mirror of
https://github.com/torvalds/linux.git
synced 2024-12-28 05:41:55 +00:00
930feb41ef
The heartbeat thread is active during soft-reset, and it tries to send messages to CPU-CP core. Within the soft-reset, in the time window in which the device is marked as disabled, any CPU-CP command is "silently" skipped and a success value it returned. However, in addition to the return value, the heartbeat function also checks the F/W result, but because no command is sent in this time window, the result variable won't hold the expected value and we will have a false heartbeat failure. To avoid it, modify the "silent" skip to be done only in hard-reset. The CPU-CP should be able to handle messages during soft-reset. In addition to the heartbeat problem, this should also solve other issues in other flows that send messages during soft-reset and use the F/W result as it w/o being aware to the reset. Signed-off-by: Tomer Tayar <ttayar@habana.ai> Reviewed-by: Oded Gabbay <ogabbay@kernel.org> Signed-off-by: Oded Gabbay <ogabbay@kernel.org>
2825 lines
75 KiB
C
2825 lines
75 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
|
|
/*
|
|
* Copyright 2016-2022 HabanaLabs, Ltd.
|
|
* All Rights Reserved.
|
|
*/
|
|
|
|
#include "habanalabs.h"
|
|
#include "../include/common/hl_boot_if.h"
|
|
|
|
#include <linux/firmware.h>
|
|
#include <linux/crc32.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/ctype.h>
|
|
|
|
#define FW_FILE_MAX_SIZE 0x1400000 /* maximum size of 20MB */
|
|
|
|
static char *extract_fw_ver_from_str(const char *fw_str)
|
|
{
|
|
char *str, *fw_ver, *whitespace;
|
|
|
|
fw_ver = kmalloc(16, GFP_KERNEL);
|
|
if (!fw_ver)
|
|
return NULL;
|
|
|
|
str = strnstr(fw_str, "fw-", VERSION_MAX_LEN);
|
|
if (!str)
|
|
goto free_fw_ver;
|
|
|
|
/* Skip the fw- part */
|
|
str += 3;
|
|
|
|
/* Copy until the next whitespace */
|
|
whitespace = strnstr(str, " ", 15);
|
|
if (!whitespace)
|
|
goto free_fw_ver;
|
|
|
|
strscpy(fw_ver, str, whitespace - str + 1);
|
|
|
|
return fw_ver;
|
|
|
|
free_fw_ver:
|
|
kfree(fw_ver);
|
|
return NULL;
|
|
}
|
|
|
|
static int hl_request_fw(struct hl_device *hdev,
|
|
const struct firmware **firmware_p,
|
|
const char *fw_name)
|
|
{
|
|
size_t fw_size;
|
|
int rc;
|
|
|
|
rc = request_firmware(firmware_p, fw_name, hdev->dev);
|
|
if (rc) {
|
|
dev_err(hdev->dev, "Firmware file %s is not found! (error %d)\n",
|
|
fw_name, rc);
|
|
goto out;
|
|
}
|
|
|
|
fw_size = (*firmware_p)->size;
|
|
if ((fw_size % 4) != 0) {
|
|
dev_err(hdev->dev, "Illegal %s firmware size %zu\n",
|
|
fw_name, fw_size);
|
|
rc = -EINVAL;
|
|
goto release_fw;
|
|
}
|
|
|
|
dev_dbg(hdev->dev, "%s firmware size == %zu\n", fw_name, fw_size);
|
|
|
|
if (fw_size > FW_FILE_MAX_SIZE) {
|
|
dev_err(hdev->dev,
|
|
"FW file size %zu exceeds maximum of %u bytes\n",
|
|
fw_size, FW_FILE_MAX_SIZE);
|
|
rc = -EINVAL;
|
|
goto release_fw;
|
|
}
|
|
|
|
return 0;
|
|
|
|
release_fw:
|
|
release_firmware(*firmware_p);
|
|
out:
|
|
return rc;
|
|
}
|
|
|
|
/**
|
|
* hl_release_firmware() - release FW
|
|
*
|
|
* @fw: fw descriptor
|
|
*
|
|
* note: this inline function added to serve as a comprehensive mirror for the
|
|
* hl_request_fw function.
|
|
*/
|
|
static inline void hl_release_firmware(const struct firmware *fw)
|
|
{
|
|
release_firmware(fw);
|
|
}
|
|
|
|
/**
|
|
* hl_fw_copy_fw_to_device() - copy FW to device
|
|
*
|
|
* @hdev: pointer to hl_device structure.
|
|
* @fw: fw descriptor
|
|
* @dst: IO memory mapped address space to copy firmware to
|
|
* @src_offset: offset in src FW to copy from
|
|
* @size: amount of bytes to copy (0 to copy the whole binary)
|
|
*
|
|
* actual copy of FW binary data to device, shared by static and dynamic loaders
|
|
*/
|
|
static int hl_fw_copy_fw_to_device(struct hl_device *hdev,
|
|
const struct firmware *fw, void __iomem *dst,
|
|
u32 src_offset, u32 size)
|
|
{
|
|
const void *fw_data;
|
|
|
|
/* size 0 indicates to copy the whole file */
|
|
if (!size)
|
|
size = fw->size;
|
|
|
|
if (src_offset + size > fw->size) {
|
|
dev_err(hdev->dev,
|
|
"size to copy(%u) and offset(%u) are invalid\n",
|
|
size, src_offset);
|
|
return -EINVAL;
|
|
}
|
|
|
|
fw_data = (const void *) fw->data;
|
|
|
|
memcpy_toio(dst, fw_data + src_offset, size);
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* hl_fw_copy_msg_to_device() - copy message to device
|
|
*
|
|
* @hdev: pointer to hl_device structure.
|
|
* @msg: message
|
|
* @dst: IO memory mapped address space to copy firmware to
|
|
* @src_offset: offset in src message to copy from
|
|
* @size: amount of bytes to copy (0 to copy the whole binary)
|
|
*
|
|
* actual copy of message data to device.
|
|
*/
|
|
static int hl_fw_copy_msg_to_device(struct hl_device *hdev,
|
|
struct lkd_msg_comms *msg, void __iomem *dst,
|
|
u32 src_offset, u32 size)
|
|
{
|
|
void *msg_data;
|
|
|
|
/* size 0 indicates to copy the whole file */
|
|
if (!size)
|
|
size = sizeof(struct lkd_msg_comms);
|
|
|
|
if (src_offset + size > sizeof(struct lkd_msg_comms)) {
|
|
dev_err(hdev->dev,
|
|
"size to copy(%u) and offset(%u) are invalid\n",
|
|
size, src_offset);
|
|
return -EINVAL;
|
|
}
|
|
|
|
msg_data = (void *) msg;
|
|
|
|
memcpy_toio(dst, msg_data + src_offset, size);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* hl_fw_load_fw_to_device() - Load F/W code to device's memory.
|
|
*
|
|
* @hdev: pointer to hl_device structure.
|
|
* @fw_name: the firmware image name
|
|
* @dst: IO memory mapped address space to copy firmware to
|
|
* @src_offset: offset in src FW to copy from
|
|
* @size: amount of bytes to copy (0 to copy the whole binary)
|
|
*
|
|
* Copy fw code from firmware file to device memory.
|
|
*
|
|
* Return: 0 on success, non-zero for failure.
|
|
*/
|
|
int hl_fw_load_fw_to_device(struct hl_device *hdev, const char *fw_name,
|
|
void __iomem *dst, u32 src_offset, u32 size)
|
|
{
|
|
const struct firmware *fw;
|
|
int rc;
|
|
|
|
rc = hl_request_fw(hdev, &fw, fw_name);
|
|
if (rc)
|
|
return rc;
|
|
|
|
rc = hl_fw_copy_fw_to_device(hdev, fw, dst, src_offset, size);
|
|
|
|
hl_release_firmware(fw);
|
|
return rc;
|
|
}
|
|
|
|
int hl_fw_send_pci_access_msg(struct hl_device *hdev, u32 opcode)
|
|
{
|
|
struct cpucp_packet pkt = {};
|
|
|
|
pkt.ctl = cpu_to_le32(opcode << CPUCP_PKT_CTL_OPCODE_SHIFT);
|
|
|
|
return hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt,
|
|
sizeof(pkt), 0, NULL);
|
|
}
|
|
|
|
int hl_fw_send_cpu_message(struct hl_device *hdev, u32 hw_queue_id, u32 *msg,
|
|
u16 len, u32 timeout, u64 *result)
|
|
{
|
|
struct hl_hw_queue *queue = &hdev->kernel_queues[hw_queue_id];
|
|
struct asic_fixed_properties *prop = &hdev->asic_prop;
|
|
struct cpucp_packet *pkt;
|
|
dma_addr_t pkt_dma_addr;
|
|
struct hl_bd *sent_bd;
|
|
u32 tmp, expected_ack_val, pi;
|
|
int rc;
|
|
|
|
pkt = hdev->asic_funcs->cpu_accessible_dma_pool_alloc(hdev, len,
|
|
&pkt_dma_addr);
|
|
if (!pkt) {
|
|
dev_err(hdev->dev,
|
|
"Failed to allocate DMA memory for packet to CPU\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
memcpy(pkt, msg, len);
|
|
|
|
mutex_lock(&hdev->send_cpu_message_lock);
|
|
|
|
/* CPU-CP messages can be sent during soft-reset */
|
|
if (hdev->disabled && !hdev->reset_info.is_in_soft_reset) {
|
|
rc = 0;
|
|
goto out;
|
|
}
|
|
|
|
if (hdev->device_cpu_disabled) {
|
|
rc = -EIO;
|
|
goto out;
|
|
}
|
|
|
|
/* set fence to a non valid value */
|
|
pkt->fence = cpu_to_le32(UINT_MAX);
|
|
pi = queue->pi;
|
|
|
|
/*
|
|
* The CPU queue is a synchronous queue with an effective depth of
|
|
* a single entry (although it is allocated with room for multiple
|
|
* entries). We lock on it using 'send_cpu_message_lock' which
|
|
* serializes accesses to the CPU queue.
|
|
* Which means that we don't need to lock the access to the entire H/W
|
|
* queues module when submitting a JOB to the CPU queue.
|
|
*/
|
|
hl_hw_queue_submit_bd(hdev, queue, hl_queue_inc_ptr(queue->pi), len, pkt_dma_addr);
|
|
|
|
if (prop->fw_app_cpu_boot_dev_sts0 & CPU_BOOT_DEV_STS0_PKT_PI_ACK_EN)
|
|
expected_ack_val = queue->pi;
|
|
else
|
|
expected_ack_val = CPUCP_PACKET_FENCE_VAL;
|
|
|
|
rc = hl_poll_timeout_memory(hdev, &pkt->fence, tmp,
|
|
(tmp == expected_ack_val), 1000,
|
|
timeout, true);
|
|
|
|
hl_hw_queue_inc_ci_kernel(hdev, hw_queue_id);
|
|
|
|
if (rc == -ETIMEDOUT) {
|
|
dev_err(hdev->dev, "Device CPU packet timeout (0x%x)\n", tmp);
|
|
hdev->device_cpu_disabled = true;
|
|
goto out;
|
|
}
|
|
|
|
tmp = le32_to_cpu(pkt->ctl);
|
|
|
|
rc = (tmp & CPUCP_PKT_CTL_RC_MASK) >> CPUCP_PKT_CTL_RC_SHIFT;
|
|
if (rc) {
|
|
dev_err(hdev->dev, "F/W ERROR %d for CPU packet %d\n",
|
|
rc,
|
|
(tmp & CPUCP_PKT_CTL_OPCODE_MASK)
|
|
>> CPUCP_PKT_CTL_OPCODE_SHIFT);
|
|
rc = -EIO;
|
|
} else if (result) {
|
|
*result = le64_to_cpu(pkt->result);
|
|
}
|
|
|
|
/* Scrub previous buffer descriptor 'ctl' field which contains the
|
|
* previous PI value written during packet submission.
|
|
* We must do this or else F/W can read an old value upon queue wraparound.
