_btree_block *cblock;
|
|
union xfs_btree_key *kp;
|
|
union xfs_btree_key *ckp;
|
|
union xfs_btree_ptr *pp;
|
|
union xfs_btree_ptr *cpp;
|
|
struct xfs_buf *cbp;
|
|
int level;
|
|
int index;
|
|
int numrecs;
|
|
int error;
|
|
#ifdef DEBUG
|
|
union xfs_btree_ptr ptr;
|
|
int i;
|
|
#endif
|
|
|
|
XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
|
|
|
|
ASSERT(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE);
|
|
ASSERT(cur->bc_nlevels > 1);
|
|
|
|
/*
|
|
* Don't deal with the root block needs to be a leaf case.
|
|
* We're just going to turn the thing back into extents anyway.
|
|
*/
|
|
level = cur->bc_nlevels - 1;
|
|
if (level == 1)
|
|
goto out0;
|
|
|
|
/*
|
|
* Give up if the root has multiple children.
|
|
*/
|
|
block = xfs_btree_get_iroot(cur);
|
|
if (xfs_btree_get_numrecs(block) != 1)
|
|
goto out0;
|
|
|
|
cblock = xfs_btree_get_block(cur, level - 1, &cbp);
|
|
numrecs = xfs_btree_get_numrecs(cblock);
|
|
|
|
/*
|
|
* Only do this if the next level will fit.
|
|
* Then the data must be copied up to the inode,
|
|
* instead of freeing the root you free the next level.
|
|
*/
|
|
if (numrecs > cur->bc_ops->get_dmaxrecs(cur, level))
|
|
goto out0;
|
|
|
|
XFS_BTREE_STATS_INC(cur, killroot);
|
|
|
|
#ifdef DEBUG
|
|
xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_LEFTSIB);
|
|
ASSERT(xfs_btree_ptr_is_null(cur, &ptr));
|
|
xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
|
|
ASSERT(xfs_btree_ptr_is_null(cur, &ptr));
|
|
#endif
|
|
|
|
index = numrecs - cur->bc_ops->get_maxrecs(cur, level);
|
|
if (index) {
|
|
xfs_iroot_realloc(cur->bc_private.b.ip, index,
|
|
cur->bc_private.b.whichfork);
|
|
block = ifp->if_broot;
|
|
}
|
|
|
|
be16_add_cpu(&block->bb_numrecs, index);
|
|
ASSERT(block->bb_numrecs == cblock->bb_numrecs);
|
|
|
|
kp = xfs_btree_key_addr(cur, 1, block);
|
|
ckp = xfs_btree_key_addr(cur, 1, cblock);
|
|
xfs_btree_copy_keys(cur, kp, ckp, numrecs);
|
|
|
|
pp = xfs_btree_ptr_addr(cur, 1, block);
|
|
cpp = xfs_btree_ptr_addr(cur, 1, cblock);
|
|
#ifdef DEBUG
|
|
for (i = 0; i < numrecs; i++) {
|
|
error = xfs_btree_check_ptr(cur, cpp, i, level - 1);
|
|
if (error) {
|
|
XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
|
|
return error;
|
|
}
|
|
}
|
|
#endif
|
|
xfs_btree_copy_ptrs(cur, pp, cpp, numrecs);
|
|
|
|
error = xfs_btree_free_block(cur, cbp);
|
|
if (error) {
|
|
XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
|
|
return error;
|
|
}
|
|
|
|
cur->bc_bufs[level - 1] = NULL;
|
|
be16_add_cpu(&block->bb_level, -1);
|
|
xfs_trans_log_inode(cur->bc_tp, ip,
|
|
XFS_ILOG_CORE | xfs_ilog_fbroot(cur->bc_private.b.whichfork));
|
|
cur->bc_nlevels--;
|
|
out0:
|
|
XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Kill the current root node, and replace it with it's only child node.
|
|
*/
|
|
STATIC int
|
|
xfs_btree_kill_root(
|
|
struct xfs_btree_cur *cur,
|
|
struct xfs_buf *bp,
|
|
int level,
|
|
union xfs_btree_ptr *newroot)
|
|
{
|
|
int error;
|
|
|
|
XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
|
|
XFS_BTREE_STATS_INC(cur, killroot);
|
|
|
|
/*
|
|
* Update the root pointer, decreasing the level by 1 and then
|
|
* free the old root.
|
|
*/
|
|
cur->bc_ops->set_root(cur, newroot, -1);
|
|
|
|
error = xfs_btree_free_block(cur, bp);
|
|
if (error) {
|
|
XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
|
|
return error;
|
|
}
|
|
|
|
cur->bc_bufs[level] = NULL;
|
|
cur->bc_ra[level] = 0;
|
|
cur->bc_nlevels--;
|
|
|
|
XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
|
|
return 0;
|
|
}
|
|
|
|
STATIC int
|
|
xfs_btree_dec_cursor(
|
|
struct xfs_btree_cur *cur,
|
|
int level,
|
|
int *stat)
|
|
{
|
|
int error;
|
|
int i;
|
|
|
|
if (level > 0) {
|
|
error = xfs_btree_decrement(cur, level, &i);
|
|
if (error)
|
|
return error;
|
|
}
|
|
|
|
XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
|
|
*stat = 1;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Single level of the btree record deletion routine.
|
|
* Delete record pointed to by cur/level.
|
|
* Remove the record from its block then rebalance the tree.
|
|
* Return 0 for error, 1 for done, 2 to go on to the next level.
