mirror of
https://github.com/torvalds/linux.git
synced 2024-11-14 16:12:02 +00:00
6dbbcb1205
A deadlock was possible, when the last reference to the superblock was held due to a background request containing a file reference. Releasing the file would release the vfsmount which in turn would release the superblock. Since sbput_sem is held during the fput() and fuse_put_super() tries to acquire this same semaphore, a deadlock results. The solution is to move the fput() outside the region protected by sbput_sem. Signed-off-by: Miklos Szeredi <miklos@szeredi.hu>
965 lines
24 KiB
C
965 lines
24 KiB
C
/*
|
|
FUSE: Filesystem in Userspace
|
|
Copyright (C) 2001-2006 Miklos Szeredi <miklos@szeredi.hu>
|
|
|
|
This program can be distributed under the terms of the GNU GPL.
|
|
See the file COPYING.
|
|
*/
|
|
|
|
#include "fuse_i.h"
|
|
|
|
#include <linux/init.h>
|
|
#include <linux/module.h>
|
|
#include <linux/poll.h>
|
|
#include <linux/uio.h>
|
|
#include <linux/miscdevice.h>
|
|
#include <linux/pagemap.h>
|
|
#include <linux/file.h>
|
|
#include <linux/slab.h>
|
|
|
|
MODULE_ALIAS_MISCDEV(FUSE_MINOR);
|
|
|
|
static kmem_cache_t *fuse_req_cachep;
|
|
|
|
static struct fuse_conn *fuse_get_conn(struct file *file)
|
|
{
|
|
/*
|
|
* Lockless access is OK, because file->private data is set
|
|
* once during mount and is valid until the file is released.
|
|
*/
|
|
return file->private_data;
|
|
}
|
|
|
|
static void fuse_request_init(struct fuse_req *req)
|
|
{
|
|
memset(req, 0, sizeof(*req));
|
|
INIT_LIST_HEAD(&req->list);
|
|
init_waitqueue_head(&req->waitq);
|
|
atomic_set(&req->count, 1);
|
|
}
|
|
|
|
struct fuse_req *fuse_request_alloc(void)
|
|
{
|
|
struct fuse_req *req = kmem_cache_alloc(fuse_req_cachep, SLAB_KERNEL);
|
|
if (req)
|
|
fuse_request_init(req);
|
|
return req;
|
|
}
|
|
|
|
void fuse_request_free(struct fuse_req *req)
|
|
{
|
|
kmem_cache_free(fuse_req_cachep, req);
|
|
}
|
|
|
|
static void block_sigs(sigset_t *oldset)
|
|
{
|
|
sigset_t mask;
|
|
|
|
siginitsetinv(&mask, sigmask(SIGKILL));
|
|
sigprocmask(SIG_BLOCK, &mask, oldset);
|
|
}
|
|
|
|
static void restore_sigs(sigset_t *oldset)
|
|
{
|
|
sigprocmask(SIG_SETMASK, oldset, NULL);
|
|
}
|
|
|
|
/*
|
|
* Reset request, so that it can be reused
|
|
*
|
|
* The caller must be _very_ careful to make sure, that it is holding
|
|
* the only reference to req
|
|
*/
|
|
void fuse_reset_request(struct fuse_req *req)
|
|
{
|
|
BUG_ON(atomic_read(&req->count) != 1);
|
|
fuse_request_init(req);
|
|
}
|
|
|
|
static void __fuse_get_request(struct fuse_req *req)
|
|
{
|
|
atomic_inc(&req->count);
|
|
}
|
|
|
|
/* Must be called with > 1 refcount */
|
|
static void __fuse_put_request(struct fuse_req *req)
|
|
{
|
|
BUG_ON(atomic_read(&req->count) < 2);
|
|
atomic_dec(&req->count);
|
|
}
|
|
|
|
struct fuse_req *fuse_get_req(struct fuse_conn *fc)
|
|
{
|
|
struct fuse_req *req;
|
|
sigset_t oldset;
|
|
int intr;
|
|
int err;
|
|
|
|
atomic_inc(&fc->num_waiting);
|
|
block_sigs(&oldset);
|
|
intr = wait_event_interruptible(fc->blocked_waitq, !fc->blocked);
|
|
restore_sigs(&oldset);
|
|
err = -EINTR;
|
|
if (intr)
|
|
goto out;
|
|
|
|
req = fuse_request_alloc();
|
|
err = -ENOMEM;
|
|
if (!req)
|
|
goto out;
|
|
|
|
req->in.h.uid = current->fsuid;
|
|
req->in.h.gid = current->fsgid;
|
|
req->in.h.pid = current->pid;
|
|
req->waiting = 1;
|
|
return req;
|
|
|
|
out:
|
|
atomic_dec(&fc->num_waiting);
|
|
return ERR_PTR(err);
|
|
}
|
|
|
|
void fuse_put_request(struct fuse_conn *fc, struct fuse_req *req)
|
|
{
|
|
if (atomic_dec_and_test(&req->count)) {
|
|
if (req->waiting)
|
|
atomic_dec(&fc->num_waiting);
|
|
fuse_request_free(req);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Called with sbput_sem held for read (request_end) or write
|
|
* (fuse_put_super). By the time fuse_put_super() is finished, all
|
|
* inodes belonging to background requests must be released, so the
|
|
* iputs have to be done within the locked region.