|
|
*/
|
|
sent_bd = queue->kernel_address;
|
|
sent_bd += hl_pi_2_offset(pi);
|
|
sent_bd->ctl = cpu_to_le32(UINT_MAX);
|
|
|
|
out:
|
|
mutex_unlock(&hdev->send_cpu_message_lock);
|
|
|
|
hdev->asic_funcs->cpu_accessible_dma_pool_free(hdev, len, pkt);
|
|
|
|
return rc;
|
|
}
|
|
|
|
int hl_fw_unmask_irq(struct hl_device *hdev, u16 event_type)
|
|
{
|
|
struct cpucp_packet pkt;
|
|
u64 result;
|
|
int rc;
|
|
|
|
memset(&pkt, 0, sizeof(pkt));
|
|
|
|
pkt.ctl = cpu_to_le32(CPUCP_PACKET_UNMASK_RAZWI_IRQ <<
|
|
CPUCP_PKT_CTL_OPCODE_SHIFT);
|
|
pkt.value = cpu_to_le64(event_type);
|
|
|
|
rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt),
|
|
0, &result);
|
|
|
|
if (rc)
|
|
dev_err(hdev->dev, "failed to unmask RAZWI IRQ %d", event_type);
|
|
|
|
return rc;
|
|
}
|
|
|
|
int hl_fw_unmask_irq_arr(struct hl_device *hdev, const u32 *irq_arr,
|
|
size_t irq_arr_size)
|
|
{
|
|
struct cpucp_unmask_irq_arr_packet *pkt;
|
|
size_t total_pkt_size;
|
|
u64 result;
|
|
int rc;
|
|
|
|
total_pkt_size = sizeof(struct cpucp_unmask_irq_arr_packet) +
|
|
irq_arr_size;
|
|
|
|
/* data should be aligned to 8 bytes in order to CPU-CP to copy it */
|
|
total_pkt_size = (total_pkt_size + 0x7) & ~0x7;
|
|
|
|
/* total_pkt_size is casted to u16 later on */
|
|
if (total_pkt_size > USHRT_MAX) {
|
|
dev_err(hdev->dev, "too many elements in IRQ array\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
pkt = kzalloc(total_pkt_size, GFP_KERNEL);
|
|
if (!pkt)
|
|
return -ENOMEM;
|
|
|
|
pkt->length = cpu_to_le32(irq_arr_size / sizeof(irq_arr[0]));
|
|
memcpy(&pkt->irqs, irq_arr, irq_arr_size);
|
|
|
|
pkt->cpucp_pkt.ctl = cpu_to_le32(CPUCP_PACKET_UNMASK_RAZWI_IRQ_ARRAY <<
|
|
CPUCP_PKT_CTL_OPCODE_SHIFT);
|
|
|
|
rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) pkt,
|
|
total_pkt_size, 0, &result);
|
|
|
|
if (rc)
|
|
dev_err(hdev->dev, "failed to unmask IRQ array\n");
|
|
|
|
kfree(pkt);
|
|
|
|
return rc;
|
|
}
|
|
|
|
int hl_fw_test_cpu_queue(struct hl_device *hdev)
|
|
{
|
|
struct cpucp_packet test_pkt = {};
|
|
u64 result;
|
|
int rc;
|
|
|
|
test_pkt.ctl = cpu_to_le32(CPUCP_PACKET_TEST <<
|
|
CPUCP_PKT_CTL_OPCODE_SHIFT);
|
|
test_pkt.value = cpu_to_le64(CPUCP_PACKET_FENCE_VAL);
|
|
|
|
rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &test_pkt,
|
|
sizeof(test_pkt), 0, &result);
|
|
|
|
if (!rc) {
|
|
if (result != CPUCP_PACKET_FENCE_VAL)
|
|
dev_err(hdev->dev,
|
|
"CPU queue test failed (%#08llx)\n", result);
|
|
} else {
|
|
dev_err(hdev->dev, "CPU queue test failed, error %d\n", rc);
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
void *hl_fw_cpu_accessible_dma_pool_alloc(struct hl_device *hdev, size_t size,
|
|
dma_addr_t *dma_handle)
|
|
{
|
|
u64 kernel_addr;
|
|
|
|
kernel_addr = gen_pool_alloc(hdev->cpu_accessible_dma_pool, size);
|
|
|
|
*dma_handle = hdev->cpu_accessible_dma_address +
|
|
(kernel_addr - (u64) (uintptr_t) hdev->cpu_accessible_dma_mem);
|
|
|
|
return (void *) (uintptr_t) kernel_addr;
|
|
}
|
|
|
|
void hl_fw_cpu_accessible_dma_pool_free(struct hl_device *hdev, size_t size,
|
|
void *vaddr)
|
|
{
|
|
gen_pool_free(hdev->cpu_accessible_dma_pool, (u64) (uintptr_t) vaddr,
|
|
size);
|
|
}
|
|
|
|
int hl_fw_send_heartbeat(struct hl_device *hdev)
|
|
{
|
|
struct cpucp_packet hb_pkt;
|
|
u64 result;
|
|
int rc;
|
|
|
|
memset(&hb_pkt, 0, sizeof(hb_pkt));
|
|
hb_pkt.ctl = cpu_to_le32(CPUCP_PACKET_TEST <<
|
|
CPUCP_PKT_CTL_OPCODE_SHIFT);
|
|
hb_pkt.value = cpu_to_le64(CPUCP_PACKET_FENCE_VAL);
|
|
|
|
rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &hb_pkt,
|
|
sizeof(hb_pkt), 0, &result);
|
|
|
|
if ((rc) || (result != CPUCP_PACKET_FENCE_VAL))
|
|
return -EIO;
|
|
|
|
if (le32_to_cpu(hb_pkt.status_mask) &
|
|
CPUCP_PKT_HB_STATUS_EQ_FAULT_MASK) {
|
|
dev_warn(hdev->dev, "FW reported EQ fault during heartbeat\n");
|
|
rc = -EIO;
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
static bool fw_report_boot_dev0(struct hl_device *hdev, u32 err_val,
|
|
u32 sts_val)
|
|
{
|
|
bool err_exists = false;
|
|
|
|
if (!(err_val & CPU_BOOT_ERR0_ENABLED))
|
|
return false;
|
|
|
|
if (err_val & CPU_BOOT_ERR0_DRAM_INIT_FAIL) {
|
|
dev_err(hdev->dev,
|
|
"Device boot error - DRAM initialization failed\n");
|
|
err_exists = true;
|
|
}
|
|
|
|
if (err_val & CPU_BOOT_ERR0_FIT_CORRUPTED) {
|
|
dev_err(hdev->dev, "Device boot error - FIT image corrupted\n");
|
|
err_exists = true;
|
|
}
|
|
|
|
if (err_val & CPU_BOOT_ERR0_TS_INIT_FAIL) {
|
|
dev_err(hdev->dev,
|
|
"Device boot error - Thermal Sensor initialization failed\n");
|
|
err_exists = true;
|
|
}
|
|
|
|
if (err_val & CPU_BOOT_ERR0_BMC_WAIT_SKIPPED) {
|
|
if (hdev->bmc_enable) {
|
|
dev_err(hdev->dev,
|
|
"Device boot error - Skipped waiting for BMC\n");
|
|
err_exists = true;
|
|
} else {
|
|
dev_info(hdev->dev,
|
|
"Device boot message - Skipped waiting for BMC\n");
|
|
/* This is an info so we don't want it to disable the
|
|
* device
|
|
*/
|
|
err_val &= ~CPU_BOOT_ERR0_BMC_WAIT_SKIPPED;
|
|
}
|
|
}
|
|
|
|
if (err_val & CPU_BOOT_ERR0_NIC_DATA_NOT_RDY) {
|
|
dev_err(hdev->dev,
|
|
"Device boot error - Serdes data from BMC not available\n");
|
|
err_exists = true;
|
|
}
|
|
|
|
if (err_val & CPU_BOOT_ERR0_NIC_FW_FAIL) {
|
|
dev_err(hdev->dev,
|
|
"Device boot error - NIC F/W initialization failed\n");
|
|
err_exists = true;
|
|
}
|
|
|
|
if (err_val & CPU_BOOT_ERR0_SECURITY_NOT_RDY) {
|
|
dev_err(hdev->dev,
|
|
"Device boot warning - security not ready\n");
|
|
err_exists = true;
|
|
}
|
|
|
|
if (err_val & CPU_BOOT_ERR0_SECURITY_FAIL) {
|
|
dev_err(hdev->dev, "Device boot error - security failure\n");
|
|
err_exists = true;
|
|
}
|
|
|
|
if (err_val & CPU_BOOT_ERR0_EFUSE_FAIL) {
|
|
dev_err(hdev->dev, "Device boot error - eFuse failure\n");
|
|
err_exists = true;
|
|
}
|
|
|
|
if (err_val & CPU_BOOT_ERR0_SEC_IMG_VER_FAIL) {
|
|
dev_err(hdev->dev, "Device boot error - Failed to load preboot secondary image\n");
|
|
err_exists = true;
|
|
}
|
|
|
|
if (err_val & CPU_BOOT_ERR0_PLL_FAIL) {
|
|
dev_err(hdev->dev, "Device boot error - PLL failure\n");
|
|
err_exists = true;
|
|
}
|
|
|
|
if (err_val & CPU_BOOT_ERR0_DEVICE_UNUSABLE_FAIL) {
|
|
/* Ignore this bit, don't prevent driver loading */
|
|
dev_dbg(hdev->dev, "device unusable status is set\n");
|
|
err_val &= ~CPU_BOOT_ERR0_DEVICE_UNUSABLE_FAIL;
|
|
}
|
|
|
|
if (sts_val & CPU_BOOT_DEV_STS0_ENABLED)
|
|
dev_dbg(hdev->dev, "Device status0 %#x\n", sts_val);
|
|
|
|
/* All warnings should go here in order not to reach the unknown error validation */
|
|
if (err_val & CPU_BOOT_ERR0_DRAM_SKIPPED) {
|
|
dev_warn(hdev->dev,
|
|
"Device boot warning - Skipped DRAM initialization\n");
|
|
/* This is a warning so we don't want it to disable the
|
|
* device
|
|
*/
|
|
err_val &= ~CPU_BOOT_ERR0_DRAM_SKIPPED;
|
|
}
|
|
|
|
if (err_val & CPU_BOOT_ERR0_PRI_IMG_VER_FAIL) {
|
|
dev_warn(hdev->dev,
|
|
"Device boot warning - Failed to load preboot primary image\n");
|
|
/* This is a warning so we don't want it to disable the
|
|
* device as we have a secondary preboot image
|
|
*/
|
|
err_val &= ~CPU_BOOT_ERR0_PRI_IMG_VER_FAIL;
|
|
}
|
|
|
|
if (err_val & CPU_BOOT_ERR0_TPM_FAIL) {
|
|
dev_warn(hdev->dev,
|
|
"Device boot warning - TPM failure\n");
|
|
/* This is a warning so we don't want it to disable the
|
|
* device
|
|
*/
|
|
err_val &= ~CPU_BOOT_ERR0_TPM_FAIL;
|
|
}
|
|
|
|
if (!err_exists && (err_val & ~CPU_BOOT_ERR0_ENABLED)) {
|
|
dev_err(hdev->dev,
|
|
"Device boot error - unknown ERR0 error 0x%08x\n", err_val);
|
|
err_exists = true;
|
|
}
|
|
|
|
/* return error only if it's in the predefined mask */
|
|
if (err_exists && ((err_val & ~CPU_BOOT_ERR0_ENABLED) &
|
|
lower_32_bits(hdev->boot_error_status_mask)))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
/* placeholder for ERR1 as no errors defined there yet */
|
|
static bool fw_report_boot_dev1(struct hl_device *hdev, u32 err_val,
|
|
u32 sts_val)
|
|
{
|
|
/*
|
|
* keep this variable to preserve the logic of the function.
|
|
* this way it would require less modifications when error will be
|
|
* added to DEV_ERR1
|
|
*/
|
|
bool err_exists = false;
|
|
|
|
if (!(err_val & CPU_BOOT_ERR1_ENABLED))
|
|
return false;
|
|
|
|
if (sts_val & CPU_BOOT_DEV_STS1_ENABLED)
|
|
dev_dbg(hdev->dev, "Device status1 %#x\n", sts_val);
|
|
|
|
if (!err_exists && (err_val & ~CPU_BOOT_ERR1_ENABLED)) {
|
|
dev_err(hdev->dev,
|
|
"Device boot error - unknown ERR1 error 0x%08x\n",
|
|
err_val);
|
|
err_exists = true;
|
|
}
|
|
|
|
/* return error only if it's in the predefined mask */
|
|
if (err_exists && ((err_val & ~CPU_BOOT_ERR1_ENABLED) &
|
|
upper_32_bits(hdev->boot_error_status_mask)))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
static int fw_read_errors(struct hl_device *hdev, u32 boot_err0_reg,
|
|
u32 boot_err1_reg, u32 cpu_boot_dev_status0_reg,
|
|
u32 cpu_boot_dev_status1_reg)
|
|
{
|
|
u32 err_val, status_val;
|
|
bool err_exists = false;
|
|
|
|
/* Some of the firmware status codes are deprecated in newer f/w
|
|
* versions. In those versions, the errors are reported
|
|
* in different registers. Therefore, we need to check those
|
|
* registers and print the exact errors. Moreover, there
|
|
* may be multiple errors, so we need to report on each error
|
|
* separately. Some of the error codes might indicate a state
|
|
* that is not an error per-se, but it is an error in production
|
|
* environment
|
|
*/
|
|
err_val = RREG32(boot_err0_reg);
|
|
status_val = RREG32(cpu_boot_dev_status0_reg);
|
|
err_exists = fw_report_boot_dev0(hdev, err_val, status_val);
|
|
|
|
err_val = RREG32(boot_err1_reg);
|
|
status_val = RREG32(cpu_boot_dev_status1_reg);
|
|
err_exists |= fw_report_boot_dev1(hdev, err_val, status_val);
|
|
|
|
if (err_exists)
|
|
return -EIO;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int hl_fw_cpucp_info_get(struct hl_device *hdev,
|
|
u32 sts_boot_dev_sts0_reg,
|
|
u32 sts_boot_dev_sts1_reg, u32 boot_err0_reg,
|
|
u32 boot_err1_reg)
|
|
{
|
|
struct asic_fixed_properties *prop = &hdev->asic_prop;
|
|
struct cpucp_packet pkt = {};
|
|
dma_addr_t cpucp_info_dma_addr;
|
|
void *cpucp_info_cpu_addr;
|
|
char *kernel_ver;
|
|
u64 result;
|
|
int rc;
|
|
|
|
cpucp_info_cpu_addr =
|
|
hdev->asic_funcs->cpu_accessible_dma_pool_alloc(hdev,
|
|
sizeof(struct cpucp_info),
|
|
&cpucp_info_dma_addr);
|
|
if (!cpucp_info_cpu_addr) {
|
|
dev_err(hdev->dev,
|
|
"Failed to allocate DMA memory for CPU-CP info packet\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
memset(cpucp_info_cpu_addr, 0, sizeof(struct cpucp_info));
|
|
|
|
pkt.ctl = cpu_to_le32(CPUCP_PACKET_INFO_GET <<
|
|
CPUCP_PKT_CTL_OPCODE_SHIFT);
|
|
pkt.addr = cpu_to_le64(cpucp_info_dma_addr);
|
|
pkt.data_max_size = cpu_to_le32(sizeof(struct cpucp_info));
|
|
|
|
rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt),
|
|
HL_CPUCP_INFO_TIMEOUT_USEC, &result);
|
|
if (rc) {
|
|
dev_err(hdev->dev,
|
|
"Failed to handle CPU-CP info pkt, error %d\n", rc);
|
|
goto out;
|
|
}
|
|
|
|
rc = fw_read_errors(hdev, boot_err0_reg, boot_err1_reg,
|
|
sts_boot_dev_sts0_reg, sts_boot_dev_sts1_reg);
|
|
if (rc) {
|
|
dev_err(hdev->dev, "Errors in device boot\n");
|
|
goto out;
|
|
}
|
|
|
|
memcpy(&prop->cpucp_info, cpucp_info_cpu_addr,
|
|
sizeof(prop->cpucp_info));
|
|
|
|
rc = hl_build_hwmon_channel_info(hdev, prop->cpucp_info.sensors);
|
|
if (rc) {
|
|
dev_err(hdev->dev,
|
|
"Failed to build hwmon channel info, error %d\n", rc);
|
|
rc = -EFAULT;
|
|
goto out;
|
|
}
|
|
|
|
kernel_ver = extract_fw_ver_from_str(prop->cpucp_info.kernel_version);
|
|
if (kernel_ver) {
|
|
dev_info(hdev->dev, "Linux version %s", kernel_ver);
|
|
kfree(kernel_ver);
|
|
}
|