|
|
*/
|
|
STATIC int /* error */
|
|
xfs_btree_delrec(
|
|
struct xfs_btree_cur *cur, /* btree cursor */
|
|
int level, /* level removing record from */
|
|
int *stat) /* fail/done/go-on */
|
|
{
|
|
struct xfs_btree_block *block; /* btree block */
|
|
union xfs_btree_ptr cptr; /* current block ptr */
|
|
struct xfs_buf *bp; /* buffer for block */
|
|
int error; /* error return value */
|
|
int i; /* loop counter */
|
|
union xfs_btree_ptr lptr; /* left sibling block ptr */
|
|
struct xfs_buf *lbp; /* left buffer pointer */
|
|
struct xfs_btree_block *left; /* left btree block */
|
|
int lrecs = 0; /* left record count */
|
|
int ptr; /* key/record index */
|
|
union xfs_btree_ptr rptr; /* right sibling block ptr */
|
|
struct xfs_buf *rbp; /* right buffer pointer */
|
|
struct xfs_btree_block *right; /* right btree block */
|
|
struct xfs_btree_block *rrblock; /* right-right btree block */
|
|
struct xfs_buf *rrbp; /* right-right buffer pointer */
|
|
int rrecs = 0; /* right record count */
|
|
struct xfs_btree_cur *tcur; /* temporary btree cursor */
|
|
int numrecs; /* temporary numrec count */
|
|
|
|
XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
|
|
XFS_BTREE_TRACE_ARGI(cur, level);
|
|
|
|
tcur = NULL;
|
|
|
|
/* Get the index of the entry being deleted, check for nothing there. */
|
|
ptr = cur->bc_ptrs[level];
|
|
if (ptr == 0) {
|
|
XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
|
|
*stat = 0;
|
|
return 0;
|
|
}
|
|
|
|
/* Get the buffer & block containing the record or key/ptr. */
|
|
block = xfs_btree_get_block(cur, level, &bp);
|
|
numrecs = xfs_btree_get_numrecs(block);
|
|
|
|
#ifdef DEBUG
|
|
error = xfs_btree_check_block(cur, block, level, bp);
|
|
if (error)
|
|
goto error0;
|
|
#endif
|
|
|
|
/* Fail if we're off the end of the block. */
|
|
if (ptr > numrecs) {
|
|
XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
|
|
*stat = 0;
|
|
return 0;
|
|
}
|
|
|
|
XFS_BTREE_STATS_INC(cur, delrec);
|
|
XFS_BTREE_STATS_ADD(cur, moves, numrecs - ptr);
|
|
|
|
/* Excise the entries being deleted. */
|
|
if (level > 0) {
|
|
/* It's a nonleaf. operate on keys and ptrs */
|
|
union xfs_btree_key *lkp;
|
|
union xfs_btree_ptr *lpp;
|
|
|
|
lkp = xfs_btree_key_addr(cur, ptr + 1, block);
|
|
lpp = xfs_btree_ptr_addr(cur, ptr + 1, block);
|
|
|
|
#ifdef DEBUG
|
|
for (i = 0; i < numrecs - ptr; i++) {
|
|
error = xfs_btree_check_ptr(cur, lpp, i, level);
|
|
if (error)
|
|
goto error0;
|
|
}
|
|
#endif
|
|
|
|
if (ptr < numrecs) {
|
|
xfs_btree_shift_keys(cur, lkp, -1, numrecs - ptr);
|
|
xfs_btree_shift_ptrs(cur, lpp, -1, numrecs - ptr);
|
|
xfs_btree_log_keys(cur, bp, ptr, numrecs - 1);
|
|
xfs_btree_log_ptrs(cur, bp, ptr, numrecs - 1);
|
|
}
|
|
} else {
|
|
/* It's a leaf. operate on records */
|
|
if (ptr < numrecs) {
|
|
xfs_btree_shift_recs(cur,
|
|
xfs_btree_rec_addr(cur, ptr + 1, block),
|
|
-1, numrecs - ptr);
|
|
xfs_btree_log_recs(cur, bp, ptr, numrecs - 1);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Decrement and log the number of entries in the block.
|
|
*/
|
|
xfs_btree_set_numrecs(block, --numrecs);
|
|
xfs_btree_log_block(cur, bp, XFS_BB_NUMRECS);
|
|
|
|
/*
|
|
* If we are tracking the last record in the tree and
|
|
* we are at the far right edge of the tree, update it.
|
|
*/
|
|
if (xfs_btree_is_lastrec(cur, block, level)) {
|
|
cur->bc_ops->update_lastrec(cur, block, NULL,
|
|
ptr, LASTREC_DELREC);
|
|
}
|
|
|
|
/*
|
|
* We're at the root level. First, shrink the root block in-memory.
|
|
* Try to get rid of the next level down. If we can't then there's
|
|
* nothing left to do.
|
|
*/
|
|
if (level == cur->bc_nlevels - 1) {
|
|
if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) {
|
|
xfs_iroot_realloc(cur->bc_private.b.ip, -1,
|
|
cur->bc_private.b.whichfork);
|
|
|
|
error = xfs_btree_kill_iroot(cur);
|
|
if (error)
|
|
goto error0;
|
|
|
|
error = xfs_btree_dec_cursor(cur, level, stat);
|
|
if (error)
|
|
goto error0;
|
|
*stat = 1;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* If this is the root level, and there's only one entry left,
|
|
* and it's NOT the leaf level, then we can get rid of this
|
|
* level.
|
|
*/
|
|
if (numrecs == 1 && level > 0) {
|
|
union xfs_btree_ptr *pp;
|
|
/*
|
|
* pp is still set to the first pointer in the block.
|
|
* Make it the new root of the btree.
|
|
*/
|
|
pp = xfs_btree_ptr_addr(cur, 1, block);
|
|
error = xfs_btree_kill_root(cur, bp, level, pp);
|
|
if (error)
|
|
goto error0;
|
|
} else if (level > 0) {
|
|
error = xfs_btree_dec_cursor(cur, level, stat);
|
|
if (error)
|
|
goto error0;
|
|
}
|
|
*stat = 1;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* If we deleted the leftmost entry in the block, update the
|
|
* key values above us in the tree.
|
|
*/
|
|
if (xfs_btree_needs_key_update(cur, ptr)) {
|
|
error = xfs_btree_update_keys(cur, level);
|
|
if (error)
|
|
goto error0;
|
|
}
|
|
|
|
/*
|
|
* If the number of records remaining in the block is at least
|
|
* the minimum, we're done.
|
|
*/
|
|
if (numrecs >= cur->bc_ops->get_minrecs(cur, level)) {
|
|
error = xfs_btree_dec_cursor(cur, level, stat);
|
|
if (error)
|
|
goto error0;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Otherwise, we have to move some records around to keep the
|
|
* tree balanced. Look at the left and right sibling blocks to
|
|
* see if we can re-balance by moving only one record.
|
|
*/
|
|
xfs_btree_get_sibling(cur, block, &rptr, XFS_BB_RIGHTSIB);
|
|
xfs_btree_get_sibling(cur, block, &lptr, XFS_BB_LEFTSIB);
|
|
|
|
if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) {
|
|
/*
|
|
* One child of root, need to get a chance to copy its contents
|
|
* into the root and delete it. Can't go up to next level,
|
|
* there's nothing to delete there.
|
|
*/
|
|
if (xfs_btree_ptr_is_null(cur, &rptr) &&
|
|
xfs_btree_ptr_is_null(cur, &lptr) &&
|
|
level == cur->bc_nlevels - 2) {
|
|
error = xfs_btree_kill_iroot(cur);
|
|
if (!error)
|
|
error = xfs_btree_dec_cursor(cur, level, stat);
|
|
if (error)
|
|
goto error0;
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
ASSERT(!xfs_btree_ptr_is_null(cur, &rptr) ||
|
|
!xfs_btree_ptr_is_null(cur, &lptr));
|
|
|
|
/*
|
|
* Duplicate the cursor so our btree manipulations here won't
|
|
* disrupt the next level up.
|
|
*/
|
|
error = xfs_btree_dup_cursor(cur, &tcur);
|
|
if (error)
|
|
goto error0;
|
|
|
|
/*
|
|
* If there's a right sibling, see if it's ok to shift an entry
|
|
* out of it.