|
|
*/
|
|
void fuse_release_background(struct fuse_conn *fc, struct fuse_req *req)
|
|
{
|
|
iput(req->inode);
|
|
iput(req->inode2);
|
|
spin_lock(&fc->lock);
|
|
list_del(&req->bg_entry);
|
|
if (fc->num_background == FUSE_MAX_BACKGROUND) {
|
|
fc->blocked = 0;
|
|
wake_up_all(&fc->blocked_waitq);
|
|
}
|
|
fc->num_background--;
|
|
spin_unlock(&fc->lock);
|
|
}
|
|
|
|
/*
|
|
* This function is called when a request is finished. Either a reply
|
|
* has arrived or it was interrupted (and not yet sent) or some error
|
|
* occurred during communication with userspace, or the device file
|
|
* was closed. In case of a background request the reference to the
|
|
* stored objects are released. The requester thread is woken up (if
|
|
* still waiting), the 'end' callback is called if given, else the
|
|
* reference to the request is released
|
|
*
|
|
* Releasing extra reference for foreground requests must be done
|
|
* within the same locked region as setting state to finished. This
|
|
* is because fuse_reset_request() may be called after request is
|
|
* finished and it must be the sole possessor. If request is
|
|
* interrupted and put in the background, it will return with an error
|
|
* and hence never be reset and reused.
|
|
*
|
|
* Called with fc->lock, unlocks it
|
|
*/
|
|
static void request_end(struct fuse_conn *fc, struct fuse_req *req)
|
|
{
|
|
list_del(&req->list);
|
|
req->state = FUSE_REQ_FINISHED;
|
|
if (!req->background) {
|
|
spin_unlock(&fc->lock);
|
|
wake_up(&req->waitq);
|
|
fuse_put_request(fc, req);
|
|
} else {
|
|
void (*end) (struct fuse_conn *, struct fuse_req *) = req->end;
|
|
req->end = NULL;
|
|
spin_unlock(&fc->lock);
|
|
down_read(&fc->sbput_sem);
|
|
if (fc->mounted)
|
|
fuse_release_background(fc, req);
|
|
up_read(&fc->sbput_sem);
|
|
|
|
/* fput must go outside sbput_sem, otherwise it can deadlock */
|
|
if (req->file)
|
|
fput(req->file);
|
|
|
|
if (end)
|
|
end(fc, req);
|
|
else
|
|
fuse_put_request(fc, req);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Unfortunately request interruption not just solves the deadlock
|
|
* problem, it causes problems too. These stem from the fact, that an
|
|
* interrupted request is continued to be processed in userspace,
|
|
* while all the locks and object references (inode and file) held
|
|
* during the operation are released.
|
|
*
|
|
* To release the locks is exactly why there's a need to interrupt the
|
|
* request, so there's not a lot that can be done about this, except
|
|
* introduce additional locking in userspace.
|
|
*
|
|
* More important is to keep inode and file references until userspace
|
|
* has replied, otherwise FORGET and RELEASE could be sent while the
|
|
* inode/file is still used by the filesystem.