|
|
|
/* assume EQ code doesn't need to check eqe index */
|
|
hdev->event_queue.check_eqe_index = false;
|
|
|
|
/* Read FW application security bits again */
|
|
if (prop->fw_cpu_boot_dev_sts0_valid) {
|
|
prop->fw_app_cpu_boot_dev_sts0 = RREG32(sts_boot_dev_sts0_reg);
|
|
if (prop->fw_app_cpu_boot_dev_sts0 &
|
|
CPU_BOOT_DEV_STS0_EQ_INDEX_EN)
|
|
hdev->event_queue.check_eqe_index = true;
|
|
}
|
|
|
|
if (prop->fw_cpu_boot_dev_sts1_valid)
|
|
prop->fw_app_cpu_boot_dev_sts1 = RREG32(sts_boot_dev_sts1_reg);
|
|
|
|
out:
|
|
hdev->asic_funcs->cpu_accessible_dma_pool_free(hdev,
|
|
sizeof(struct cpucp_info), cpucp_info_cpu_addr);
|
|
|
|
return rc;
|
|
}
|
|
|
|
static int hl_fw_send_msi_info_msg(struct hl_device *hdev)
|
|
{
|
|
struct cpucp_array_data_packet *pkt;
|
|
size_t total_pkt_size, data_size;
|
|
u64 result;
|
|
int rc;
|
|
|
|
/* skip sending this info for unsupported ASICs */
|
|
if (!hdev->asic_funcs->get_msi_info)
|
|
return 0;
|
|
|
|
data_size = CPUCP_NUM_OF_MSI_TYPES * sizeof(u32);
|
|
total_pkt_size = sizeof(struct cpucp_array_data_packet) + data_size;
|
|
|
|
/* data should be aligned to 8 bytes in order to CPU-CP to copy it */
|
|
total_pkt_size = (total_pkt_size + 0x7) & ~0x7;
|
|
|
|
/* total_pkt_size is casted to u16 later on */
|
|
if (total_pkt_size > USHRT_MAX) {
|
|
dev_err(hdev->dev, "CPUCP array data is too big\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
pkt = kzalloc(total_pkt_size, GFP_KERNEL);
|
|
if (!pkt)
|
|
return -ENOMEM;
|
|
|
|
pkt->length = cpu_to_le32(CPUCP_NUM_OF_MSI_TYPES);
|
|
|
|
memset((void *) &pkt->data, 0xFF, data_size);
|
|
hdev->asic_funcs->get_msi_info(pkt->data);
|
|
|
|
pkt->cpucp_pkt.ctl = cpu_to_le32(CPUCP_PACKET_MSI_INFO_SET <<
|
|
CPUCP_PKT_CTL_OPCODE_SHIFT);
|
|
|
|
rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *)pkt,
|
|
total_pkt_size, 0, &result);
|
|
|
|
/*
|
|
* in case packet result is invalid it means that FW does not support
|
|
* this feature and will use default/hard coded MSI values. no reason
|
|
* to stop the boot
|
|
*/
|
|
if (rc && result == cpucp_packet_invalid)
|
|
rc = 0;
|
|
|
|
if (rc)
|
|
dev_err(hdev->dev, "failed to send CPUCP array data\n");
|
|
|
|
kfree(pkt);
|
|
|
|
return rc;
|
|
}
|
|
|
|
int hl_fw_cpucp_handshake(struct hl_device *hdev,
|
|
u32 sts_boot_dev_sts0_reg,
|
|
u32 sts_boot_dev_sts1_reg, u32 boot_err0_reg,
|
|
u32 boot_err1_reg)
|
|
{
|
|
int rc;
|
|
|
|
rc = hl_fw_cpucp_info_get(hdev, sts_boot_dev_sts0_reg,
|
|
sts_boot_dev_sts1_reg, boot_err0_reg,
|
|
boot_err1_reg);
|
|
if (rc)
|
|
return rc;
|
|
|
|
return hl_fw_send_msi_info_msg(hdev);
|
|
}
|
|
|
|
int hl_fw_get_eeprom_data(struct hl_device *hdev, void *data, size_t max_size)
|
|
{
|
|
struct cpucp_packet pkt = {};
|
|
void *eeprom_info_cpu_addr;
|
|
dma_addr_t eeprom_info_dma_addr;
|
|
u64 result;
|
|
int rc;
|
|
|
|
eeprom_info_cpu_addr =
|
|
hdev->asic_funcs->cpu_accessible_dma_pool_alloc(hdev,
|
|
max_size, &eeprom_info_dma_addr);
|
|
if (!eeprom_info_cpu_addr) {
|
|
dev_err(hdev->dev,
|
|
"Failed to allocate DMA memory for CPU-CP EEPROM packet\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
memset(eeprom_info_cpu_addr, 0, max_size);
|
|
|
|
pkt.ctl = cpu_to_le32(CPUCP_PACKET_EEPROM_DATA_GET <<
|
|
CPUCP_PKT_CTL_OPCODE_SHIFT);
|
|
pkt.addr = cpu_to_le64(eeprom_info_dma_addr);
|
|
pkt.data_max_size = cpu_to_le32(max_size);
|
|
|
|
rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt),
|
|
HL_CPUCP_EEPROM_TIMEOUT_USEC, &result);
|
|
|
|
if (rc) {
|
|
dev_err(hdev->dev,
|
|
"Failed to handle CPU-CP EEPROM packet, error %d\n",
|
|
rc);
|
|
goto out;
|
|
}
|
|
|
|
/* result contains the actual size */
|
|
memcpy(data, eeprom_info_cpu_addr, min((size_t)result, max_size));
|
|
|
|
out:
|
|
hdev->asic_funcs->cpu_accessible_dma_pool_free(hdev, max_size,
|
|
eeprom_info_cpu_addr);
|
|
|
|
return rc;
|
|
}
|
|
|
|
int hl_fw_cpucp_pci_counters_get(struct hl_device *hdev,
|
|
struct hl_info_pci_counters *counters)
|
|
{
|
|
struct cpucp_packet pkt = {};
|
|
u64 result;
|
|
int rc;
|
|
|
|
pkt.ctl = cpu_to_le32(CPUCP_PACKET_PCIE_THROUGHPUT_GET <<
|
|
CPUCP_PKT_CTL_OPCODE_SHIFT);
|
|
|
|
/* Fetch PCI rx counter */
|
|
pkt.index = cpu_to_le32(cpucp_pcie_throughput_rx);
|
|
rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt),
|
|
HL_CPUCP_INFO_TIMEOUT_USEC, &result);
|
|
if (rc) {
|
|
dev_err(hdev->dev,
|
|
"Failed to handle CPU-CP PCI info pkt, error %d\n", rc);
|
|
return rc;
|
|
}
|
|
counters->rx_throughput = result;
|
|
|
|
memset(&pkt, 0, sizeof(pkt));
|
|
pkt.ctl = cpu_to_le32(CPUCP_PACKET_PCIE_THROUGHPUT_GET <<
|
|
CPUCP_PKT_CTL_OPCODE_SHIFT);
|
|
|
|
/* Fetch PCI tx counter */
|
|
pkt.index = cpu_to_le32(cpucp_pcie_throughput_tx);
|
|
rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt),
|
|
HL_CPUCP_INFO_TIMEOUT_USEC, &result);
|
|
if (rc) {
|
|
dev_err(hdev->dev,
|
|
"Failed to handle CPU-CP PCI info pkt, error %d\n", rc);
|
|
return rc;
|
|
}
|
|
counters->tx_throughput = result;
|
|
|
|
/* Fetch PCI replay counter */
|
|
memset(&pkt, 0, sizeof(pkt));
|
|
pkt.ctl = cpu_to_le32(CPUCP_PACKET_PCIE_REPLAY_CNT_GET <<
|
|
CPUCP_PKT_CTL_OPCODE_SHIFT);
|
|
|
|
rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt),
|
|
HL_CPUCP_INFO_TIMEOUT_USEC, &result);
|
|
if (rc) {
|
|
dev_err(hdev->dev,
|
|
"Failed to handle CPU-CP PCI info pkt, error %d\n", rc);
|
|
return rc;
|
|
}
|
|
counters->replay_cnt = (u32) result;
|
|
|
|
return rc;
|
|
}
|
|
|
|
int hl_fw_cpucp_total_energy_get(struct hl_device *hdev, u64 *total_energy)
|
|
{
|
|
struct cpucp_packet pkt = {};
|
|
u64 result;
|
|
int rc;
|
|
|
|
pkt.ctl = cpu_to_le32(CPUCP_PACKET_TOTAL_ENERGY_GET <<
|
|
CPUCP_PKT_CTL_OPCODE_SHIFT);
|
|
|
|
rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt),
|
|
HL_CPUCP_INFO_TIMEOUT_USEC, &result);
|
|
if (rc) {
|
|
dev_err(hdev->dev,
|
|
"Failed to handle CpuCP total energy pkt, error %d\n",
|
|
rc);
|
|
return rc;
|
|
}
|
|
|
|
*total_energy = result;
|
|
|
|
return rc;
|
|
}
|
|
|
|
int get_used_pll_index(struct hl_device *hdev, u32 input_pll_index,
|
|
enum pll_index *pll_index)
|
|
{
|
|
struct asic_fixed_properties *prop = &hdev->asic_prop;
|
|
u8 pll_byte, pll_bit_off;
|
|
bool dynamic_pll;
|
|
int fw_pll_idx;
|
|
|
|
dynamic_pll = !!(prop->fw_app_cpu_boot_dev_sts0 &
|
|
CPU_BOOT_DEV_STS0_DYN_PLL_EN);
|
|
|
|
if (!dynamic_pll) {
|
|
/*
|
|
* in case we are working with legacy FW (each asic has unique
|
|
* PLL numbering) use the driver based index as they are
|
|
* aligned with fw legacy numbering
|
|
*/
|
|
*pll_index = input_pll_index;
|
|
return 0;
|
|
}
|
|
|
|
/* retrieve a FW compatible PLL index based on
|
|
* ASIC specific user request
|
|
*/
|
|
fw_pll_idx = hdev->asic_funcs->map_pll_idx_to_fw_idx(input_pll_index);
|
|
if (fw_pll_idx < 0) {
|
|
dev_err(hdev->dev, "Invalid PLL index (%u) error %d\n",
|
|
input_pll_index, fw_pll_idx);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* PLL map is a u8 array */
|
|
pll_byte = prop->cpucp_info.pll_map[fw_pll_idx >> 3];
|
|
pll_bit_off = fw_pll_idx & 0x7;
|
|
|
|
if (!(pll_byte & BIT(pll_bit_off))) {
|
|
dev_err(hdev->dev, "PLL index %d is not supported\n",
|
|
fw_pll_idx);
|
|
return -EINVAL;
|
|
}
|
|
|
|
*pll_index = fw_pll_idx;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int hl_fw_cpucp_pll_info_get(struct hl_device *hdev, u32 pll_index,
|
|
u16 *pll_freq_arr)
|
|
{
|
|
struct cpucp_packet pkt;
|
|
enum pll_index used_pll_idx;
|
|
u64 result;
|
|
int rc;
|
|
|
|
rc = get_used_pll_index(hdev, pll_index, &used_pll_idx);
|
|
if (rc)
|
|
return rc;
|
|
|
|
memset(&pkt, 0, sizeof(pkt));
|
|
|
|
pkt.ctl = cpu_to_le32(CPUCP_PACKET_PLL_INFO_GET <<
|
|
CPUCP_PKT_CTL_OPCODE_SHIFT);
|
|
pkt.pll_type = __cpu_to_le16((u16)used_pll_idx);
|
|
|
|
rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt),
|
|
HL_CPUCP_INFO_TIMEOUT_USEC, &result);
|
|
if (rc) {
|
|
dev_err(hdev->dev, "Failed to read PLL info, error %d\n", rc);
|
|
return rc;
|
|
}
|
|
|
|
pll_freq_arr[0] = FIELD_GET(CPUCP_PKT_RES_PLL_OUT0_MASK, result);
|
|
pll_freq_arr[1] = FIELD_GET(CPUCP_PKT_RES_PLL_OUT1_MASK, result);
|
|
pll_freq_arr[2] = FIELD_GET(CPUCP_PKT_RES_PLL_OUT2_MASK, result);
|
|
pll_freq_arr[3] = FIELD_GET(CPUCP_PKT_RES_PLL_OUT3_MASK, result);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int hl_fw_cpucp_power_get(struct hl_device *hdev, u64 *power)
|
|
{
|
|
struct cpucp_packet pkt;
|
|
u64 result;
|
|
int rc;
|
|
|
|
memset(&pkt, 0, sizeof(pkt));
|
|
|
|
pkt.ctl = cpu_to_le32(CPUCP_PACKET_POWER_GET <<
|
|
CPUCP_PKT_CTL_OPCODE_SHIFT);
|
|
pkt.type = cpu_to_le16(CPUCP_POWER_INPUT);
|
|
|
|
rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt),
|
|
HL_CPUCP_INFO_TIMEOUT_USEC, &result);
|
|
if (rc) {
|
|
dev_err(hdev->dev, "Failed to read power, error %d\n", rc);
|
|
return rc;
|
|
}
|
|
|
|
*power = result;
|
|
|
|
return rc;
|
|
}
|
|
|
|
int hl_fw_dram_replaced_row_get(struct hl_device *hdev,
|
|
struct cpucp_hbm_row_info *info)
|
|
{
|
|
struct cpucp_hbm_row_info *cpucp_repl_rows_info_cpu_addr;
|
|
dma_addr_t cpucp_repl_rows_info_dma_addr;
|
|
struct cpucp_packet pkt = {};
|
|
u64 result;
|
|
int rc;
|
|
|
|
cpucp_repl_rows_info_cpu_addr =
|
|
hdev->asic_funcs->cpu_accessible_dma_pool_alloc(hdev,
|
|
sizeof(struct cpucp_hbm_row_info),
|
|
&cpucp_repl_rows_info_dma_addr);
|
|
if (!cpucp_repl_rows_info_cpu_addr) {
|
|
dev_err(hdev->dev,
|
|
"Failed to allocate DMA memory for CPU-CP replaced rows info packet\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
memset(cpucp_repl_rows_info_cpu_addr, 0, sizeof(struct cpucp_hbm_row_info));
|
|
|
|
pkt.ctl = cpu_to_le32(CPUCP_PACKET_HBM_REPLACED_ROWS_INFO_GET <<
|
|
CPUCP_PKT_CTL_OPCODE_SHIFT);
|
|
pkt.addr = cpu_to_le64(cpucp_repl_rows_info_dma_addr);
|
|
pkt.data_max_size = cpu_to_le32(sizeof(struct cpucp_hbm_row_info));
|
|
|
|
rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt),
|
|
HL_CPUCP_INFO_TIMEOUT_USEC, &result);
|
|
if (rc) {
|
|
dev_err(hdev->dev,
|
|
"Failed to handle CPU-CP replaced rows info pkt, error %d\n", rc);
|
|
goto out;
|
|
}
|
|
|
|
memcpy(info, cpucp_repl_rows_info_cpu_addr, sizeof(*info));
|
|
|
|
out:
|
|
hdev->asic_funcs->cpu_accessible_dma_pool_free(hdev,
|
|
sizeof(struct cpucp_hbm_row_info),
|
|
cpucp_repl_rows_info_cpu_addr);
|
|
|
|
return rc;
|
|
}
|
|
|
|
int hl_fw_dram_pending_row_get(struct hl_device *hdev, u32 *pend_rows_num)
|
|
{
|
|
struct cpucp_packet pkt;
|
|
u64 result;
|
|
int rc;
|
|
|
|
memset(&pkt, 0, sizeof(pkt));
|
|
|
|
pkt.ctl = cpu_to_le32(CPUCP_PACKET_HBM_PENDING_ROWS_STATUS << CPUCP_PKT_CTL_OPCODE_SHIFT);
|
|
|
|
rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt), 0, &result);
|
|
if (rc) {
|
|
dev_err(hdev->dev,
|
|
"Failed to handle CPU-CP pending rows info pkt, error %d\n", rc);
|
|
goto out;
|
|
}
|
|
|
|
*pend_rows_num = (u32) result;
|
|
out:
|
|
return rc;
|
|
}
|
|
|
|
int hl_fw_cpucp_engine_core_asid_set(struct hl_device *hdev, u32 asid)
|
|
{
|
|
struct cpucp_packet pkt;
|
|
int rc;
|
|
|
|
memset(&pkt, 0, sizeof(pkt));
|
|
|
|
pkt.ctl = cpu_to_le32(CPUCP_PACKET_ENGINE_CORE_ASID_SET << CPUCP_PKT_CTL_OPCODE_SHIFT);
|
|
pkt.value = cpu_to_le64(asid);
|
|
|
|
rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt),
|
|
HL_CPUCP_INFO_TIMEOUT_USEC, NULL);
|
|
if (rc)
|
|
dev_err(hdev->dev,
|
|
"Failed on ASID configuration request for engine core, error %d\n",
|
|
rc);
|
|
|
|
return rc;
|
|
}
|
|
|
|
void hl_fw_ask_hard_reset_without_linux(struct hl_device *hdev)
|
|
{
|
|
struct static_fw_load_mgr *static_loader =
|
|
&hdev->fw_loader.static_loader;
|
|
int rc;
|
|
|
|
if (hdev->asic_prop.dynamic_fw_load) {
|
|
rc = hl_fw_dynamic_send_protocol_cmd(hdev, &hdev->fw_loader,