|
|
*/
|
|
if (!xfs_btree_ptr_is_null(cur, &rptr)) {
|
|
/*
|
|
* Move the temp cursor to the last entry in the next block.
|
|
* Actually any entry but the first would suffice.
|
|
*/
|
|
i = xfs_btree_lastrec(tcur, level);
|
|
XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
|
|
|
|
error = xfs_btree_increment(tcur, level, &i);
|
|
if (error)
|
|
goto error0;
|
|
XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
|
|
|
|
i = xfs_btree_lastrec(tcur, level);
|
|
XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
|
|
|
|
/* Grab a pointer to the block. */
|
|
right = xfs_btree_get_block(tcur, level, &rbp);
|
|
#ifdef DEBUG
|
|
error = xfs_btree_check_block(tcur, right, level, rbp);
|
|
if (error)
|
|
goto error0;
|
|
#endif
|
|
/* Grab the current block number, for future use. */
|
|
xfs_btree_get_sibling(tcur, right, &cptr, XFS_BB_LEFTSIB);
|
|
|
|
/*
|
|
* If right block is full enough so that removing one entry
|
|
* won't make it too empty, and left-shifting an entry out
|
|
* of right to us works, we're done.
|
|
*/
|
|
if (xfs_btree_get_numrecs(right) - 1 >=
|
|
cur->bc_ops->get_minrecs(tcur, level)) {
|
|
error = xfs_btree_lshift(tcur, level, &i);
|
|
if (error)
|
|
goto error0;
|
|
if (i) {
|
|
ASSERT(xfs_btree_get_numrecs(block) >=
|
|
cur->bc_ops->get_minrecs(tcur, level));
|
|
|
|
xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
|
|
tcur = NULL;
|
|
|
|
error = xfs_btree_dec_cursor(cur, level, stat);
|
|
if (error)
|
|
goto error0;
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Otherwise, grab the number of records in right for
|
|
* future reference, and fix up the temp cursor to point
|
|
* to our block again (last record).
|
|
*/
|
|
rrecs = xfs_btree_get_numrecs(right);
|
|
if (!xfs_btree_ptr_is_null(cur, &lptr)) {
|
|
i = xfs_btree_firstrec(tcur, level);
|
|
XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
|
|
|
|
error = xfs_btree_decrement(tcur, level, &i);
|
|
if (error)
|
|
goto error0;
|
|
XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If there's a left sibling, see if it's ok to shift an entry
|
|
* out of it.
|
|
*/
|
|
if (!xfs_btree_ptr_is_null(cur, &lptr)) {
|
|
/*
|
|
* Move the temp cursor to the first entry in the
|
|
* previous block.
|
|
*/
|
|
i = xfs_btree_firstrec(tcur, level);
|
|
XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
|
|
|
|
error = xfs_btree_decrement(tcur, level, &i);
|
|
if (error)
|
|
goto error0;
|
|
i = xfs_btree_firstrec(tcur, level);
|
|
XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
|
|
|
|
/* Grab a pointer to the block. */
|
|
left = xfs_btree_get_block(tcur, level, &lbp);
|
|
#ifdef DEBUG
|
|
error = xfs_btree_check_block(cur, left, level, lbp);
|
|
if (error)
|
|
goto error0;
|
|
#endif
|
|
/* Grab the current block number, for future use. */
|
|
xfs_btree_get_sibling(tcur, left, &cptr, XFS_BB_RIGHTSIB);
|
|
|
|
/*
|
|
* If left block is full enough so that removing one entry
|
|
* won't make it too empty, and right-shifting an entry out
|
|
* of left to us works, we're done.
|
|
*/
|
|
if (xfs_btree_get_numrecs(left) - 1 >=
|
|
cur->bc_ops->get_minrecs(tcur, level)) {
|
|
error = xfs_btree_rshift(tcur, level, &i);
|
|
if (error)
|
|
goto error0;
|
|
if (i) {
|
|
ASSERT(xfs_btree_get_numrecs(block) >=
|
|
cur->bc_ops->get_minrecs(tcur, level));
|
|
xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
|
|
tcur = NULL;
|
|
if (level == 0)
|
|
cur->bc_ptrs[0]++;
|
|
XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
|
|
*stat = 1;
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Otherwise, grab the number of records in right for
|
|
* future reference.
|
|
*/
|
|
lrecs = xfs_btree_get_numrecs(left);
|
|
}
|
|
|
|
/* Delete the temp cursor, we're done with it. */
|
|
xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
|
|
tcur = NULL;
|
|
|
|
/* If here, we need to do a join to keep the tree balanced. */
|
|
ASSERT(!xfs_btree_ptr_is_null(cur, &cptr));
|
|
|
|
if (!xfs_btree_ptr_is_null(cur, &lptr) &&
|
|
lrecs + xfs_btree_get_numrecs(block) <=
|
|
cur->bc_ops->get_maxrecs(cur, level)) {
|
|
/*
|
|
* Set "right" to be the starting block,
|
|
* "left" to be the left neighbor.
|
|
*/
|
|
rptr = cptr;
|
|
right = block;
|
|
rbp = bp;
|
|
error = xfs_btree_read_buf_block(cur, &lptr, 0, &left, &lbp);
|
|
if (error)
|
|
goto error0;
|
|
|
|
/*
|
|
* If that won't work, see if we can join with the right neighbor block.
|
|
*/
|
|
} else if (!xfs_btree_ptr_is_null(cur, &rptr) &&
|
|
rrecs + xfs_btree_get_numrecs(block) <=
|
|
cur->bc_ops->get_maxrecs(cur, level)) {
|
|
/*
|
|
* Set "left" to be the starting block,
|
|
* "right" to be the right neighbor.
|
|
*/
|
|
lptr = cptr;
|
|
left = block;
|
|
lbp = bp;
|
|
error = xfs_btree_read_buf_block(cur, &rptr, 0, &right, &rbp);
|
|
if (error)
|
|
goto error0;
|
|
|
|
/*
|
|
* Otherwise, we can't fix the imbalance.
|
|
* Just return. This is probably a logic error, but it's not fatal.
|
|
*/
|
|
} else {
|
|
error = xfs_btree_dec_cursor(cur, level, stat);
|
|
if (error)
|
|
goto error0;
|
|
return 0;
|
|
}
|
|
|
|
rrecs = xfs_btree_get_numrecs(right);
|
|
lrecs = xfs_btree_get_numrecs(left);
|
|
|
|
/*
|
|
* We're now going to join "left" and "right" by moving all the stuff
|
|
* in "right" to "left" and deleting "right".