|
|
*
|
|
* For this reason the concept of "background" request is introduced.
|
|
* An interrupted request is backgrounded if it has been already sent
|
|
* to userspace. Backgrounding involves getting an extra reference to
|
|
* inode(s) or file used in the request, and adding the request to
|
|
* fc->background list. When a reply is received for a background
|
|
* request, the object references are released, and the request is
|
|
* removed from the list. If the filesystem is unmounted while there
|
|
* are still background requests, the list is walked and references
|
|
* are released as if a reply was received.
|
|
*
|
|
* There's one more use for a background request. The RELEASE message is
|
|
* always sent as background, since it doesn't return an error or
|
|
* data.
|
|
*/
|
|
static void background_request(struct fuse_conn *fc, struct fuse_req *req)
|
|
{
|
|
req->background = 1;
|
|
list_add(&req->bg_entry, &fc->background);
|
|
fc->num_background++;
|
|
if (fc->num_background == FUSE_MAX_BACKGROUND)
|
|
fc->blocked = 1;
|
|
if (req->inode)
|
|
req->inode = igrab(req->inode);
|
|
if (req->inode2)
|
|
req->inode2 = igrab(req->inode2);
|
|
if (req->file)
|
|
get_file(req->file);
|
|
}
|
|
|
|
/* Called with fc->lock held. Releases, and then reacquires it. */
|
|
static void request_wait_answer(struct fuse_conn *fc, struct fuse_req *req)
|
|
{
|
|
sigset_t oldset;
|
|
|
|
spin_unlock(&fc->lock);
|
|
block_sigs(&oldset);
|
|
wait_event_interruptible(req->waitq, req->state == FUSE_REQ_FINISHED);
|
|
restore_sigs(&oldset);
|
|
spin_lock(&fc->lock);
|
|
if (req->state == FUSE_REQ_FINISHED && !req->interrupted)
|
|
return;
|
|
|
|
if (!req->interrupted) {
|
|
req->out.h.error = -EINTR;
|
|
req->interrupted = 1;
|
|
}
|
|
if (req->locked) {
|
|
/* This is uninterruptible sleep, because data is
|
|
being copied to/from the buffers of req. During
|
|
locked state, there mustn't be any filesystem
|
|
operation (e.g. page fault), since that could lead
|
|
to deadlock */
|
|
spin_unlock(&fc->lock);
|
|
wait_event(req->waitq, !req->locked);
|
|
spin_lock(&fc->lock);
|
|
}
|
|
if (req->state == FUSE_REQ_PENDING) {
|
|
list_del(&req->list);
|
|
__fuse_put_request(req);
|
|
} else if (req->state == FUSE_REQ_SENT)
|
|
background_request(fc, req);
|
|
}
|
|
|
|
static unsigned len_args(unsigned numargs, struct fuse_arg *args)
|
|
{
|
|
unsigned nbytes = 0;
|
|
unsigned i;
|
|
|
|
for (i = 0; i < numargs; i++)
|
|
nbytes += args[i].size;
|
|
|
|
return nbytes;
|
|
}
|
|
|
|
static void queue_request(struct fuse_conn *fc, struct fuse_req *req)
|
|
{
|
|
fc->reqctr++;
|
|
/* zero is special */
|
|
if (fc->reqctr == 0)
|
|
fc->reqctr = 1;
|
|
req->in.h.unique = fc->reqctr;
|
|
req->in.h.len = sizeof(struct fuse_in_header) +
|
|
len_args(req->in.numargs, (struct fuse_arg *) req->in.args);
|
|
list_add_tail(&req->list, &fc->pending);
|
|
req->state = FUSE_REQ_PENDING;
|
|
if (!req->waiting) {
|
|
req->waiting = 1;
|
|
atomic_inc(&fc->num_waiting);
|
|
}
|
|
wake_up(&fc->waitq);
|
|
kill_fasync(&fc->fasync, SIGIO, POLL_IN);