|
|
COMMS_RST_DEV, 0, false,
|
|
hdev->fw_loader.cpu_timeout);
|
|
if (rc)
|
|
dev_warn(hdev->dev, "Failed sending COMMS_RST_DEV\n");
|
|
} else {
|
|
WREG32(static_loader->kmd_msg_to_cpu_reg, KMD_MSG_RST_DEV);
|
|
}
|
|
}
|
|
|
|
void hl_fw_ask_halt_machine_without_linux(struct hl_device *hdev)
|
|
{
|
|
struct static_fw_load_mgr *static_loader =
|
|
&hdev->fw_loader.static_loader;
|
|
int rc;
|
|
|
|
if (hdev->device_cpu_is_halted)
|
|
return;
|
|
|
|
/* Stop device CPU to make sure nothing bad happens */
|
|
if (hdev->asic_prop.dynamic_fw_load) {
|
|
rc = hl_fw_dynamic_send_protocol_cmd(hdev, &hdev->fw_loader,
|
|
COMMS_GOTO_WFE, 0, true,
|
|
hdev->fw_loader.cpu_timeout);
|
|
if (rc)
|
|
dev_warn(hdev->dev, "Failed sending COMMS_GOTO_WFE\n");
|
|
} else {
|
|
WREG32(static_loader->kmd_msg_to_cpu_reg, KMD_MSG_GOTO_WFE);
|
|
msleep(static_loader->cpu_reset_wait_msec);
|
|
|
|
/* Must clear this register in order to prevent preboot
|
|
* from reading WFE after reboot
|
|
*/
|
|
WREG32(static_loader->kmd_msg_to_cpu_reg, KMD_MSG_NA);
|
|
}
|
|
|
|
hdev->device_cpu_is_halted = true;
|
|
}
|
|
|
|
static void detect_cpu_boot_status(struct hl_device *hdev, u32 status)
|
|
{
|
|
/* Some of the status codes below are deprecated in newer f/w
|
|
* versions but we keep them here for backward compatibility
|
|
*/
|
|
switch (status) {
|
|
case CPU_BOOT_STATUS_NA:
|
|
dev_err(hdev->dev,
|
|
"Device boot progress - BTL/ROM did NOT run\n");
|
|
break;
|
|
case CPU_BOOT_STATUS_IN_WFE:
|
|
dev_err(hdev->dev,
|
|
"Device boot progress - Stuck inside WFE loop\n");
|
|
break;
|
|
case CPU_BOOT_STATUS_IN_BTL:
|
|
dev_err(hdev->dev,
|
|
"Device boot progress - Stuck in BTL\n");
|
|
break;
|
|
case CPU_BOOT_STATUS_IN_PREBOOT:
|
|
dev_err(hdev->dev,
|
|
"Device boot progress - Stuck in Preboot\n");
|
|
break;
|
|
case CPU_BOOT_STATUS_IN_SPL:
|
|
dev_err(hdev->dev,
|
|
"Device boot progress - Stuck in SPL\n");
|
|
break;
|
|
case CPU_BOOT_STATUS_IN_UBOOT:
|
|
dev_err(hdev->dev,
|
|
"Device boot progress - Stuck in u-boot\n");
|
|
break;
|
|
case CPU_BOOT_STATUS_DRAM_INIT_FAIL:
|
|
dev_err(hdev->dev,
|
|
"Device boot progress - DRAM initialization failed\n");
|
|
break;
|
|
case CPU_BOOT_STATUS_UBOOT_NOT_READY:
|
|
dev_err(hdev->dev,
|
|
"Device boot progress - Cannot boot\n");
|
|
break;
|
|
case CPU_BOOT_STATUS_TS_INIT_FAIL:
|
|
dev_err(hdev->dev,
|
|
"Device boot progress - Thermal Sensor initialization failed\n");
|
|
break;
|
|
case CPU_BOOT_STATUS_SECURITY_READY:
|
|
dev_err(hdev->dev,
|
|
"Device boot progress - Stuck in preboot after security initialization\n");
|
|
break;
|
|
default:
|
|
dev_err(hdev->dev,
|
|
"Device boot progress - Invalid status code %d\n",
|
|
status);
|
|
break;
|
|
}
|
|
}
|
|
|
|
static int hl_fw_read_preboot_caps(struct hl_device *hdev,
|
|
u32 cpu_boot_status_reg,
|
|
u32 sts_boot_dev_sts0_reg,
|
|
u32 sts_boot_dev_sts1_reg,
|
|
u32 boot_err0_reg, u32 boot_err1_reg,
|
|
u32 timeout)
|
|
{
|
|
struct asic_fixed_properties *prop = &hdev->asic_prop;
|
|
u32 status, reg_val;
|
|
int rc;
|
|
|
|
/* Need to check two possible scenarios:
|
|
*
|
|
* CPU_BOOT_STATUS_WAITING_FOR_BOOT_FIT - for newer firmwares where
|
|
* the preboot is waiting for the boot fit
|
|
*
|
|
* All other status values - for older firmwares where the uboot was
|
|
* loaded from the FLASH
|
|
*/
|
|
rc = hl_poll_timeout(
|
|
hdev,
|
|
cpu_boot_status_reg,
|
|
status,
|
|
(status == CPU_BOOT_STATUS_IN_UBOOT) ||
|
|
(status == CPU_BOOT_STATUS_DRAM_RDY) ||
|
|
(status == CPU_BOOT_STATUS_NIC_FW_RDY) ||
|
|
(status == CPU_BOOT_STATUS_READY_TO_BOOT) ||
|
|
(status == CPU_BOOT_STATUS_WAITING_FOR_BOOT_FIT),
|
|
hdev->fw_poll_interval_usec,
|
|
timeout);
|
|
|
|
if (rc) {
|
|
dev_err(hdev->dev, "CPU boot ready status timeout\n");
|
|
detect_cpu_boot_status(hdev, status);
|
|
|
|
/* If we read all FF, then something is totally wrong, no point
|
|
* of reading specific errors
|
|
*/
|
|
if (status != -1)
|
|
fw_read_errors(hdev, boot_err0_reg, boot_err1_reg,
|
|
sts_boot_dev_sts0_reg,
|
|
sts_boot_dev_sts1_reg);
|
|
return -EIO;
|
|
}
|
|
|
|
/*
|
|
* the registers DEV_STS* contain FW capabilities/features.
|
|
* We can rely on this registers only if bit CPU_BOOT_DEV_STS*_ENABLED
|
|
* is set.
|
|
* In the first read of this register we store the value of this
|
|
* register ONLY if the register is enabled (which will be propagated
|
|
* to next stages) and also mark the register as valid.
|
|
* In case it is not enabled the stored value will be left 0- all
|
|
* caps/features are off
|
|
*/
|
|
reg_val = RREG32(sts_boot_dev_sts0_reg);
|
|
if (reg_val & CPU_BOOT_DEV_STS0_ENABLED) {
|
|
prop->fw_cpu_boot_dev_sts0_valid = true;
|
|
prop->fw_preboot_cpu_boot_dev_sts0 = reg_val;
|
|
}
|
|
|
|
reg_val = RREG32(sts_boot_dev_sts1_reg);
|
|
if (reg_val & CPU_BOOT_DEV_STS1_ENABLED) {
|
|
prop->fw_cpu_boot_dev_sts1_valid = true;
|
|
prop->fw_preboot_cpu_boot_dev_sts1 = reg_val;
|
|
}
|
|
|
|
prop->dynamic_fw_load = !!(prop->fw_preboot_cpu_boot_dev_sts0 &
|
|
CPU_BOOT_DEV_STS0_FW_LD_COM_EN);
|
|
|
|
/* initialize FW loader once we know what load protocol is used */
|
|
hdev->asic_funcs->init_firmware_loader(hdev);
|
|
|
|
dev_dbg(hdev->dev, "Attempting %s FW load\n",
|
|
prop->dynamic_fw_load ? "dynamic" : "legacy");
|
|
return 0;
|
|
}
|
|
|
|
static int hl_fw_static_read_device_fw_version(struct hl_device *hdev,
|
|
enum hl_fw_component fwc)
|
|
{
|
|
struct asic_fixed_properties *prop = &hdev->asic_prop;
|
|
struct fw_load_mgr *fw_loader = &hdev->fw_loader;
|
|
struct static_fw_load_mgr *static_loader;
|
|
char *dest, *boot_ver, *preboot_ver;
|
|
u32 ver_off, limit;
|
|
const char *name;
|
|
char btl_ver[32];
|
|
|
|
static_loader = &hdev->fw_loader.static_loader;
|
|
|
|
switch (fwc) {
|
|
case FW_COMP_BOOT_FIT:
|
|
ver_off = RREG32(static_loader->boot_fit_version_offset_reg);
|
|
dest = prop->uboot_ver;
|
|
name = "Boot-fit";
|
|
limit = static_loader->boot_fit_version_max_off;
|
|
break;
|
|
case FW_COMP_PREBOOT:
|
|
ver_off = RREG32(static_loader->preboot_version_offset_reg);
|
|
dest = prop->preboot_ver;
|
|
name = "Preboot";
|
|
limit = static_loader->preboot_version_max_off;
|
|
break;
|
|
default:
|
|
dev_warn(hdev->dev, "Undefined FW component: %d\n", fwc);
|
|
return -EIO;
|
|
}
|
|
|
|
ver_off &= static_loader->sram_offset_mask;
|
|
|
|
if (ver_off < limit) {
|
|
memcpy_fromio(dest,
|
|
hdev->pcie_bar[fw_loader->sram_bar_id] + ver_off,
|
|
VERSION_MAX_LEN);
|
|
} else {
|
|
dev_err(hdev->dev, "%s version offset (0x%x) is above SRAM\n",
|
|
name, ver_off);
|
|
strscpy(dest, "unavailable", VERSION_MAX_LEN);
|
|
return -EIO;
|
|
}
|
|
|
|
if (fwc == FW_COMP_BOOT_FIT) {
|
|
boot_ver = extract_fw_ver_from_str(prop->uboot_ver);
|
|
if (boot_ver) {
|
|
dev_info(hdev->dev, "boot-fit version %s\n", boot_ver);
|
|
kfree(boot_ver);
|
|
}
|
|
} else if (fwc == FW_COMP_PREBOOT) {
|
|
preboot_ver = strnstr(prop->preboot_ver, "Preboot",
|
|
VERSION_MAX_LEN);
|
|
if (preboot_ver && preboot_ver != prop->preboot_ver) {
|
|
strscpy(btl_ver, prop->preboot_ver,
|
|
min((int) (preboot_ver - prop->preboot_ver),
|
|
31));
|
|
dev_info(hdev->dev, "%s\n", btl_ver);
|
|
}
|
|
|
|
preboot_ver = extract_fw_ver_from_str(prop->preboot_ver);
|
|
if (preboot_ver) {
|
|
dev_info(hdev->dev, "preboot version %s\n",
|
|
preboot_ver);
|
|
kfree(preboot_ver);
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* hl_fw_preboot_update_state - update internal data structures during
|
|
* handshake with preboot
|
|
*
|
|
*
|
|
* @hdev: pointer to the habanalabs device structure
|
|
*
|
|
* @return 0 on success, otherwise non-zero error code
|
|
*/
|
|
static void hl_fw_preboot_update_state(struct hl_device *hdev)
|
|
{
|
|
struct asic_fixed_properties *prop = &hdev->asic_prop;
|
|
u32 cpu_boot_dev_sts0, cpu_boot_dev_sts1;
|
|
|
|
cpu_boot_dev_sts0 = prop->fw_preboot_cpu_boot_dev_sts0;
|
|
cpu_boot_dev_sts1 = prop->fw_preboot_cpu_boot_dev_sts1;
|
|
|
|
/* We read boot_dev_sts registers multiple times during boot:
|
|
* 1. preboot - a. Check whether the security status bits are valid
|
|
* b. Check whether fw security is enabled
|
|
* c. Check whether hard reset is done by preboot
|
|
* 2. boot cpu - a. Fetch boot cpu security status
|
|
* b. Check whether hard reset is done by boot cpu
|
|
* 3. FW application - a. Fetch fw application security status
|
|
* b. Check whether hard reset is done by fw app
|
|
*/
|
|
prop->hard_reset_done_by_fw = !!(cpu_boot_dev_sts0 & CPU_BOOT_DEV_STS0_FW_HARD_RST_EN);
|
|
|
|
dev_dbg(hdev->dev, "Firmware preboot boot device status0 %#x\n",
|
|
cpu_boot_dev_sts0);
|
|
|
|
dev_dbg(hdev->dev, "Firmware preboot boot device status1 %#x\n",
|
|
cpu_boot_dev_sts1);
|
|
|
|
dev_dbg(hdev->dev, "Firmware preboot hard-reset is %s\n",
|
|
prop->hard_reset_done_by_fw ? "enabled" : "disabled");
|
|
|
|
dev_dbg(hdev->dev, "firmware-level security is %s\n",
|
|
prop->fw_security_enabled ? "enabled" : "disabled");
|
|
|
|
dev_dbg(hdev->dev, "GIC controller is %s\n",
|
|
prop->gic_interrupts_enable ? "enabled" : "disabled");
|
|
}
|
|
|
|
static int hl_fw_static_read_preboot_status(struct hl_device *hdev)
|
|
{
|
|
int rc;
|
|
|
|
rc = hl_fw_static_read_device_fw_version(hdev, FW_COMP_PREBOOT);
|
|
if (rc)
|
|
return rc;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int hl_fw_read_preboot_status(struct hl_device *hdev, u32 cpu_boot_status_reg,
|
|
u32 sts_boot_dev_sts0_reg,
|
|
u32 sts_boot_dev_sts1_reg, u32 boot_err0_reg,
|
|
u32 boot_err1_reg, u32 timeout)
|
|
{
|
|
int rc;
|
|
|
|
if (!(hdev->fw_components & FW_TYPE_PREBOOT_CPU))
|
|
return 0;
|
|
|
|
/*
|
|
* In order to determine boot method (static VS dymanic) we need to
|
|
* read the boot caps register
|
|
*/
|
|
rc = hl_fw_read_preboot_caps(hdev, cpu_boot_status_reg,
|
|
sts_boot_dev_sts0_reg,
|
|
sts_boot_dev_sts1_reg, boot_err0_reg,
|
|
boot_err1_reg, timeout);
|
|
if (rc)
|
|
return rc;
|
|
|
|
hl_fw_preboot_update_state(hdev);
|
|
|
|
/* no need to read preboot status in dynamic load */
|
|
if (hdev->asic_prop.dynamic_fw_load)
|
|
return 0;
|
|
|
|
return hl_fw_static_read_preboot_status(hdev);
|
|
}
|
|
|
|
/* associate string with COMM status */
|
|
static char *hl_dynamic_fw_status_str[COMMS_STS_INVLD_LAST] = {
|
|
[COMMS_STS_NOOP] = "NOOP",
|
|
[COMMS_STS_ACK] = "ACK",
|
|
[COMMS_STS_OK] = "OK",
|
|
[COMMS_STS_ERR] = "ERR",
|
|
[COMMS_STS_VALID_ERR] = "VALID_ERR",
|
|
[COMMS_STS_TIMEOUT_ERR] = "TIMEOUT_ERR",
|
|
};
|
|
|
|
/**
|
|
* hl_fw_dynamic_report_error_status - report error status
|
|
*
|
|
* @hdev: pointer to the habanalabs device structure
|
|
* @status: value of FW status register
|
|
* @expected_status: the expected status
|
|
*/
|
|
static void hl_fw_dynamic_report_error_status(struct hl_device *hdev,
|
|
u32 status,
|
|
enum comms_sts expected_status)
|
|
{
|
|
enum comms_sts comm_status =
|
|
FIELD_GET(COMMS_STATUS_STATUS_MASK, status);
|
|
|
|
if (comm_status < COMMS_STS_INVLD_LAST)
|
|
dev_err(hdev->dev, "Device status %s, expected status: %s\n",
|
|
hl_dynamic_fw_status_str[comm_status],
|
|
hl_dynamic_fw_status_str[expected_status]);
|
|
else
|
|
dev_err(hdev->dev, "Device status unknown %d, expected status: %s\n",
|
|
comm_status,
|
|
hl_dynamic_fw_status_str[expected_status]);
|
|
}
|
|
|
|
/**
|
|
* hl_fw_dynamic_send_cmd - send LKD to FW cmd
|
|
*
|
|
* @hdev: pointer to the habanalabs device structure
|
|
* @fw_loader: managing structure for loading device's FW
|
|
* @cmd: LKD to FW cmd code
|
|
* @size: size of next FW component to be loaded (0 if not necessary)
|
|
*
|
|
* LDK to FW exact command layout is defined at struct comms_command.