|
|
*/
|
|
XFS_BTREE_STATS_ADD(cur, moves, rrecs);
|
|
if (level > 0) {
|
|
/* It's a non-leaf. Move keys and pointers. */
|
|
union xfs_btree_key *lkp; /* left btree key */
|
|
union xfs_btree_ptr *lpp; /* left address pointer */
|
|
union xfs_btree_key *rkp; /* right btree key */
|
|
union xfs_btree_ptr *rpp; /* right address pointer */
|
|
|
|
lkp = xfs_btree_key_addr(cur, lrecs + 1, left);
|
|
lpp = xfs_btree_ptr_addr(cur, lrecs + 1, left);
|
|
rkp = xfs_btree_key_addr(cur, 1, right);
|
|
rpp = xfs_btree_ptr_addr(cur, 1, right);
|
|
#ifdef DEBUG
|
|
for (i = 1; i < rrecs; i++) {
|
|
error = xfs_btree_check_ptr(cur, rpp, i, level);
|
|
if (error)
|
|
goto error0;
|
|
}
|
|
#endif
|
|
xfs_btree_copy_keys(cur, lkp, rkp, rrecs);
|
|
xfs_btree_copy_ptrs(cur, lpp, rpp, rrecs);
|
|
|
|
xfs_btree_log_keys(cur, lbp, lrecs + 1, lrecs + rrecs);
|
|
xfs_btree_log_ptrs(cur, lbp, lrecs + 1, lrecs + rrecs);
|
|
} else {
|
|
/* It's a leaf. Move records. */
|
|
union xfs_btree_rec *lrp; /* left record pointer */
|
|
union xfs_btree_rec *rrp; /* right record pointer */
|
|
|
|
lrp = xfs_btree_rec_addr(cur, lrecs + 1, left);
|
|
rrp = xfs_btree_rec_addr(cur, 1, right);
|
|
|
|
xfs_btree_copy_recs(cur, lrp, rrp, rrecs);
|
|
xfs_btree_log_recs(cur, lbp, lrecs + 1, lrecs + rrecs);
|
|
}
|
|
|
|
XFS_BTREE_STATS_INC(cur, join);
|
|
|
|
/*
|
|
* Fix up the number of records and right block pointer in the
|
|
* surviving block, and log it.
|
|
*/
|
|
xfs_btree_set_numrecs(left, lrecs + rrecs);
|
|
xfs_btree_get_sibling(cur, right, &cptr, XFS_BB_RIGHTSIB),
|
|
xfs_btree_set_sibling(cur, left, &cptr, XFS_BB_RIGHTSIB);
|
|
xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS | XFS_BB_RIGHTSIB);
|
|
|
|
/* If there is a right sibling, point it to the remaining block. */
|
|
xfs_btree_get_sibling(cur, left, &cptr, XFS_BB_RIGHTSIB);
|
|
if (!xfs_btree_ptr_is_null(cur, &cptr)) {
|
|
error = xfs_btree_read_buf_block(cur, &cptr, 0, &rrblock, &rrbp);
|
|
if (error)
|
|
goto error0;
|
|
xfs_btree_set_sibling(cur, rrblock, &lptr, XFS_BB_LEFTSIB);
|
|
xfs_btree_log_block(cur, rrbp, XFS_BB_LEFTSIB);
|
|
}
|
|
|
|
/* Free the deleted block. */
|
|
error = xfs_btree_free_block(cur, rbp);
|
|
if (error)
|
|
goto error0;
|
|
|
|
/*
|
|
* If we joined with the left neighbor, set the buffer in the
|
|
* cursor to the left block, and fix up the index.
|
|
*/
|
|
if (bp != lbp) {
|
|
cur->bc_bufs[level] = lbp;
|
|
cur->bc_ptrs[level] += lrecs;
|
|
cur->bc_ra[level] = 0;
|
|
}
|
|
/*
|
|
* If we joined with the right neighbor and there's a level above
|
|
* us, increment the cursor at that level.
|
|
*/
|
|
else if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) ||
|
|
(level + 1 < cur->bc_nlevels)) {
|
|
error = xfs_btree_increment(cur, level + 1, &i);
|
|
if (error)
|
|
goto error0;
|
|
}
|
|
|
|
/*
|
|
* Readjust the ptr at this level if it's not a leaf, since it's
|
|
* still pointing at the deletion point, which makes the cursor
|
|
* inconsistent. If this makes the ptr 0, the caller fixes it up.
|
|
* We can't use decrement because it would change the next level up.
|
|
*/
|
|
if (level > 0)
|
|
cur->bc_ptrs[level]--;
|
|
|
|
/*
|
|
* We combined blocks, so we have to update the parent keys if the
|
|
* btree supports overlapped intervals. However, bc_ptrs[level + 1]
|
|
* points to the old block so that the caller knows which record to
|
|
* delete. Therefore, the caller must be savvy enough to call updkeys
|
|
* for us if we return stat == 2. The other exit points from this
|
|
* function don't require deletions further up the tree, so they can
|
|
* call updkeys directly.
|
|
*/
|
|
|
|
XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
|
|
/* Return value means the next level up has something to do. */
|
|
*stat = 2;
|
|
return 0;
|
|
|
|
error0:
|
|
XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
|
|
if (tcur)
|
|
xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* Delete the record pointed to by cur.
|
|
* The cursor refers to the place where the record was (could be inserted)
|
|
* when the operation returns.
|
|
*/
|
|
int /* error */
|
|
xfs_btree_delete(
|
|
struct xfs_btree_cur *cur,
|
|
int *stat) /* success/failure */
|
|
{
|
|
int error; /* error return value */
|
|
int level;
|
|
int i;
|
|
bool joined = false;
|
|
|
|
XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
|
|
|
|
/*
|
|
* Go up the tree, starting at leaf level.
|
|
*
|
|
* If 2 is returned then a join was done; go to the next level.
|
|
* Otherwise we are done.
|
|
*/
|
|
for (level = 0, i = 2; i == 2; level++) {
|
|
error = xfs_btree_delrec(cur, level, &i);
|
|
if (error)
|
|
goto error0;
|
|
if (i == 2)
|
|
joined = true;
|
|
}
|
|
|
|
/*
|
|
* If we combined blocks as part of deleting the record, delrec won't
|
|
* have updated the parent high keys so we have to do that here.
|
|
*/
|
|
if (joined && (cur->bc_flags & XFS_BTREE_OVERLAPPING)) {
|
|
error = xfs_btree_updkeys_force(cur, 0);
|
|
if (error)
|
|
goto error0;
|
|
}
|
|
|
|
if (i == 0) {
|
|
for (level = 1; level < cur->bc_nlevels; level++) {
|
|
if (cur->bc_ptrs[level] == 0) {
|
|
error = xfs_btree_decrement(cur, level, &i);
|
|
if (error)
|
|
goto error0;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
|
|
*stat = i;
|
|
return 0;
|
|
error0:
|
|
XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* Get the data from the pointed-to record.