|
|
}
|
|
|
|
/*
|
|
* This can only be interrupted by a SIGKILL
|
|
*/
|
|
void request_send(struct fuse_conn *fc, struct fuse_req *req)
|
|
{
|
|
req->isreply = 1;
|
|
spin_lock(&fc->lock);
|
|
if (!fc->connected)
|
|
req->out.h.error = -ENOTCONN;
|
|
else if (fc->conn_error)
|
|
req->out.h.error = -ECONNREFUSED;
|
|
else {
|
|
queue_request(fc, req);
|
|
/* acquire extra reference, since request is still needed
|
|
after request_end() */
|
|
__fuse_get_request(req);
|
|
|
|
request_wait_answer(fc, req);
|
|
}
|
|
spin_unlock(&fc->lock);
|
|
}
|
|
|
|
static void request_send_nowait(struct fuse_conn *fc, struct fuse_req *req)
|
|
{
|
|
spin_lock(&fc->lock);
|
|
background_request(fc, req);
|
|
if (fc->connected) {
|
|
queue_request(fc, req);
|
|
spin_unlock(&fc->lock);
|
|
} else {
|
|
req->out.h.error = -ENOTCONN;
|
|
request_end(fc, req);
|
|
}
|
|
}
|
|
|
|
void request_send_noreply(struct fuse_conn *fc, struct fuse_req *req)
|
|
{
|
|
req->isreply = 0;
|
|
request_send_nowait(fc, req);
|
|
}
|
|
|
|
void request_send_background(struct fuse_conn *fc, struct fuse_req *req)
|
|
{
|
|
req->isreply = 1;
|
|
request_send_nowait(fc, req);
|
|
}
|
|
|
|
/*
|
|
* Lock the request. Up to the next unlock_request() there mustn't be
|
|
* anything that could cause a page-fault. If the request was already
|
|
* interrupted bail out.
|
|
*/
|
|
static int lock_request(struct fuse_conn *fc, struct fuse_req *req)
|
|
{
|
|
int err = 0;
|
|
if (req) {
|
|
spin_lock(&fc->lock);
|
|
if (req->interrupted)
|
|
err = -ENOENT;
|
|
else
|
|
req->locked = 1;
|
|
spin_unlock(&fc->lock);
|
|
}
|
|
return err;
|
|
}
|
|
|
|
/*
|
|
* Unlock request. If it was interrupted during being locked, the
|
|
* requester thread is currently waiting for it to be unlocked, so
|
|
* wake it up.
|
|
*/
|
|
static void unlock_request(struct fuse_conn *fc, struct fuse_req *req)
|
|
{
|
|
if (req) {
|
|
spin_lock(&fc->lock);
|
|
req->locked = 0;
|
|
if (req->interrupted)
|
|
wake_up(&req->waitq);
|
|
spin_unlock(&fc->lock);
|
|
}
|
|
}
|
|
|
|
struct fuse_copy_state {
|
|
struct fuse_conn *fc;
|
|
int write;
|
|
struct fuse_req *req;
|
|
const struct iovec *iov;
|
|
unsigned long nr_segs;
|
|
unsigned long seglen;
|
|
unsigned long addr;
|
|
struct page *pg;
|
|
void *mapaddr;
|
|
void *buf;
|
|
unsigned len;
|
|
};
|
|
|
|
static void fuse_copy_init(struct fuse_copy_state *cs, struct fuse_conn *fc,
|
|
int write, struct fuse_req *req,
|
|
const struct iovec *iov, unsigned long nr_segs)
|
|
{
|
|
memset(cs, 0, sizeof(*cs));
|
|
cs->fc = fc;
|
|
cs->write = write;
|
|
cs->req = req;
|
|
cs->iov = iov;
|
|
cs->nr_segs = nr_segs;
|
|
}
|
|
|
|
/* Unmap and put previous page of userspace buffer */
|
|
static void fuse_copy_finish(struct fuse_copy_state *cs)
|
|
{
|
|
if (cs->mapaddr) {
|
|
kunmap_atomic(cs->mapaddr, KM_USER0);
|
|
if (cs->write) {
|
|
flush_dcache_page(cs->pg);
|
|
set_page_dirty_lock(cs->pg);
|
|
}
|
|
put_page(cs->pg);
|
|
cs->mapaddr = NULL;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Get another pagefull of userspace buffer, and map it to kernel