|
|
* note: the size argument is used only when the next FW component should be
|
|
* loaded, otherwise it shall be 0. the size is used by the FW in later
|
|
* protocol stages and when sending only indicating the amount of memory
|
|
* to be allocated by the FW to receive the next boot component.
|
|
*/
|
|
static void hl_fw_dynamic_send_cmd(struct hl_device *hdev,
|
|
struct fw_load_mgr *fw_loader,
|
|
enum comms_cmd cmd, unsigned int size)
|
|
{
|
|
struct cpu_dyn_regs *dyn_regs;
|
|
u32 val;
|
|
|
|
dyn_regs = &fw_loader->dynamic_loader.comm_desc.cpu_dyn_regs;
|
|
|
|
val = FIELD_PREP(COMMS_COMMAND_CMD_MASK, cmd);
|
|
val |= FIELD_PREP(COMMS_COMMAND_SIZE_MASK, size);
|
|
|
|
WREG32(le32_to_cpu(dyn_regs->kmd_msg_to_cpu), val);
|
|
}
|
|
|
|
/**
|
|
* hl_fw_dynamic_extract_fw_response - update the FW response
|
|
*
|
|
* @hdev: pointer to the habanalabs device structure
|
|
* @fw_loader: managing structure for loading device's FW
|
|
* @response: FW response
|
|
* @status: the status read from CPU status register
|
|
*
|
|
* @return 0 on success, otherwise non-zero error code
|
|
*/
|
|
static int hl_fw_dynamic_extract_fw_response(struct hl_device *hdev,
|
|
struct fw_load_mgr *fw_loader,
|
|
struct fw_response *response,
|
|
u32 status)
|
|
{
|
|
response->status = FIELD_GET(COMMS_STATUS_STATUS_MASK, status);
|
|
response->ram_offset = FIELD_GET(COMMS_STATUS_OFFSET_MASK, status) <<
|
|
COMMS_STATUS_OFFSET_ALIGN_SHIFT;
|
|
response->ram_type = FIELD_GET(COMMS_STATUS_RAM_TYPE_MASK, status);
|
|
|
|
if ((response->ram_type != COMMS_SRAM) &&
|
|
(response->ram_type != COMMS_DRAM)) {
|
|
dev_err(hdev->dev, "FW status: invalid RAM type %u\n",
|
|
response->ram_type);
|
|
return -EIO;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* hl_fw_dynamic_wait_for_status - wait for status in dynamic FW load
|
|
*
|
|
* @hdev: pointer to the habanalabs device structure
|
|
* @fw_loader: managing structure for loading device's FW
|
|
* @expected_status: expected status to wait for
|
|
* @timeout: timeout for status wait
|
|
*
|
|
* @return 0 on success, otherwise non-zero error code
|
|
*
|
|
* waiting for status from FW include polling the FW status register until
|
|
* expected status is received or timeout occurs (whatever occurs first).
|
|
*/
|
|
static int hl_fw_dynamic_wait_for_status(struct hl_device *hdev,
|
|
struct fw_load_mgr *fw_loader,
|
|
enum comms_sts expected_status,
|
|
u32 timeout)
|
|
{
|
|
struct cpu_dyn_regs *dyn_regs;
|
|
u32 status;
|
|
int rc;
|
|
|
|
dyn_regs = &fw_loader->dynamic_loader.comm_desc.cpu_dyn_regs;
|
|
|
|
/* Wait for expected status */
|
|
rc = hl_poll_timeout(
|
|
hdev,
|
|
le32_to_cpu(dyn_regs->cpu_cmd_status_to_host),
|
|
status,
|
|
FIELD_GET(COMMS_STATUS_STATUS_MASK, status) == expected_status,
|
|
hdev->fw_poll_interval_usec,
|
|
timeout);
|
|
|
|
if (rc) {
|
|
hl_fw_dynamic_report_error_status(hdev, status,
|
|
expected_status);
|
|
return -EIO;
|
|
}
|
|
|
|
/*
|
|
* skip storing FW response for NOOP to preserve the actual desired
|
|
* FW status
|
|
*/
|
|
if (expected_status == COMMS_STS_NOOP)
|
|
return 0;
|
|
|
|
rc = hl_fw_dynamic_extract_fw_response(hdev, fw_loader,
|
|
&fw_loader->dynamic_loader.response,
|
|
status);
|
|
return rc;
|
|
}
|
|
|
|
/**
|
|
* hl_fw_dynamic_send_clear_cmd - send clear command to FW
|
|
*
|
|
* @hdev: pointer to the habanalabs device structure
|
|
* @fw_loader: managing structure for loading device's FW
|
|
*
|
|
* @return 0 on success, otherwise non-zero error code
|
|
*
|
|
* after command cycle between LKD to FW CPU (i.e. LKD got an expected status
|
|
* from FW) we need to clear the CPU status register in order to avoid garbage
|
|
* between command cycles.
|
|
* This is done by sending clear command and polling the CPU to LKD status
|
|
* register to hold the status NOOP
|
|
*/
|
|
static int hl_fw_dynamic_send_clear_cmd(struct hl_device *hdev,
|
|
struct fw_load_mgr *fw_loader)
|
|
{
|
|
hl_fw_dynamic_send_cmd(hdev, fw_loader, COMMS_CLR_STS, 0);
|
|
|
|
return hl_fw_dynamic_wait_for_status(hdev, fw_loader, COMMS_STS_NOOP,
|
|
fw_loader->cpu_timeout);
|
|
}
|
|
|
|
/**
|
|
* hl_fw_dynamic_send_protocol_cmd - send LKD to FW cmd and wait for ACK
|
|
*
|
|
* @hdev: pointer to the habanalabs device structure
|
|
* @fw_loader: managing structure for loading device's FW
|
|
* @cmd: LKD to FW cmd code
|
|
* @size: size of next FW component to be loaded (0 if not necessary)
|
|
* @wait_ok: if true also wait for OK response from FW
|
|
* @timeout: timeout for status wait
|
|
*
|
|
* @return 0 on success, otherwise non-zero error code
|
|
*
|
|
* brief:
|
|
* when sending protocol command we have the following steps:
|
|
* - send clear (clear command and verify clear status register)
|
|
* - send the actual protocol command
|
|
* - wait for ACK on the protocol command
|
|
* - send clear
|
|
* - send NOOP
|
|
* if, in addition, the specific protocol command should wait for OK then:
|
|
* - wait for OK
|
|
* - send clear
|
|
* - send NOOP
|
|
*
|
|
* NOTES:
|
|
* send clear: this is necessary in order to clear the status register to avoid
|
|
* leftovers between command
|
|
* NOOP command: necessary to avoid loop on the clear command by the FW
|
|
*/
|
|
int hl_fw_dynamic_send_protocol_cmd(struct hl_device *hdev,
|
|
struct fw_load_mgr *fw_loader,
|
|
enum comms_cmd cmd, unsigned int size,
|
|
bool wait_ok, u32 timeout)
|
|
{
|
|
int rc;
|
|
|
|
/* first send clear command to clean former commands */
|
|
rc = hl_fw_dynamic_send_clear_cmd(hdev, fw_loader);
|
|
|
|
/* send the actual command */
|
|
hl_fw_dynamic_send_cmd(hdev, fw_loader, cmd, size);
|
|
|
|
/* wait for ACK for the command */
|
|
rc = hl_fw_dynamic_wait_for_status(hdev, fw_loader, COMMS_STS_ACK,
|
|
timeout);
|
|
if (rc)
|
|
return rc;
|
|
|
|
/* clear command to prepare for NOOP command */
|
|
rc = hl_fw_dynamic_send_clear_cmd(hdev, fw_loader);
|
|
if (rc)
|
|
return rc;
|
|
|
|
/* send the actual NOOP command */
|
|
hl_fw_dynamic_send_cmd(hdev, fw_loader, COMMS_NOOP, 0);
|
|
|
|
if (!wait_ok)
|
|
return 0;
|
|
|
|
rc = hl_fw_dynamic_wait_for_status(hdev, fw_loader, COMMS_STS_OK,
|
|
timeout);
|
|
if (rc)
|
|
return rc;
|
|
|
|
/* clear command to prepare for NOOP command */
|
|
rc = hl_fw_dynamic_send_clear_cmd(hdev, fw_loader);
|
|
if (rc)
|
|
return rc;
|
|
|
|
/* send the actual NOOP command */
|
|
hl_fw_dynamic_send_cmd(hdev, fw_loader, COMMS_NOOP, 0);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* hl_fw_compat_crc32 - CRC compatible with FW
|
|
*
|
|
* @data: pointer to the data
|
|
* @size: size of the data
|
|
*
|
|
* @return the CRC32 result
|
|
*
|
|
* NOTE: kernel's CRC32 differ's from standard CRC32 calculation.
|
|
* in order to be aligned we need to flip the bits of both the input
|
|
* initial CRC and kernel's CRC32 result.
|
|
* in addition both sides use initial CRC of 0,
|
|
*/
|
|
static u32 hl_fw_compat_crc32(u8 *data, size_t size)
|
|
{
|
|
return ~crc32_le(~((u32)0), data, size);
|
|
}
|
|
|
|
/**
|
|
* hl_fw_dynamic_validate_memory_bound - validate memory bounds for memory
|
|
* transfer (image or descriptor) between
|
|
* host and FW
|
|
*
|
|
* @hdev: pointer to the habanalabs device structure
|
|
* @addr: device address of memory transfer
|
|
* @size: memory transter size
|
|
* @region: PCI memory region
|
|
*
|
|
* @return 0 on success, otherwise non-zero error code
|
|
*/
|
|
static int hl_fw_dynamic_validate_memory_bound(struct hl_device *hdev,
|
|
u64 addr, size_t size,
|
|
struct pci_mem_region *region)
|
|
{
|
|
u64 end_addr;
|
|
|
|
/* now make sure that the memory transfer is within region's bounds */
|
|
end_addr = addr + size;
|
|
if (end_addr >= region->region_base + region->region_size) {
|
|
dev_err(hdev->dev,
|
|
"dynamic FW load: memory transfer end address out of memory region bounds. addr: %llx\n",
|
|
end_addr);
|
|
return -EIO;
|
|
}
|
|
|
|
/*
|
|
* now make sure memory transfer is within predefined BAR bounds.
|
|
* this is to make sure we do not need to set the bar (e.g. for DRAM
|
|
* memory transfers)
|
|
*/
|
|
if (end_addr >= region->region_base - region->offset_in_bar +
|
|
region->bar_size) {
|
|
dev_err(hdev->dev,
|
|
"FW image beyond PCI BAR bounds\n");
|
|
return -EIO;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* hl_fw_dynamic_validate_descriptor - validate FW descriptor
|
|
*
|
|
* @hdev: pointer to the habanalabs device structure
|
|
* @fw_loader: managing structure for loading device's FW
|
|
* @fw_desc: the descriptor form FW
|
|
*
|
|
* @return 0 on success, otherwise non-zero error code
|
|
*/
|
|
static int hl_fw_dynamic_validate_descriptor(struct hl_device *hdev,
|
|
struct fw_load_mgr *fw_loader,
|
|
struct lkd_fw_comms_desc *fw_desc)
|
|
{
|
|
struct pci_mem_region *region;
|
|
enum pci_region region_id;
|
|
size_t data_size;
|
|
u32 data_crc32;
|
|
u8 *data_ptr;
|
|
u64 addr;
|
|
int rc;
|
|
|
|
if (le32_to_cpu(fw_desc->header.magic) != HL_COMMS_DESC_MAGIC) {
|
|
dev_err(hdev->dev, "Invalid magic for dynamic FW descriptor (%x)\n",
|
|
fw_desc->header.magic);
|
|
return -EIO;
|
|
}
|
|
|
|
if (fw_desc->header.version != HL_COMMS_DESC_VER) {
|
|
dev_err(hdev->dev, "Invalid version for dynamic FW descriptor (%x)\n",
|
|
fw_desc->header.version);
|
|
return -EIO;
|
|
}
|
|
|
|
/*
|
|
* calc CRC32 of data without header.