|
|
*/
|
|
int /* error */
|
|
xfs_btree_get_rec(
|
|
struct xfs_btree_cur *cur, /* btree cursor */
|
|
union xfs_btree_rec **recp, /* output: btree record */
|
|
int *stat) /* output: success/failure */
|
|
{
|
|
struct xfs_btree_block *block; /* btree block */
|
|
struct xfs_buf *bp; /* buffer pointer */
|
|
int ptr; /* record number */
|
|
#ifdef DEBUG
|
|
int error; /* error return value */
|
|
#endif
|
|
|
|
ptr = cur->bc_ptrs[0];
|
|
block = xfs_btree_get_block(cur, 0, &bp);
|
|
|
|
#ifdef DEBUG
|
|
error = xfs_btree_check_block(cur, block, 0, bp);
|
|
if (error)
|
|
return error;
|
|
#endif
|
|
|
|
/*
|
|
* Off the right end or left end, return failure.
|
|
*/
|
|
if (ptr > xfs_btree_get_numrecs(block) || ptr <= 0) {
|
|
*stat = 0;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Point to the record and extract its data.
|
|
*/
|
|
*recp = xfs_btree_rec_addr(cur, ptr, block);
|
|
*stat = 1;
|
|
return 0;
|
|
}
|
|
|
|
/* Visit a block in a btree. */
|
|
STATIC int
|
|
xfs_btree_visit_block(
|
|
struct xfs_btree_cur *cur,
|
|
int level,
|
|
xfs_btree_visit_blocks_fn fn,
|
|
void *data)
|
|
{
|
|
struct xfs_btree_block *block;
|
|
struct xfs_buf *bp;
|
|
union xfs_btree_ptr rptr;
|
|
int error;
|
|
|
|
/* do right sibling readahead */
|
|
xfs_btree_readahead(cur, level, XFS_BTCUR_RIGHTRA);
|
|
block = xfs_btree_get_block(cur, level, &bp);
|
|
|
|
/* process the block */
|
|
error = fn(cur, level, data);
|
|
if (error)
|
|
return error;
|
|
|
|
/* now read rh sibling block for next iteration */
|
|
xfs_btree_get_sibling(cur, block, &rptr, XFS_BB_RIGHTSIB);
|
|
if (xfs_btree_ptr_is_null(cur, &rptr))
|
|
return -ENOENT;
|
|
|
|
return xfs_btree_lookup_get_block(cur, level, &rptr, &block);
|
|
}
|
|
|
|
|
|
/* Visit every block in a btree. */
|
|
int
|
|
xfs_btree_visit_blocks(
|
|
struct xfs_btree_cur *cur,
|
|
xfs_btree_visit_blocks_fn fn,
|
|
void *data)
|
|
{
|
|
union xfs_btree_ptr lptr;
|
|
int level;
|
|
struct xfs_btree_block *block = NULL;
|
|
int error = 0;
|
|
|
|
cur->bc_ops->init_ptr_from_cur(cur, &lptr);
|
|
|
|
/* for each level */
|
|
for (level = cur->bc_nlevels - 1; level >= 0; level--) {
|
|
/* grab the left hand block */
|
|
error = xfs_btree_lookup_get_block(cur, level, &lptr, &block);
|
|
if (error)
|
|
return error;
|
|
|
|
/* readahead the left most block for the next level down */
|
|
if (level > 0) {
|
|
union xfs_btree_ptr *ptr;
|
|
|
|
ptr = xfs_btree_ptr_addr(cur, 1, block);
|
|
xfs_btree_readahead_ptr(cur, ptr, 1);
|
|
|
|
/* save for the next iteration of the loop */
|
|
xfs_btree_copy_ptrs(cur, &lptr, ptr, 1);
|
|
}
|
|
|
|
/* for each buffer in the level */
|
|
do {
|
|
error = xfs_btree_visit_block(cur, level, fn, data);
|
|
} while (!error);
|
|
|
|
if (error != -ENOENT)
|
|
return error;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Change the owner of a btree.
|
|
*
|
|
* The mechanism we use here is ordered buffer logging. Because we don't know
|
|
* how many buffers were are going to need to modify, we don't really want to
|
|
* have to make transaction reservations for the worst case of every buffer in a
|
|
* full size btree as that may be more space that we can fit in the log....
|
|
*
|
|
* We do the btree walk in the most optimal manner possible - we have sibling
|
|
* pointers so we can just walk all the blocks on each level from left to right
|
|
* in a single pass, and then move to the next level and do the same. We can
|
|
* also do readahead on the sibling pointers to get IO moving more quickly,
|
|
* though for slow disks this is unlikely to make much difference to performance
|
|
* as the amount of CPU work we have to do before moving to the next block is
|
|
* relatively small.
|
|
*
|
|
* For each btree block that we load, modify the owner appropriately, set the
|
|
* buffer as an ordered buffer and log it appropriately. We need to ensure that
|
|
* we mark the region we change dirty so that if the buffer is relogged in
|
|
* a subsequent transaction the changes we make here as an ordered buffer are
|
|
* correctly relogged in that transaction. If we are in recovery context, then
|
|
* just queue the modified buffer as delayed write buffer so the transaction
|
|
* recovery completion writes the changes to disk.
|
|
*/
|
|
struct xfs_btree_block_change_owner_info {
|
|
uint64_t new_owner;
|
|
struct list_head *buffer_list;
|
|
};
|
|
|
|
static int
|
|
xfs_btree_block_change_owner(
|
|
struct xfs_btree_cur *cur,
|
|
int level,
|
|
void *data)
|
|
{
|
|
struct xfs_btree_block_change_owner_info *bbcoi = data;
|
|
struct xfs_btree_block *block;
|
|
struct xfs_buf *bp;
|
|
|
|
/* modify the owner */
|
|
block = xfs_btree_get_block(cur, level, &bp);
|
|
if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
|
|
if (block->bb_u.l.bb_owner == cpu_to_be64(bbcoi->new_owner))
|
|
return 0;
|
|
block->bb_u.l.bb_owner = cpu_to_be64(bbcoi->new_owner);
|
|
} else {
|
|
if (block->bb_u.s.bb_owner == cpu_to_be32(bbcoi->new_owner))
|
|
return 0;
|
|
block->bb_u.s.bb_owner = cpu_to_be32(bbcoi->new_owner);
|
|
}
|
|
|
|
/*
|
|
* If the block is a root block hosted in an inode, we might not have a
|
|
* buffer pointer here and we shouldn't attempt to log the change as the
|
|
* information is already held in the inode and discarded when the root
|
|
* block is formatted into the on-disk inode fork. We still change it,
|
|
* though, so everything is consistent in memory.