|
|
* address space, and lock request
|
|
*/
|
|
static int fuse_copy_fill(struct fuse_copy_state *cs)
|
|
{
|
|
unsigned long offset;
|
|
int err;
|
|
|
|
unlock_request(cs->fc, cs->req);
|
|
fuse_copy_finish(cs);
|
|
if (!cs->seglen) {
|
|
BUG_ON(!cs->nr_segs);
|
|
cs->seglen = cs->iov[0].iov_len;
|
|
cs->addr = (unsigned long) cs->iov[0].iov_base;
|
|
cs->iov ++;
|
|
cs->nr_segs --;
|
|
}
|
|
down_read(¤t->mm->mmap_sem);
|
|
err = get_user_pages(current, current->mm, cs->addr, 1, cs->write, 0,
|
|
&cs->pg, NULL);
|
|
up_read(¤t->mm->mmap_sem);
|
|
if (err < 0)
|
|
return err;
|
|
BUG_ON(err != 1);
|
|
offset = cs->addr % PAGE_SIZE;
|
|
cs->mapaddr = kmap_atomic(cs->pg, KM_USER0);
|
|
cs->buf = cs->mapaddr + offset;
|
|
cs->len = min(PAGE_SIZE - offset, cs->seglen);
|
|
cs->seglen -= cs->len;
|
|
cs->addr += cs->len;
|
|
|
|
return lock_request(cs->fc, cs->req);
|
|
}
|
|
|
|
/* Do as much copy to/from userspace buffer as we can */
|
|
static int fuse_copy_do(struct fuse_copy_state *cs, void **val, unsigned *size)
|
|
{
|
|
unsigned ncpy = min(*size, cs->len);
|
|
if (val) {
|
|
if (cs->write)
|
|
memcpy(cs->buf, *val, ncpy);
|
|
else
|
|
memcpy(*val, cs->buf, ncpy);
|
|
*val += ncpy;
|
|
}
|
|
*size -= ncpy;
|
|
cs->len -= ncpy;
|
|
cs->buf += ncpy;
|
|
return ncpy;
|
|
}
|
|
|
|
/*
|
|
* Copy a page in the request to/from the userspace buffer. Must be
|
|
* done atomically
|
|
*/
|
|
static int fuse_copy_page(struct fuse_copy_state *cs, struct page *page,
|
|
unsigned offset, unsigned count, int zeroing)
|
|
{
|
|
if (page && zeroing && count < PAGE_SIZE) {
|
|
void *mapaddr = kmap_atomic(page, KM_USER1);
|
|
memset(mapaddr, 0, PAGE_SIZE);
|
|
kunmap_atomic(mapaddr, KM_USER1);
|
|
}
|
|
while (count) {
|
|
int err;
|
|
if (!cs->len && (err = fuse_copy_fill(cs)))
|
|
return err;
|
|
if (page) {
|
|
void *mapaddr = kmap_atomic(page, KM_USER1);
|
|
void *buf = mapaddr + offset;
|
|
offset += fuse_copy_do(cs, &buf, &count);
|
|
kunmap_atomic(mapaddr, KM_USER1);
|
|
} else
|
|
offset += fuse_copy_do(cs, NULL, &count);
|
|
}
|
|
if (page && !cs->write)
|
|
flush_dcache_page(page);
|
|
return 0;
|
|
}
|
|
|
|
/* Copy pages in the request to/from userspace buffer */
|
|
static int fuse_copy_pages(struct fuse_copy_state *cs, unsigned nbytes,
|
|
int zeroing)
|
|
{
|
|
unsigned i;
|
|
struct fuse_req *req = cs->req;
|
|
unsigned offset = req->page_offset;
|
|
unsigned count = min(nbytes, (unsigned) PAGE_SIZE - offset);
|
|
|
|
for (i = 0; i < req->num_pages && (nbytes || zeroing); i++) {
|
|
struct page *page = req->pages[i];
|
|
int err = fuse_copy_page(cs, page, offset, count, zeroing);
|
|
if (err)
|
|
return err;
|
|
|
|
nbytes -= count;
|
|
count = min(nbytes, (unsigned) PAGE_SIZE);
|
|
offset = 0;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* Copy a single argument in the request to/from userspace buffer */
|
|
static int fuse_copy_one(struct fuse_copy_state *cs, void *val, unsigned size)
|
|
{
|
|
while (size) {
|
|
int err;
|
|
if (!cs->len && (err = fuse_copy_fill(cs)))
|
|