|
|
* note that no alignment/stride address issues here as all structures
|
|
* are 64 bit padded
|
|
*/
|
|
data_size = sizeof(struct lkd_fw_comms_desc) -
|
|
sizeof(struct comms_desc_header);
|
|
data_ptr = (u8 *)fw_desc + sizeof(struct comms_desc_header);
|
|
|
|
if (le16_to_cpu(fw_desc->header.size) != data_size) {
|
|
dev_err(hdev->dev,
|
|
"Invalid descriptor size 0x%x, expected size 0x%zx\n",
|
|
le16_to_cpu(fw_desc->header.size), data_size);
|
|
return -EIO;
|
|
}
|
|
|
|
data_crc32 = hl_fw_compat_crc32(data_ptr, data_size);
|
|
|
|
if (data_crc32 != le32_to_cpu(fw_desc->header.crc32)) {
|
|
dev_err(hdev->dev,
|
|
"CRC32 mismatch for dynamic FW descriptor (%x:%x)\n",
|
|
data_crc32, fw_desc->header.crc32);
|
|
return -EIO;
|
|
}
|
|
|
|
/* find memory region to which to copy the image */
|
|
addr = le64_to_cpu(fw_desc->img_addr);
|
|
region_id = hl_get_pci_memory_region(hdev, addr);
|
|
if ((region_id != PCI_REGION_SRAM) &&
|
|
((region_id != PCI_REGION_DRAM))) {
|
|
dev_err(hdev->dev,
|
|
"Invalid region to copy FW image address=%llx\n", addr);
|
|
return -EIO;
|
|
}
|
|
|
|
region = &hdev->pci_mem_region[region_id];
|
|
|
|
/* store the region for the copy stage */
|
|
fw_loader->dynamic_loader.image_region = region;
|
|
|
|
/*
|
|
* here we know that the start address is valid, now make sure that the
|
|
* image is within region's bounds
|
|
*/
|
|
rc = hl_fw_dynamic_validate_memory_bound(hdev, addr,
|
|
fw_loader->dynamic_loader.fw_image_size,
|
|
region);
|
|
if (rc) {
|
|
dev_err(hdev->dev,
|
|
"invalid mem transfer request for FW image\n");
|
|
return rc;
|
|
}
|
|
|
|
/* here we can mark the descriptor as valid as the content has been validated */
|
|
fw_loader->dynamic_loader.fw_desc_valid = true;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int hl_fw_dynamic_validate_response(struct hl_device *hdev,
|
|
struct fw_response *response,
|
|
struct pci_mem_region *region)
|
|
{
|
|
u64 device_addr;
|
|
int rc;
|
|
|
|
device_addr = region->region_base + response->ram_offset;
|
|
|
|
/*
|
|
* validate that the descriptor is within region's bounds
|
|
* Note that as the start address was supplied according to the RAM
|
|
* type- testing only the end address is enough
|
|
*/
|
|
rc = hl_fw_dynamic_validate_memory_bound(hdev, device_addr,
|
|
sizeof(struct lkd_fw_comms_desc),
|
|
region);
|
|
return rc;
|
|
}
|
|
|
|
/**
|
|
* hl_fw_dynamic_read_and_validate_descriptor - read and validate FW descriptor
|
|
*
|
|
* @hdev: pointer to the habanalabs device structure
|
|
* @fw_loader: managing structure for loading device's FW
|
|
*
|
|
* @return 0 on success, otherwise non-zero error code
|
|
*/
|
|
static int hl_fw_dynamic_read_and_validate_descriptor(struct hl_device *hdev,
|
|
struct fw_load_mgr *fw_loader)
|
|
{
|
|
struct lkd_fw_comms_desc *fw_desc;
|
|
struct pci_mem_region *region;
|
|
struct fw_response *response;
|
|
enum pci_region region_id;
|
|
void __iomem *src;
|
|
int rc;
|
|
|
|
fw_desc = &fw_loader->dynamic_loader.comm_desc;
|
|
response = &fw_loader->dynamic_loader.response;
|
|
|
|
region_id = (response->ram_type == COMMS_SRAM) ?
|
|
PCI_REGION_SRAM : PCI_REGION_DRAM;
|
|
|
|
region = &hdev->pci_mem_region[region_id];
|
|
|
|
rc = hl_fw_dynamic_validate_response(hdev, response, region);
|
|
if (rc) {
|
|
dev_err(hdev->dev,
|
|
"invalid mem transfer request for FW descriptor\n");
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
* extract address to copy the descriptor from
|
|
* in addition, as the descriptor value is going to be over-ridden by new data- we mark it
|
|
* as invalid.
|
|
* it will be marked again as valid once validated
|
|
*/
|
|
fw_loader->dynamic_loader.fw_desc_valid = false;
|
|
src = hdev->pcie_bar[region->bar_id] + region->offset_in_bar +
|
|
response->ram_offset;
|
|
memcpy_fromio(fw_desc, src, sizeof(struct lkd_fw_comms_desc));
|
|
|
|
return hl_fw_dynamic_validate_descriptor(hdev, fw_loader, fw_desc);
|
|
}
|
|
|
|
/**
|
|
* hl_fw_dynamic_request_descriptor - handshake with CPU to get FW descriptor
|
|
*
|
|
* @hdev: pointer to the habanalabs device structure
|
|
* @fw_loader: managing structure for loading device's FW
|
|
* @next_image_size: size to allocate for next FW component
|
|
*
|
|
* @return 0 on success, otherwise non-zero error code
|
|
*/
|
|
static int hl_fw_dynamic_request_descriptor(struct hl_device *hdev,
|
|
struct fw_load_mgr *fw_loader,
|
|
size_t next_image_size)
|
|
{
|
|
int rc;
|
|
|
|
rc = hl_fw_dynamic_send_protocol_cmd(hdev, fw_loader, COMMS_PREP_DESC,
|
|
next_image_size, true,
|
|
fw_loader->cpu_timeout);
|
|
if (rc)
|
|
return rc;
|
|
|
|
return hl_fw_dynamic_read_and_validate_descriptor(hdev, fw_loader);
|
|
}
|
|
|
|
/**
|
|
* hl_fw_dynamic_read_device_fw_version - read FW version to exposed properties
|
|
*
|
|
* @hdev: pointer to the habanalabs device structure
|
|
* @fwc: the firmware component
|
|
* @fw_version: fw component's version string
|
|
*/
|
|
static void hl_fw_dynamic_read_device_fw_version(struct hl_device *hdev,
|
|
enum hl_fw_component fwc,
|
|
const char *fw_version)
|
|
{
|
|
struct asic_fixed_properties *prop = &hdev->asic_prop;
|
|
char *preboot_ver, *boot_ver;
|
|
char btl_ver[32];
|
|
|
|
switch (fwc) {
|
|
case FW_COMP_BOOT_FIT:
|
|
strscpy(prop->uboot_ver, fw_version, VERSION_MAX_LEN);
|
|
boot_ver = extract_fw_ver_from_str(prop->uboot_ver);
|
|
if (boot_ver) {
|
|
dev_info(hdev->dev, "boot-fit version %s\n", boot_ver);
|
|
kfree(boot_ver);
|
|
}
|
|
|
|
break;
|
|
case FW_COMP_PREBOOT:
|
|
strscpy(prop->preboot_ver, fw_version, VERSION_MAX_LEN);
|
|
preboot_ver = strnstr(prop->preboot_ver, "Preboot",
|
|
VERSION_MAX_LEN);
|
|
if (preboot_ver && preboot_ver != prop->preboot_ver) {
|
|
strscpy(btl_ver, prop->preboot_ver,
|
|
min((int) (preboot_ver - prop->preboot_ver),
|
|
31));
|
|
dev_info(hdev->dev, "%s\n", btl_ver);
|
|
}
|
|
|
|
preboot_ver = extract_fw_ver_from_str(prop->preboot_ver);
|
|
if (preboot_ver) {
|
|
dev_info(hdev->dev, "preboot version %s\n",
|
|
preboot_ver);
|
|
kfree(preboot_ver);
|
|
}
|
|
|
|
break;
|
|
default:
|
|
dev_warn(hdev->dev, "Undefined FW component: %d\n", fwc);
|
|
return;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* hl_fw_dynamic_copy_image - copy image to memory allocated by the FW
|
|
*
|
|
* @hdev: pointer to the habanalabs device structure
|
|
* @fw: fw descriptor
|
|
* @fw_loader: managing structure for loading device's FW
|
|
*/
|
|
static int hl_fw_dynamic_copy_image(struct hl_device *hdev,
|
|
const struct firmware *fw,
|
|
struct fw_load_mgr *fw_loader)
|
|
{
|
|
struct lkd_fw_comms_desc *fw_desc;
|
|
struct pci_mem_region *region;
|
|
void __iomem *dest;
|
|
u64 addr;
|
|
int rc;
|
|
|
|
fw_desc = &fw_loader->dynamic_loader.comm_desc;
|
|
addr = le64_to_cpu(fw_desc->img_addr);
|
|
|
|
/* find memory region to which to copy the image */
|
|
region = fw_loader->dynamic_loader.image_region;
|
|
|
|
dest = hdev->pcie_bar[region->bar_id] + region->offset_in_bar +
|
|
(addr - region->region_base);
|
|
|
|
rc = hl_fw_copy_fw_to_device(hdev, fw, dest,
|
|
fw_loader->boot_fit_img.src_off,
|
|
fw_loader->boot_fit_img.copy_size);
|
|
|
|
return rc;
|
|
}
|
|
|
|
/**
|
|
* hl_fw_dynamic_copy_msg - copy msg to memory allocated by the FW
|
|
*
|
|
* @hdev: pointer to the habanalabs device structure
|
|
* @msg: message
|
|
* @fw_loader: managing structure for loading device's FW
|
|
*/
|
|
static int hl_fw_dynamic_copy_msg(struct hl_device *hdev,
|
|
struct lkd_msg_comms *msg, struct fw_load_mgr *fw_loader)
|
|
{
|
|
struct lkd_fw_comms_desc *fw_desc;
|
|
struct pci_mem_region *region;
|
|
void __iomem *dest;
|
|
u64 addr;
|
|
int rc;
|
|
|
|
fw_desc = &fw_loader->dynamic_loader.comm_desc;
|
|
addr = le64_to_cpu(fw_desc->img_addr);
|
|
|
|
/* find memory region to which to copy the image */
|
|
region = fw_loader->dynamic_loader.image_region;
|
|
|
|
dest = hdev->pcie_bar[region->bar_id] + region->offset_in_bar +
|
|
(addr - region->region_base);
|
|
|
|
rc = hl_fw_copy_msg_to_device(hdev, msg, dest, 0, 0);
|
|
|
|
return rc;
|
|
}
|
|
|
|
/**
|
|
* hl_fw_boot_fit_update_state - update internal data structures after boot-fit
|
|
* is loaded
|
|
*
|
|
* @hdev: pointer to the habanalabs device structure
|
|
* @cpu_boot_dev_sts0_reg: register holding CPU boot dev status 0
|
|
* @cpu_boot_dev_sts1_reg: register holding CPU boot dev status 1
|
|
*
|
|
* @return 0 on success, otherwise non-zero error code
|
|
*/
|
|
static void hl_fw_boot_fit_update_state(struct hl_device *hdev,
|
|
u32 cpu_boot_dev_sts0_reg,
|
|
u32 cpu_boot_dev_sts1_reg)
|
|
{
|
|
struct asic_fixed_properties *prop = &hdev->asic_prop;
|
|
|
|
hdev->fw_loader.fw_comp_loaded |= FW_TYPE_BOOT_CPU;
|
|
|
|
/* Read boot_cpu status bits */
|
|
if (prop->fw_preboot_cpu_boot_dev_sts0 & CPU_BOOT_DEV_STS0_ENABLED) {
|
|
prop->fw_bootfit_cpu_boot_dev_sts0 =
|
|
RREG32(cpu_boot_dev_sts0_reg);
|
|
|
|
prop->hard_reset_done_by_fw = !!(prop->fw_bootfit_cpu_boot_dev_sts0 &
|
|
CPU_BOOT_DEV_STS0_FW_HARD_RST_EN);
|
|
|
|
dev_dbg(hdev->dev, "Firmware boot CPU status0 %#x\n",
|
|
prop->fw_bootfit_cpu_boot_dev_sts0);
|
|
}
|
|
|
|
if (prop->fw_cpu_boot_dev_sts1_valid) {
|
|
prop->fw_bootfit_cpu_boot_dev_sts1 =
|
|
RREG32(cpu_boot_dev_sts1_reg);
|
|
|
|
dev_dbg(hdev->dev, "Firmware boot CPU status1 %#x\n",
|
|
prop->fw_bootfit_cpu_boot_dev_sts1);
|
|
}
|
|
|
|
dev_dbg(hdev->dev, "Firmware boot CPU hard-reset is %s\n",
|
|
prop->hard_reset_done_by_fw ? "enabled" : "disabled");
|
|
}
|
|
|
|
static void hl_fw_dynamic_update_linux_interrupt_if(struct hl_device *hdev)
|
|
{
|
|
struct cpu_dyn_regs *dyn_regs =
|
|
&hdev->fw_loader.dynamic_loader.comm_desc.cpu_dyn_regs;
|
|
|
|
/* Check whether all 3 interrupt interfaces are set, if not use a
|
|
* single interface
|
|
*/
|
|
if (!hdev->asic_prop.gic_interrupts_enable &&
|
|
!(hdev->asic_prop.fw_app_cpu_boot_dev_sts0 &
|
|
CPU_BOOT_DEV_STS0_MULTI_IRQ_POLL_EN)) {
|
|
dyn_regs->gic_host_halt_irq = dyn_regs->gic_host_pi_upd_irq;
|
|
dyn_regs->gic_host_ints_irq = dyn_regs->gic_host_pi_upd_irq;
|
|
|
|
dev_warn(hdev->dev,
|
|
"Using a single interrupt interface towards cpucp");
|
|
}
|
|
}
|
|
/**
|
|
* hl_fw_dynamic_load_image - load FW image using dynamic protocol
|
|
*
|
|