|
|
*/
|
|
if (!bp) {
|
|
ASSERT(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE);
|
|
ASSERT(level == cur->bc_nlevels - 1);
|
|
return 0;
|
|
}
|
|
|
|
if (cur->bc_tp) {
|
|
if (!xfs_trans_ordered_buf(cur->bc_tp, bp)) {
|
|
xfs_btree_log_block(cur, bp, XFS_BB_OWNER);
|
|
return -EAGAIN;
|
|
}
|
|
} else {
|
|
xfs_buf_delwri_queue(bp, bbcoi->buffer_list);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
xfs_btree_change_owner(
|
|
struct xfs_btree_cur *cur,
|
|
uint64_t new_owner,
|
|
struct list_head *buffer_list)
|
|
{
|
|
struct xfs_btree_block_change_owner_info bbcoi;
|
|
|
|
bbcoi.new_owner = new_owner;
|
|
bbcoi.buffer_list = buffer_list;
|
|
|
|
return xfs_btree_visit_blocks(cur, xfs_btree_block_change_owner,
|
|
&bbcoi);
|
|
}
|
|
|
|
/* Verify the v5 fields of a long-format btree block. */
|
|
xfs_failaddr_t
|
|
xfs_btree_lblock_v5hdr_verify(
|
|
struct xfs_buf *bp,
|
|
uint64_t owner)
|
|
{
|
|
struct xfs_mount *mp = bp->b_target->bt_mount;
|
|
struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
|
|
|
|
if (!xfs_sb_version_hascrc(&mp->m_sb))
|
|
return __this_address;
|
|
if (!uuid_equal(&block->bb_u.l.bb_uuid, &mp->m_sb.sb_meta_uuid))
|
|
return __this_address;
|
|
if (block->bb_u.l.bb_blkno != cpu_to_be64(bp->b_bn))
|
|
return __this_address;
|
|
if (owner != XFS_RMAP_OWN_UNKNOWN &&
|
|
be64_to_cpu(block->bb_u.l.bb_owner) != owner)
|
|
return __this_address;
|
|
return NULL;
|
|
}
|
|
|
|
/* Verify a long-format btree block. */
|
|
xfs_failaddr_t
|
|
xfs_btree_lblock_verify(
|
|
struct xfs_buf *bp,
|
|
unsigned int max_recs)
|
|
{
|
|
struct xfs_mount *mp = bp->b_target->bt_mount;
|
|
struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
|
|
|
|
/* numrecs verification */
|
|
if (be16_to_cpu(block->bb_numrecs) > max_recs)
|
|
return __this_address;
|
|
|
|
/* sibling pointer verification */
|
|
if (block->bb_u.l.bb_leftsib != cpu_to_be64(NULLFSBLOCK) &&
|
|
!xfs_verify_fsbno(mp, be64_to_cpu(block->bb_u.l.bb_leftsib)))
|
|
return __this_address;
|
|
if (block->bb_u.l.bb_rightsib != cpu_to_be64(NULLFSBLOCK) &&
|
|
!xfs_verify_fsbno(mp, be64_to_cpu(block->bb_u.l.bb_rightsib)))
|
|
return __this_address;
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/**
|
|
* xfs_btree_sblock_v5hdr_verify() -- verify the v5 fields of a short-format
|
|
* btree block
|
|
*
|
|
* @bp: buffer containing the btree block
|
|
* @max_recs: pointer to the m_*_mxr max records field in the xfs mount
|
|
* @pag_max_level: pointer to the per-ag max level field
|
|
*/
|
|
xfs_failaddr_t
|
|
xfs_btree_sblock_v5hdr_verify(
|
|
struct xfs_buf *bp)
|
|
{
|
|
struct xfs_mount *mp = bp->b_target->bt_mount;
|
|
struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
|
|
struct xfs_perag *pag = bp->b_pag;
|
|
|
|
if (!xfs_sb_version_hascrc(&mp->m_sb))
|
|
return __this_address;
|
|
if (!uuid_equal(&block->bb_u.s.bb_uuid, &mp->m_sb.sb_meta_uuid))
|
|
return __this_address;
|
|
if (block->bb_u.s.bb_blkno != cpu_to_be64(bp->b_bn))
|
|
return __this_address;
|
|
if (pag && be32_to_cpu(block->bb_u.s.bb_owner) != pag->pag_agno)
|
|
return __this_address;
|
|
return NULL;
|
|
}
|
|
|
|
/**
|
|
* xfs_btree_sblock_verify() -- verify a short-format btree block
|
|
*
|
|
* @bp: buffer containing the btree block
|
|
* @max_recs: maximum records allowed in this btree node
|
|
*/
|
|
xfs_failaddr_t
|
|
xfs_btree_sblock_verify(
|
|
struct xfs_buf *bp,
|
|
unsigned int max_recs)
|
|
{
|
|
struct xfs_mount *mp = bp->b_target->bt_mount;
|
|
struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
|
|
xfs_agblock_t agno;
|
|
|
|
/* numrecs verification */
|
|
if (be16_to_cpu(block->bb_numrecs) > max_recs)
|
|
return __this_address;
|
|
|
|
/* sibling pointer verification */
|
|
agno = xfs_daddr_to_agno(mp, XFS_BUF_ADDR(bp));
|
|
if (block->bb_u.s.bb_leftsib != cpu_to_be32(NULLAGBLOCK) &&
|
|
!xfs_verify_agbno(mp, agno, be32_to_cpu(block->bb_u.s.bb_leftsib)))
|
|
return __this_address;
|
|
if (block->bb_u.s.bb_rightsib != cpu_to_be32(NULLAGBLOCK) &&
|
|
!xfs_verify_agbno(mp, agno, be32_to_cpu(block->bb_u.s.bb_rightsib)))
|
|
return __this_address;
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* Calculate the number of btree levels needed to store a given number of
|
|
* records in a short-format btree.
|
|
*/
|
|
uint
|
|
xfs_btree_compute_maxlevels(
|
|
struct xfs_mount *mp,
|
|
uint *limits,
|
|
unsigned long len)
|
|
{
|
|
uint level;
|
|
unsigned long maxblocks;
|
|
|
|
maxblocks = (len + limits[0] - 1) / limits[0];
|
|
for (level = 1; maxblocks > 1; level++)
|
|
maxblocks = (maxblocks + limits[1] - 1) / limits[1];
|
|
return level;
|
|
}
|
|
|
|
/*
|
|
* Query a regular btree for all records overlapping a given interval.
|
|
* Start with a LE lookup of the key of low_rec and return all records
|
|
* until we find a record with a key greater than the key of high_rec.
|
|
*/
|
|
STATIC int
|
|
xfs_btree_simple_query_range(
|
|
struct xfs_btree_cur *cur,
|
|
union xfs_btree_key *low_key,
|
|
union xfs_btree_key *high_key,
|
|
xfs_btree_query_range_fn fn,
|
|
void *priv)
|
|
{
|
|
union xfs_btree_rec *recp;
|
|
union xfs_btree_key rec_key;
|
|
int64_t diff;
|
|
int stat;
|
|
bool firstrec = true;
|
|
int error;
|
|
|
|
ASSERT(cur->bc_ops->init_high_key_from_rec);
|
|
ASSERT(cur->bc_ops->diff_two_keys);
|
|
|
|
/*
|
|
* Find the leftmost record. The btree cursor must be set
|
|
* to the low record used to generate low_key.
|
|
*/
|
|
stat = 0;
|
|
error = xfs_btree_lookup(cur, XFS_LOOKUP_LE, &stat);
|
|
if (error)
|
|
goto out;
|
|
|
|
/* Nothing? See if there's anything to the right. */
|
|
if (!stat) {
|
|
error = xfs_btree_increment(cur, 0, &stat);
|
|
if (error)
|
|
goto out;
|
|
}
|
|
|
|
while (stat) {
|
|
/* Find the record. */
|
|
error = xfs_btree_get_rec(cur, &recp, &stat);
|
|
if (error || !stat)
|
|
break;
|
|
|
|
/* Skip if high_key(rec) < low_key. */
|
|
if (firstrec) {
|
|
cur->bc_ops->init_high_key_from_rec(&rec_key, recp);
|
|
firstrec = false;
|
|
diff = cur->bc_ops->diff_two_keys(cur, low_key,
|
|
&rec_key);
|
|
if (diff > 0)
|
|
goto advloop;
|
|
}
|
|
|
|
/* Stop if high_key < low_key(rec). */
|
|
cur->bc_ops->init_key_from_rec(&rec_key, recp);
|
|
diff = cur->bc_ops->diff_two_keys(cur, &rec_key, high_key);
|
|
if (diff > 0)
|
|
break;
|
|
|
|
/* Callback */
|
|
error = fn(cur, recp, priv);
|
|
if (error < 0 || error == XFS_BTREE_QUERY_RANGE_ABORT)
|
|
break;
|
|
|
|
advloop:
|
|
/* Move on to the next record. */
|
|
error = xfs_btree_increment(cur, 0, &stat);
|
|
if (error)
|
|
break;
|
|
}
|
|
|
|
out:
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* Query an overlapped interval btree for all records overlapping a given
|
|
* interval. This function roughly follows the algorithm given in
|
|
* "Interval Trees" of _Introduction to Algorithms_, which is section
|
|
* 14.3 in the 2nd and 3rd editions.
|
|
*
|
|
* First, generate keys for the low and high records passed in.
|
|
*
|
|
* For any leaf node, generate the high and low keys for the record.
|
|
* If the record keys overlap with the query low/high keys, pass the
|
|
* record to the function iterator.
|
|
*
|
|
* For any internal node, compare the low and high keys of each
|
|
* pointer against the query low/high keys. If there's an overlap,
|
|
* follow the pointer.
|
|
*
|
|
* As an optimization, we stop scanning a block when we find a low key
|
|
* that is greater than the query's high key.
|
|
*/
|
|
STATIC int
|
|
xfs_btree_overlapped_query_range(
|
|
struct xfs_btree_cur *cur,
|
|
union xfs_btree_key *low_key,
|
|
union xfs_btree_key *high_key,
|
|
xfs_btree_query_range_fn fn,
|
|
void *priv)
|
|
{
|
|
union xfs_btree_ptr ptr;
|
|
union xfs_btree_ptr *pp;
|
|
union xfs_btree_key rec_key;
|
|
union xfs_btree_key rec_hkey;
|
|
union xfs_btree_key *lkp;
|
|
union xfs_btree_key *hkp;
|
|
union xfs_btree_rec *recp;
|
|
struct xfs_btree_block *block;
|
|
int64_t ldiff;
|
|
int64_t hdiff;
|
|
int level;
|
|
struct xfs_buf *bp;
|
|
int i;
|
|
int error;
|
|
|
|
/* Load the root of the btree. */
|
|
level = cur->bc_nlevels - 1;
|
|
cur->bc_ops->init_ptr_from_cur(cur, &ptr);
|
|
error = xfs_btree_lookup_get_block(cur, level, &ptr, &block);
|
|
if (error)
|
|
return error;
|
|
xfs_btree_get_block(cur, level, &bp);
|
|
trace_xfs_btree_overlapped_query_range(cur, level, bp);
|
|
#ifdef DEBUG
|
|
error = xfs_btree_check_block(cur, block, level, bp);
|
|
if (error)
|
|
goto out;
|
|
#endif
|
|
cur->bc_ptrs[level] = 1;
|
|
|
|
while (level < cur->bc_nlevels) {
|
|
block = xfs_btree_get_block(cur, level, &bp);
|
|
|
|
/* End of node, pop back towards the root. */
|
|
if (cur->bc_ptrs[level] > be16_to_cpu(block->bb_numrecs)) {
|
|
pop_up:
|
|
if (level < cur->bc_nlevels - 1)
|
|
cur->bc_ptrs[level + 1]++;
|
|
level++;
|
|
continue;
|
|
}
|
|
|
|
if (level == 0) {
|
|
/* Handle a leaf node. */
|
|
recp = xfs_btree_rec_addr(cur, cur->bc_ptrs[0], block);
|
|
|
|
cur->bc_ops->init_high_key_from_rec(&rec_hkey, recp);
|
|
ldiff = cur->bc_ops->diff_two_keys(cur, &rec_hkey,
|
|
low_key);
|
|
|
|
cur->bc_ops->init_key_from_rec(&rec_key, recp);
|
|
hdiff = cur->bc_ops->diff_two_keys(cur, high_key,
|
|
&rec_key);
|
|
|
|
/*
|
|
* If (record's high key >= query's low key) and
|
|
* (query's high key >= record's low key), then
|
|
* this record overlaps the query range; callback.
|
|
*/
|
|
if (ldiff >= 0 && hdiff >= 0) {
|
|
error = fn(cur, recp, priv);
|
|
if (error < 0 ||
|
|
error == XFS_BTREE_QUERY_RANGE_ABORT)
|
|
break;
|
|
} else if (hdiff < 0) {
|
|
/* Record is larger than high key; pop. */
|
|
goto pop_up;
|
|
}
|
|
cur->bc_ptrs[level]++;
|
|
continue;
|
|
}
|
|
|
|
/* Handle an internal node. */
|
|
lkp = xfs_btree_key_addr(cur, cur->bc_ptrs[level], block);
|
|
hkp = xfs_btree_high_key_addr(cur, cur->bc_ptrs[level], block);
|
|
pp = xfs_btree_ptr_addr(cur, cur->bc_ptrs[level], block);
|
|
|
|
ldiff = cur->bc_ops->diff_two_keys(cur, hkp, low_key);
|
|
hdiff = cur->bc_ops->diff_two_keys(cur, high_key, lkp);
|
|
|
|
/*
|
|
* If (pointer's high key >= query's low key) and
|
|
* (query's high key >= pointer's low key), then
|
|
* this record overlaps the query range; follow pointer.