* @hdev: pointer to the habanalabs device structure
|
|
* @fw_loader: managing structure for loading device's FW
|
|
* @load_fwc: the FW component to be loaded
|
|
* @img_ld_timeout: image load timeout
|
|
*
|
|
* @return 0 on success, otherwise non-zero error code
|
|
*/
|
|
static int hl_fw_dynamic_load_image(struct hl_device *hdev,
|
|
struct fw_load_mgr *fw_loader,
|
|
enum hl_fw_component load_fwc,
|
|
u32 img_ld_timeout)
|
|
{
|
|
enum hl_fw_component cur_fwc;
|
|
const struct firmware *fw;
|
|
char *fw_name;
|
|
int rc = 0;
|
|
|
|
/*
|
|
* when loading image we have one of 2 scenarios:
|
|
* 1. current FW component is preboot and we want to load boot-fit
|
|
* 2. current FW component is boot-fit and we want to load linux
|
|
*/
|
|
if (load_fwc == FW_COMP_BOOT_FIT) {
|
|
cur_fwc = FW_COMP_PREBOOT;
|
|
fw_name = fw_loader->boot_fit_img.image_name;
|
|
} else {
|
|
cur_fwc = FW_COMP_BOOT_FIT;
|
|
fw_name = fw_loader->linux_img.image_name;
|
|
}
|
|
|
|
/* request FW in order to communicate to FW the size to be allocated */
|
|
rc = hl_request_fw(hdev, &fw, fw_name);
|
|
if (rc)
|
|
return rc;
|
|
|
|
/* store the image size for future validation */
|
|
fw_loader->dynamic_loader.fw_image_size = fw->size;
|
|
|
|
rc = hl_fw_dynamic_request_descriptor(hdev, fw_loader, fw->size);
|
|
if (rc)
|
|
goto release_fw;
|
|
|
|
/* read preboot version */
|
|
hl_fw_dynamic_read_device_fw_version(hdev, cur_fwc,
|
|
fw_loader->dynamic_loader.comm_desc.cur_fw_ver);
|
|
|
|
|
|
/* update state according to boot stage */
|
|
if (cur_fwc == FW_COMP_BOOT_FIT) {
|
|
struct cpu_dyn_regs *dyn_regs;
|
|
|
|
dyn_regs = &fw_loader->dynamic_loader.comm_desc.cpu_dyn_regs;
|
|
hl_fw_boot_fit_update_state(hdev,
|
|
le32_to_cpu(dyn_regs->cpu_boot_dev_sts0),
|
|
le32_to_cpu(dyn_regs->cpu_boot_dev_sts1));
|
|
}
|
|
|
|
/* copy boot fit to space allocated by FW */
|
|
rc = hl_fw_dynamic_copy_image(hdev, fw, fw_loader);
|
|
if (rc)
|
|
goto release_fw;
|
|
|
|
rc = hl_fw_dynamic_send_protocol_cmd(hdev, fw_loader, COMMS_DATA_RDY,
|
|
0, true,
|
|
fw_loader->cpu_timeout);
|
|
if (rc)
|
|
goto release_fw;
|
|
|
|
rc = hl_fw_dynamic_send_protocol_cmd(hdev, fw_loader, COMMS_EXEC,
|
|
0, false,
|
|
img_ld_timeout);
|
|
|
|
release_fw:
|
|
hl_release_firmware(fw);
|
|
return rc;
|
|
}
|
|
|
|
static int hl_fw_dynamic_wait_for_boot_fit_active(struct hl_device *hdev,
|
|
struct fw_load_mgr *fw_loader)
|
|
{
|
|
struct dynamic_fw_load_mgr *dyn_loader;
|
|
u32 status;
|
|
int rc;
|
|
|
|
dyn_loader = &fw_loader->dynamic_loader;
|
|
|
|
/*
|
|
* Make sure CPU boot-loader is running
|
|
* Note that the CPU_BOOT_STATUS_SRAM_AVAIL is generally set by Linux
|
|
* yet there is a debug scenario in which we loading uboot (without Linux)
|
|
* which at later stage is relocated to DRAM. In this case we expect
|
|
* uboot to set the CPU_BOOT_STATUS_SRAM_AVAIL and so we add it to the
|
|
* poll flags
|
|
*/
|
|
rc = hl_poll_timeout(
|
|
hdev,
|
|
le32_to_cpu(dyn_loader->comm_desc.cpu_dyn_regs.cpu_boot_status),
|
|
status,
|
|
(status == CPU_BOOT_STATUS_READY_TO_BOOT) ||
|
|
(status == CPU_BOOT_STATUS_SRAM_AVAIL),
|
|
hdev->fw_poll_interval_usec,
|
|
dyn_loader->wait_for_bl_timeout);
|
|
if (rc) {
|
|
dev_err(hdev->dev, "failed to wait for boot\n");
|
|
return rc;
|
|
}
|
|
|
|
dev_dbg(hdev->dev, "uboot status = %d\n", status);
|
|
return 0;
|
|
}
|
|
|
|
static int hl_fw_dynamic_wait_for_linux_active(struct hl_device *hdev,
|
|
struct fw_load_mgr *fw_loader)
|
|
{
|
|
struct dynamic_fw_load_mgr *dyn_loader;
|
|
u32 status;
|
|
int rc;
|
|
|
|
dyn_loader = &fw_loader->dynamic_loader;
|
|
|
|
/* Make sure CPU linux is running */
|
|
|
|
rc = hl_poll_timeout(
|
|
hdev,
|
|
le32_to_cpu(dyn_loader->comm_desc.cpu_dyn_regs.cpu_boot_status),
|
|
status,
|
|
(status == CPU_BOOT_STATUS_SRAM_AVAIL),
|
|
hdev->fw_poll_interval_usec,
|
|
fw_loader->cpu_timeout);
|
|
if (rc) {
|
|
dev_err(hdev->dev, "failed to wait for Linux\n");
|
|
return rc;
|
|
}
|
|
|
|
dev_dbg(hdev->dev, "Boot status = %d\n", status);
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* hl_fw_linux_update_state - update internal data structures after Linux
|
|
* is loaded.
|
|
* Note: Linux initialization is comprised mainly
|
|
* of two stages - loading kernel (SRAM_AVAIL)
|
|
* & loading ARMCP.
|
|
* Therefore reading boot device status in any of
|
|
* these stages might result in different values.
|
|
*
|
|
* @hdev: pointer to the habanalabs device structure
|
|
* @cpu_boot_dev_sts0_reg: register holding CPU boot dev status 0
|
|
* @cpu_boot_dev_sts1_reg: register holding CPU boot dev status 1
|
|
*
|
|
* @return 0 on success, otherwise non-zero error code
|
|
*/
|
|
static void hl_fw_linux_update_state(struct hl_device *hdev,
|
|
u32 cpu_boot_dev_sts0_reg,
|
|
u32 cpu_boot_dev_sts1_reg)
|
|
{
|
|
struct asic_fixed_properties *prop = &hdev->asic_prop;
|
|
|
|
hdev->fw_loader.fw_comp_loaded |= FW_TYPE_LINUX;
|
|
|
|
/* Read FW application security bits */
|
|
if (prop->fw_cpu_boot_dev_sts0_valid) {
|
|
prop->fw_app_cpu_boot_dev_sts0 = RREG32(cpu_boot_dev_sts0_reg);
|
|
|
|
prop->hard_reset_done_by_fw = !!(prop->fw_app_cpu_boot_dev_sts0 &
|
|
CPU_BOOT_DEV_STS0_FW_HARD_RST_EN);
|
|
|
|
if (prop->fw_app_cpu_boot_dev_sts0 &
|
|
CPU_BOOT_DEV_STS0_GIC_PRIVILEGED_EN)
|
|
prop->gic_interrupts_enable = false;
|
|
|
|
dev_dbg(hdev->dev,
|
|
"Firmware application CPU status0 %#x\n",
|
|
prop->fw_app_cpu_boot_dev_sts0);
|
|
|
|
dev_dbg(hdev->dev, "GIC controller is %s\n",
|
|
prop->gic_interrupts_enable ?
|
|
"enabled" : "disabled");
|
|
}
|
|
|
|
if (prop->fw_cpu_boot_dev_sts1_valid) {
|
|
prop->fw_app_cpu_boot_dev_sts1 = RREG32(cpu_boot_dev_sts1_reg);
|
|
|
|
dev_dbg(hdev->dev,
|
|
"Firmware application CPU status1 %#x\n",
|
|
prop->fw_app_cpu_boot_dev_sts1);
|
|
}
|
|
|
|
dev_dbg(hdev->dev, "Firmware application CPU hard-reset is %s\n",
|
|
prop->hard_reset_done_by_fw ? "enabled" : "disabled");
|
|
|
|
dev_info(hdev->dev, "Successfully loaded firmware to device\n");
|
|
}
|
|
|
|
/**
|
|
* hl_fw_dynamic_send_msg - send a COMMS message with attached data
|
|
*
|
|
* @hdev: pointer to the habanalabs device structure
|
|
* @fw_loader: managing structure for loading device's FW
|
|
* @msg_type: message type
|
|
* @data: data to be sent
|
|
*
|
|
* @return 0 on success, otherwise non-zero error code
|
|
*/
|
|
static int hl_fw_dynamic_send_msg(struct hl_device *hdev,
|
|
struct fw_load_mgr *fw_loader, u8 msg_type, void *data)
|
|
{
|
|
struct lkd_msg_comms msg;
|
|
int rc;
|
|
|
|
memset(&msg, 0, sizeof(msg));
|
|
|
|
/* create message to be sent */
|
|
msg.header.type = msg_type;
|
|
msg.header.size = cpu_to_le16(sizeof(struct comms_msg_header));
|
|
msg.header.magic = cpu_to_le32(HL_COMMS_MSG_MAGIC);
|
|
|
|
switch (msg_type) {
|
|
case HL_COMMS_RESET_CAUSE_TYPE:
|
|
msg.reset_cause = *(__u8 *) data;
|
|
break;
|
|
default:
|
|
dev_err(hdev->dev,
|
|
"Send COMMS message - invalid message type %u\n",
|
|
msg_type);
|
|
return -EINVAL;
|
|
}
|
|
|
|
rc = hl_fw_dynamic_request_descriptor(hdev, fw_loader,
|
|
sizeof(struct lkd_msg_comms));
|
|
if (rc)
|
|
return rc;
|
|
|
|
/* copy message to space allocated by FW */
|
|
rc = hl_fw_dynamic_copy_msg(hdev, &msg, fw_loader);
|
|
if (rc)
|
|
return rc;
|
|
|
|
rc = hl_fw_dynamic_send_protocol_cmd(hdev, fw_loader, COMMS_DATA_RDY,
|
|
0, true,
|
|
fw_loader->cpu_timeout);
|
|
if (rc)
|
|
return rc;
|
|
|
|
rc = hl_fw_dynamic_send_protocol_cmd(hdev, fw_loader, COMMS_EXEC,
|
|
0, true,
|
|
fw_loader->cpu_timeout);
|
|
if (rc)
|
|
return rc;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* hl_fw_dynamic_init_cpu - initialize the device CPU using dynamic protocol
|
|
*
|
|
* @hdev: pointer to the habanalabs device structure
|
|
* @fw_loader: managing structure for loading device's FW
|
|
*
|
|
* @return 0 on success, otherwise non-zero error code
|
|
*
|
|
* brief: the dynamic protocol is master (LKD) slave (FW CPU) protocol.
|
|
* the communication is done using registers:
|
|
* - LKD command register
|
|
* - FW status register
|
|
* the protocol is race free. this goal is achieved by splitting the requests
|
|
* and response to known synchronization points between the LKD and the FW.
|
|
* each response to LKD request is known and bound to a predefined timeout.
|
|
* in case of timeout expiration without the desired status from FW- the
|
|
* protocol (and hence the boot) will fail.
|
|
*/
|
|
static int hl_fw_dynamic_init_cpu(struct hl_device *hdev,
|
|
struct fw_load_mgr *fw_loader)
|
|
{
|
|
struct cpu_dyn_regs *dyn_regs;
|
|
int rc;
|
|
|
|
dev_info(hdev->dev,
|
|
"Loading firmware to device, may take some time...\n");
|
|
|
|
/* initialize FW descriptor as invalid */
|
|
fw_loader->dynamic_loader.fw_desc_valid = false;
|
|
|
|
/*
|
|
* In this stage, "cpu_dyn_regs" contains only LKD's hard coded values!
|
|
* It will be updated from FW after hl_fw_dynamic_request_descriptor().
|
|
*/
|
|
dyn_regs = &fw_loader->dynamic_loader.comm_desc.cpu_dyn_regs;
|
|
|
|
rc = hl_fw_dynamic_send_protocol_cmd(hdev, fw_loader, COMMS_RST_STATE,
|
|
0, true,
|
|
fw_loader->cpu_timeout);
|
|
if (rc)
|
|
goto protocol_err;
|
|
|
|
if (hdev->reset_info.curr_reset_cause) {
|
|
rc = hl_fw_dynamic_send_msg(hdev, fw_loader,
|
|
HL_COMMS_RESET_CAUSE_TYPE, &hdev->reset_info.curr_reset_cause);
|
|
if (rc)
|
|
goto protocol_err;
|
|
|
|
/* Clear current reset cause */
|
|
hdev->reset_info.curr_reset_cause = HL_RESET_CAUSE_UNKNOWN;
|
|
}
|
|
|
|
if (!(hdev->fw_components & FW_TYPE_BOOT_CPU)) {
|
|
rc = hl_fw_dynamic_request_descriptor(hdev, fw_loader, 0);
|
|
if (rc)
|
|
goto protocol_err;
|
|
|
|
/* read preboot version */
|
|
hl_fw_dynamic_read_device_fw_version(hdev, FW_COMP_PREBOOT,
|
|
fw_loader->dynamic_loader.comm_desc.cur_fw_ver);
|
|
return 0;
|
|
}
|
|
|
|
/* load boot fit to FW */
|
|
rc = hl_fw_dynamic_load_image(hdev, fw_loader, FW_COMP_BOOT_FIT,
|
|
fw_loader->boot_fit_timeout);
|
|
if (rc) {
|
|
dev_err(hdev->dev, "failed to load boot fit\n");
|
|
goto protocol_err;
|
|
}
|
|
|
|
/*
|
|
* when testing FW load (without Linux) on PLDM we don't want to
|
|
* wait until boot fit is active as it may take several hours.
|
|
* instead, we load the bootfit and let it do all initializations in
|
|
* the background.