|
|
*/
|
|
if (ldiff >= 0 && hdiff >= 0) {
|
|
level--;
|
|
error = xfs_btree_lookup_get_block(cur, level, pp,
|
|
&block);
|
|
if (error)
|
|
goto out;
|
|
xfs_btree_get_block(cur, level, &bp);
|
|
trace_xfs_btree_overlapped_query_range(cur, level, bp);
|
|
#ifdef DEBUG
|
|
error = xfs_btree_check_block(cur, block, level, bp);
|
|
if (error)
|
|
goto out;
|
|
#endif
|
|
cur->bc_ptrs[level] = 1;
|
|
continue;
|
|
} else if (hdiff < 0) {
|
|
/* The low key is larger than the upper range; pop. */
|
|
goto pop_up;
|
|
}
|
|
cur->bc_ptrs[level]++;
|
|
}
|
|
|
|
out:
|
|
/*
|
|
* If we don't end this function with the cursor pointing at a record
|
|
* block, a subsequent non-error cursor deletion will not release
|
|
* node-level buffers, causing a buffer leak. This is quite possible
|
|
* with a zero-results range query, so release the buffers if we
|
|
* failed to return any results.
|
|
*/
|
|
if (cur->bc_bufs[0] == NULL) {
|
|
for (i = 0; i < cur->bc_nlevels; i++) {
|
|
if (cur->bc_bufs[i]) {
|
|
xfs_trans_brelse(cur->bc_tp, cur->bc_bufs[i]);
|
|
cur->bc_bufs[i] = NULL;
|
|
cur->bc_ptrs[i] = 0;
|
|
cur->bc_ra[i] = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* Query a btree for all records overlapping a given interval of keys. The
|
|
* supplied function will be called with each record found; return one of the
|
|
* XFS_BTREE_QUERY_RANGE_{CONTINUE,ABORT} values or the usual negative error
|
|
* code. This function returns XFS_BTREE_QUERY_RANGE_ABORT, zero, or a
|
|
* negative error code.
|
|
*/
|
|
int
|
|
xfs_btree_query_range(
|
|
struct xfs_btree_cur *cur,
|
|
union xfs_btree_irec *low_rec,
|
|
union xfs_btree_irec *high_rec,
|
|
xfs_btree_query_range_fn fn,
|
|
void *priv)
|
|
{
|
|
union xfs_btree_rec rec;
|
|
union xfs_btree_key low_key;
|
|
union xfs_btree_key high_key;
|
|
|
|
/* Find the keys of both ends of the interval. */
|
|
cur->bc_rec = *high_rec;
|
|
cur->bc_ops->init_rec_from_cur(cur, &rec);
|
|
cur->bc_ops->init_key_from_rec(&high_key, &rec);
|
|
|
|
cur->bc_rec = *low_rec;
|
|
cur->bc_ops->init_rec_from_cur(cur, &rec);
|
|
cur->bc_ops->init_key_from_rec(&low_key, &rec);
|
|
|
|
/* Enforce low key < high key. */
|
|
if (cur->bc_ops->diff_two_keys(cur, &low_key, &high_key) > 0)
|
|
return -EINVAL;
|
|
|
|
if (!(cur->bc_flags & XFS_BTREE_OVERLAPPING))
|
|
return xfs_btree_simple_query_range(cur, &low_key,
|
|
&high_key, fn, priv);
|
|
return xfs_btree_overlapped_query_range(cur, &low_key, &high_key,
|
|
fn, priv);
|
|
}
|
|
|
|
/* Query a btree for all records. */
|
|
int
|
|
xfs_btree_query_all(
|
|
struct xfs_btree_cur *cur,
|
|
xfs_btree_query_range_fn fn,
|
|
void *priv)
|
|
{
|
|
union xfs_btree_key low_key;
|
|
union xfs_btree_key high_key;
|
|
|
|
memset(&cur->bc_rec, 0, sizeof(cur->bc_rec));
|
|
memset(&low_key, 0, sizeof(low_key));
|
|
memset(&high_key, 0xFF, sizeof(high_key));
|
|
|
|
return xfs_btree_simple_query_range(cur, &low_key, &high_key, fn, priv);
|
|
}
|
|
|
|
/*
|
|
* Calculate the number of blocks needed to store a given number of records
|
|
* in a short-format (per-AG metadata) btree.
|
|
*/
|
|
xfs_extlen_t
|
|
xfs_btree_calc_size(
|
|
struct xfs_mount *mp,
|
|
uint *limits,
|
|
unsigned long long len)
|
|
{
|
|
int level;
|
|
int maxrecs;
|
|
xfs_extlen_t rval;
|
|
|
|
maxrecs = limits[0];
|
|
for (level = 0, rval = 0; len > 1; level++) {
|
|
len += maxrecs - 1;
|
|
do_div(len, maxrecs);
|
|
maxrecs = limits[1];
|
|
rval += len;
|
|
}
|
|
return rval;
|
|
}
|
|
|
|
static int
|
|
xfs_btree_count_blocks_helper(
|
|
struct xfs_btree_cur *cur,
|
|
int level,
|
|
void *data)
|
|
{
|
|
xfs_extlen_t *blocks = data;
|
|
(*blocks)++;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Count the blocks in a btree and return the result in *blocks. */
|
|
int
|
|
xfs_btree_count_blocks(
|
|
struct xfs_btree_cur *cur,
|
|
xfs_extlen_t *blocks)
|
|
{
|
|
*blocks = 0;
|
|
return xfs_btree_visit_blocks(cur, xfs_btree_count_blocks_helper,
|
|
blocks);
|
|
}
|
|
|
|
/* Compare two btree pointers. */
|
|
int64_t
|
|
xfs_btree_diff_two_ptrs(
|
|
struct xfs_btree_cur *cur,
|
|
const union xfs_btree_ptr *a,
|
|
const union xfs_btree_ptr *b)
|
|
{
|
|
if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
|
|
return (int64_t)be64_to_cpu(a->l) - be64_to_cpu(b->l);
|
|
return (int64_t)be32_to_cpu(a->s) - be32_to_cpu(b->s);
|
|
}
|
|
|
|
/* If there's an extent, we're done. */
|
|
STATIC int
|
|
xfs_btree_has_record_helper(
|
|
struct xfs_btree_cur *cur,
|
|
union xfs_btree_rec *rec,
|
|
void *priv)
|
|
{
|
|
return XFS_BTREE_QUERY_RANGE_ABORT;
|
|
}
|
|
|
|
/* Is there a record covering a given range of keys? */
|
|
int
|
|
xfs_btree_has_record(
|
|
struct xfs_btree_cur *cur,
|
|
union xfs_btree_irec *low,
|
|
union xfs_btree_irec *high,
|
|
bool *exists)
|
|
{
|
|
int error;
|
|
|
|
error = xfs_btree_query_range(cur, low, high,
|
|
&xfs_btree_has_record_helper, NULL);
|
|
if (error == XFS_BTREE_QUERY_RANGE_ABORT) {
|
|
*exists = true;
|
|
return 0;
|
|
}
|
|
*exists = false;
|
|
return error;
|
|
}
|