|
|
*/
|
|
if (hdev->pldm && !(hdev->fw_components & FW_TYPE_LINUX))
|
|
return 0;
|
|
|
|
rc = hl_fw_dynamic_wait_for_boot_fit_active(hdev, fw_loader);
|
|
if (rc)
|
|
goto protocol_err;
|
|
|
|
/* Enable DRAM scrambling before Linux boot and after successful
|
|
* UBoot
|
|
*/
|
|
hdev->asic_funcs->init_cpu_scrambler_dram(hdev);
|
|
|
|
if (!(hdev->fw_components & FW_TYPE_LINUX)) {
|
|
dev_info(hdev->dev, "Skip loading Linux F/W\n");
|
|
return 0;
|
|
}
|
|
|
|
if (fw_loader->skip_bmc) {
|
|
rc = hl_fw_dynamic_send_protocol_cmd(hdev, fw_loader,
|
|
COMMS_SKIP_BMC, 0,
|
|
true,
|
|
fw_loader->cpu_timeout);
|
|
if (rc) {
|
|
dev_err(hdev->dev, "failed to load boot fit\n");
|
|
goto protocol_err;
|
|
}
|
|
}
|
|
|
|
/* load Linux image to FW */
|
|
rc = hl_fw_dynamic_load_image(hdev, fw_loader, FW_COMP_LINUX,
|
|
fw_loader->cpu_timeout);
|
|
if (rc) {
|
|
dev_err(hdev->dev, "failed to load Linux\n");
|
|
goto protocol_err;
|
|
}
|
|
|
|
rc = hl_fw_dynamic_wait_for_linux_active(hdev, fw_loader);
|
|
if (rc)
|
|
goto protocol_err;
|
|
|
|
hl_fw_linux_update_state(hdev, le32_to_cpu(dyn_regs->cpu_boot_dev_sts0),
|
|
le32_to_cpu(dyn_regs->cpu_boot_dev_sts1));
|
|
|
|
hl_fw_dynamic_update_linux_interrupt_if(hdev);
|
|
|
|
return 0;
|
|
|
|
protocol_err:
|
|
if (fw_loader->dynamic_loader.fw_desc_valid)
|
|
fw_read_errors(hdev, le32_to_cpu(dyn_regs->cpu_boot_err0),
|
|
le32_to_cpu(dyn_regs->cpu_boot_err1),
|
|
le32_to_cpu(dyn_regs->cpu_boot_dev_sts0),
|
|
le32_to_cpu(dyn_regs->cpu_boot_dev_sts1));
|
|
return rc;
|
|
}
|
|
|
|
/**
|
|
* hl_fw_static_init_cpu - initialize the device CPU using static protocol
|
|
*
|
|
* @hdev: pointer to the habanalabs device structure
|
|
* @fw_loader: managing structure for loading device's FW
|
|
*
|
|
* @return 0 on success, otherwise non-zero error code
|
|
*/
|
|
static int hl_fw_static_init_cpu(struct hl_device *hdev,
|
|
struct fw_load_mgr *fw_loader)
|
|
{
|
|
u32 cpu_msg_status_reg, cpu_timeout, msg_to_cpu_reg, status;
|
|
u32 cpu_boot_dev_status0_reg, cpu_boot_dev_status1_reg;
|
|
struct static_fw_load_mgr *static_loader;
|
|
u32 cpu_boot_status_reg;
|
|
int rc;
|
|
|
|
if (!(hdev->fw_components & FW_TYPE_BOOT_CPU))
|
|
return 0;
|
|
|
|
/* init common loader parameters */
|
|
cpu_timeout = fw_loader->cpu_timeout;
|
|
|
|
/* init static loader parameters */
|
|
static_loader = &fw_loader->static_loader;
|
|
cpu_msg_status_reg = static_loader->cpu_cmd_status_to_host_reg;
|
|
msg_to_cpu_reg = static_loader->kmd_msg_to_cpu_reg;
|
|
cpu_boot_dev_status0_reg = static_loader->cpu_boot_dev_status0_reg;
|
|
cpu_boot_dev_status1_reg = static_loader->cpu_boot_dev_status1_reg;
|
|
cpu_boot_status_reg = static_loader->cpu_boot_status_reg;
|
|
|
|
dev_info(hdev->dev, "Going to wait for device boot (up to %lds)\n",
|
|
cpu_timeout / USEC_PER_SEC);
|
|
|
|
/* Wait for boot FIT request */
|
|
rc = hl_poll_timeout(
|
|
hdev,
|
|
cpu_boot_status_reg,
|
|
status,
|
|
status == CPU_BOOT_STATUS_WAITING_FOR_BOOT_FIT,
|
|
hdev->fw_poll_interval_usec,
|
|
fw_loader->boot_fit_timeout);
|
|
|
|
if (rc) {
|
|
dev_dbg(hdev->dev,
|
|
"No boot fit request received, resuming boot\n");
|
|
} else {
|
|
rc = hdev->asic_funcs->load_boot_fit_to_device(hdev);
|
|
if (rc)
|
|
goto out;
|
|
|
|
/* Clear device CPU message status */
|
|
WREG32(cpu_msg_status_reg, CPU_MSG_CLR);
|
|
|
|
/* Signal device CPU that boot loader is ready */
|
|
WREG32(msg_to_cpu_reg, KMD_MSG_FIT_RDY);
|
|
|
|
/* Poll for CPU device ack */
|
|
rc = hl_poll_timeout(
|
|
hdev,
|
|
cpu_msg_status_reg,
|
|
status,
|
|
status == CPU_MSG_OK,
|
|
hdev->fw_poll_interval_usec,
|
|
fw_loader->boot_fit_timeout);
|
|
|
|
if (rc) {
|
|
dev_err(hdev->dev,
|
|
"Timeout waiting for boot fit load ack\n");
|
|
goto out;
|
|
}
|
|
|
|
/* Clear message */
|
|
WREG32(msg_to_cpu_reg, KMD_MSG_NA);
|
|
}
|
|
|
|
/*
|
|
* Make sure CPU boot-loader is running
|
|
* Note that the CPU_BOOT_STATUS_SRAM_AVAIL is generally set by Linux
|
|
* yet there is a debug scenario in which we loading uboot (without Linux)
|
|
* which at later stage is relocated to DRAM. In this case we expect
|
|
* uboot to set the CPU_BOOT_STATUS_SRAM_AVAIL and so we add it to the
|
|
* poll flags
|
|
*/
|
|
rc = hl_poll_timeout(
|
|
hdev,
|
|
cpu_boot_status_reg,
|
|
status,
|
|
(status == CPU_BOOT_STATUS_DRAM_RDY) ||
|
|
(status == CPU_BOOT_STATUS_NIC_FW_RDY) ||
|
|
(status == CPU_BOOT_STATUS_READY_TO_BOOT) ||
|
|
(status == CPU_BOOT_STATUS_SRAM_AVAIL),
|
|
hdev->fw_poll_interval_usec,
|
|
cpu_timeout);
|
|
|
|
dev_dbg(hdev->dev, "uboot status = %d\n", status);
|
|
|
|
/* Read U-Boot version now in case we will later fail */
|
|
hl_fw_static_read_device_fw_version(hdev, FW_COMP_BOOT_FIT);
|
|
|
|
/* update state according to boot stage */
|
|
hl_fw_boot_fit_update_state(hdev, cpu_boot_dev_status0_reg,
|
|
cpu_boot_dev_status1_reg);
|
|
|
|
if (rc) {
|
|
detect_cpu_boot_status(hdev, status);
|
|
rc = -EIO;
|
|
goto out;
|
|
}
|
|
|
|
/* Enable DRAM scrambling before Linux boot and after successful
|
|
* UBoot
|
|
*/
|
|
hdev->asic_funcs->init_cpu_scrambler_dram(hdev);
|
|
|
|
if (!(hdev->fw_components & FW_TYPE_LINUX)) {
|
|
dev_info(hdev->dev, "Skip loading Linux F/W\n");
|
|
rc = 0;
|
|
goto out;
|
|
}
|
|
|
|
if (status == CPU_BOOT_STATUS_SRAM_AVAIL) {
|
|
rc = 0;
|
|
goto out;
|
|
}
|
|
|
|
dev_info(hdev->dev,
|
|
"Loading firmware to device, may take some time...\n");
|
|
|
|
rc = hdev->asic_funcs->load_firmware_to_device(hdev);
|
|
if (rc)
|
|
goto out;
|
|
|
|
if (fw_loader->skip_bmc) {
|
|
WREG32(msg_to_cpu_reg, KMD_MSG_SKIP_BMC);
|
|
|
|
rc = hl_poll_timeout(
|
|
hdev,
|
|
cpu_boot_status_reg,
|
|
status,
|
|
(status == CPU_BOOT_STATUS_BMC_WAITING_SKIPPED),
|
|
hdev->fw_poll_interval_usec,
|
|
cpu_timeout);
|
|
|
|
if (rc) {
|
|
dev_err(hdev->dev,
|
|
"Failed to get ACK on skipping BMC, %d\n",
|
|
status);
|
|
WREG32(msg_to_cpu_reg, KMD_MSG_NA);
|
|
rc = -EIO;
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
WREG32(msg_to_cpu_reg, KMD_MSG_FIT_RDY);
|
|
|
|
rc = hl_poll_timeout(
|
|
hdev,
|
|
cpu_boot_status_reg,
|
|
status,
|
|
(status == CPU_BOOT_STATUS_SRAM_AVAIL),
|
|
hdev->fw_poll_interval_usec,
|
|
cpu_timeout);
|
|
|
|
/* Clear message */
|
|
WREG32(msg_to_cpu_reg, KMD_MSG_NA);
|
|
|
|
if (rc) {
|
|
if (status == CPU_BOOT_STATUS_FIT_CORRUPTED)
|
|
dev_err(hdev->dev,
|
|
"Device reports FIT image is corrupted\n");
|
|
else
|
|
dev_err(hdev->dev,
|
|
"Failed to load firmware to device, %d\n",
|
|
status);
|
|
|
|
rc = -EIO;
|
|
goto out;
|
|
}
|
|
|
|
rc = fw_read_errors(hdev, fw_loader->static_loader.boot_err0_reg,
|
|
fw_loader->static_loader.boot_err1_reg,
|
|
cpu_boot_dev_status0_reg,
|
|
cpu_boot_dev_status1_reg);
|
|
if (rc)
|
|
return rc;
|
|
|
|
hl_fw_linux_update_state(hdev, cpu_boot_dev_status0_reg,
|
|
cpu_boot_dev_status1_reg);
|
|
|
|
return 0;
|
|
|
|
out:
|
|
fw_read_errors(hdev, fw_loader->static_loader.boot_err0_reg,
|
|
fw_loader->static_loader.boot_err1_reg,
|
|
cpu_boot_dev_status0_reg,
|
|
cpu_boot_dev_status1_reg);
|
|
|
|
return rc;
|
|
}
|
|
|
|
/**
|
|
* hl_fw_init_cpu - initialize the device CPU
|
|
*
|
|
* @hdev: pointer to the habanalabs device structure
|
|
*
|
|
* @return 0 on success, otherwise non-zero error code
|
|
*
|
|
* perform necessary initializations for device's CPU. takes into account if
|
|
* init protocol is static or dynamic.
|
|
*/
|
|
int hl_fw_init_cpu(struct hl_device *hdev)
|
|
{
|
|
struct asic_fixed_properties *prop = &hdev->asic_prop;
|
|
struct fw_load_mgr *fw_loader = &hdev->fw_loader;
|
|
|
|
return prop->dynamic_fw_load ?
|
|
hl_fw_dynamic_init_cpu(hdev, fw_loader) :
|
|
hl_fw_static_init_cpu(hdev, fw_loader);
|
|
}
|
|
|
|
void hl_fw_set_pll_profile(struct hl_device *hdev)
|
|
{
|
|
hl_fw_set_frequency(hdev, hdev->asic_prop.clk_pll_index,
|
|
hdev->asic_prop.max_freq_value);
|
|
}
|
|
|
|
int hl_fw_get_clk_rate(struct hl_device *hdev, u32 *cur_clk, u32 *max_clk)
|
|
{
|
|
long value;
|
|
|
|
if (!hl_device_operational(hdev, NULL))
|
|
return -ENODEV;
|
|
|
|
if (!hdev->pdev) {
|
|
*cur_clk = 0;
|
|
*max_clk = 0;
|
|
return 0;
|
|
}
|
|
|
|
value = hl_fw_get_frequency(hdev, hdev->asic_prop.clk_pll_index, false);
|
|
|
|
if (value < 0) {
|
|
dev_err(hdev->dev, "Failed to retrieve device max clock %ld\n", value);
|
|
return value;
|
|
}
|
|
|
|
*max_clk = (value / 1000 / 1000);
|
|
|
|
value = hl_fw_get_frequency(hdev, hdev->asic_prop.clk_pll_index, true);
|
|
|
|
if (value < 0) {
|
|
dev_err(hdev->dev, "Failed to retrieve device current clock %ld\n", value);
|
|
return value;
|
|
}
|
|
|
|
*cur_clk = (value / 1000 / 1000);
|
|
|
|
return 0;
|
|
}
|
|
|
|
long hl_fw_get_frequency(struct hl_device *hdev, u32 pll_index, bool curr)
|
|
{
|
|
struct cpucp_packet pkt;
|
|
u32 used_pll_idx;
|
|
u64 result;
|
|
int rc;
|
|
|
|
rc = get_used_pll_index(hdev, pll_index, &used_pll_idx);
|
|
if (rc)
|
|
return rc;
|
|
|
|
memset(&pkt, 0, sizeof(pkt));
|
|
|
|
if (curr)
|
|
pkt.ctl = cpu_to_le32(CPUCP_PACKET_FREQUENCY_CURR_GET <<
|
|
CPUCP_PKT_CTL_OPCODE_SHIFT);
|
|
else
|
|
pkt.ctl = cpu_to_le32(CPUCP_PACKET_FREQUENCY_GET << CPUCP_PKT_CTL_OPCODE_SHIFT);
|
|
|
|
pkt.pll_index = cpu_to_le32((u32)used_pll_idx);
|
|
|
|
rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt), 0, &result);
|
|
|
|
if (rc) {
|
|
dev_err(hdev->dev, "Failed to get frequency of PLL %d, error %d\n",
|
|
used_pll_idx, rc);
|
|
return rc;
|
|
}
|
|
|
|
return (long) result;
|
|
}
|
|
|
|
void hl_fw_set_frequency(struct hl_device *hdev, u32 pll_index, u64 freq)
|
|
{
|
|
struct cpucp_packet pkt;
|
|
u32 used_pll_idx;
|
|
int rc;
|
|
|
|
rc = get_used_pll_index(hdev, pll_index, &used_pll_idx);
|
|
if (rc)
|
|
return;
|
|
|
|
memset(&pkt, 0, sizeof(pkt));
|
|
|
|
pkt.ctl = cpu_to_le32(CPUCP_PACKET_FREQUENCY_SET << CPUCP_PKT_CTL_OPCODE_SHIFT);
|
|
pkt.pll_index = cpu_to_le32((u32)used_pll_idx);
|
|
pkt.value = cpu_to_le64(freq);
|
|
|
|
rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt), 0, NULL);
|
|
|
|
if (rc)
|
|
dev_err(hdev->dev, "Failed to set frequency to PLL %d, error %d\n",
|
|
used_pll_idx, rc);
|
|
}
|
|
|
|
long hl_fw_get_max_power(struct hl_device *hdev)
|
|
{
|
|
struct cpucp_packet pkt;
|
|
u64 result;
|
|
int rc;
|
|
|
|
memset(&pkt, 0, sizeof(pkt));
|
|
|
|
pkt.ctl = cpu_to_le32(CPUCP_PACKET_MAX_POWER_GET << CPUCP_PKT_CTL_OPCODE_SHIFT);
|
|
|
|
rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt), 0, &result);
|
|
|
|
if (rc) {
|
|
dev_err(hdev->dev, "Failed to get max power, error %d\n", rc);
|
|
return rc;
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
void hl_fw_set_max_power(struct hl_device *hdev)
|
|
{
|
|
struct cpucp_packet pkt;
|
|
int rc;
|
|
|
|
/* TODO: remove this after simulator supports this packet */
|
|
if (!hdev->pdev)
|
|
return;
|
|
|
|
memset(&pkt, 0, sizeof(pkt));
|
|
|
|
pkt.ctl = cpu_to_le32(CPUCP_PACKET_MAX_POWER_SET << CPUCP_PKT_CTL_OPCODE_SHIFT);
|
|
pkt.value = cpu_to_le64(hdev->max_power);
|
|
|
|
rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt), 0, NULL);
|
|
|
|
if (rc)
|
|
dev_err(hdev->dev, "Failed to set max power, error %d\n", rc);
|
|
}
|