return err;
|
|
fuse_copy_do(cs, &val, &size);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* Copy request arguments to/from userspace buffer */
|
|
static int fuse_copy_args(struct fuse_copy_state *cs, unsigned numargs,
|
|
unsigned argpages, struct fuse_arg *args,
|
|
int zeroing)
|
|
{
|
|
int err = 0;
|
|
unsigned i;
|
|
|
|
for (i = 0; !err && i < numargs; i++) {
|
|
struct fuse_arg *arg = &args[i];
|
|
if (i == numargs - 1 && argpages)
|
|
err = fuse_copy_pages(cs, arg->size, zeroing);
|
|
else
|
|
err = fuse_copy_one(cs, arg->value, arg->size);
|
|
}
|
|
return err;
|
|
}
|
|
|
|
/* Wait until a request is available on the pending list */
|
|
static void request_wait(struct fuse_conn *fc)
|
|
{
|
|
DECLARE_WAITQUEUE(wait, current);
|
|
|
|
add_wait_queue_exclusive(&fc->waitq, &wait);
|
|
while (fc->connected && list_empty(&fc->pending)) {
|
|
set_current_state(TASK_INTERRUPTIBLE);
|
|
if (signal_pending(current))
|
|
break;
|
|
|
|
spin_unlock(&fc->lock);
|
|
schedule();
|
|
spin_lock(&fc->lock);
|
|
}
|
|
set_current_state(TASK_RUNNING);
|
|
remove_wait_queue(&fc->waitq, &wait);
|
|
}
|
|
|
|
/*
|
|
* Read a single request into the userspace filesystem's buffer. This
|
|
* function waits until a request is available, then removes it from
|
|
* the pending list and copies request data to userspace buffer. If
|
|
* no reply is needed (FORGET) or request has been interrupted or
|
|
* there was an error during the copying then it's finished by calling
|
|
* request_end(). Otherwise add it to the processing list, and set
|
|
* the 'sent' flag.
|
|
*/
|
|
static ssize_t fuse_dev_readv(struct file *file, const struct iovec *iov,
|
|
unsigned long nr_segs, loff_t *off)
|
|
{
|
|
int err;
|
|
struct fuse_req *req;
|
|
struct fuse_in *in;
|
|
struct fuse_copy_state cs;
|
|
unsigned reqsize;
|
|
struct fuse_conn *fc = fuse_get_conn(file);
|
|
if (!fc)
|
|
return -EPERM;
|
|
|
|
restart:
|
|
spin_lock(&fc->lock);
|
|
err = -EAGAIN;
|
|
if ((file->f_flags & O_NONBLOCK) && fc->connected &&
|
|
list_empty(&fc->pending))
|
|
goto err_unlock;
|
|
|
|
request_wait(fc);
|
|
err = -ENODEV;
|
|
if (!fc->connected)
|
|
goto err_unlock;
|
|
err = -ERESTARTSYS;
|
|
if (list_empty(&fc->pending))
|
|
goto err_unlock;
|
|
|
|
req = list_entry(fc->pending.next, struct fuse_req, list);
|
|
req->state = FUSE_REQ_READING;
|
|
list_move(&req->list, &fc->io);
|
|
|
|
in = &req->in;
|
|
reqsize = in->h.len;
|
|
/* If request is too large, reply with an error and restart the read */
|
|
if (iov_length(iov, nr_segs) < reqsize) {
|
|
req->out.h.error = -EIO;
|
|
/* SETXATTR is special, since it may contain too large data */
|
|
if (in->h.opcode == FUSE_SETXATTR)
|
|
req->out.h.error = -E2BIG;
|
|
request_end(fc, req);
|
|
goto restart;
|
|
}
|
|
spin_unlock(&fc->lock);
|
|
fuse_copy_init(&cs, fc, 1, req, iov, nr_segs);
|
|
err = fuse_copy_one(&cs, &in->h, sizeof(in->h));
|
|
if (!err)
|
|
err = fuse_copy_args(&cs, in->numargs, in->argpages,
|
|
(struct fuse_arg *) in->args, 0);
|
|
fuse_copy_finish(&cs);
|
|
spin_lock(&fc->lock);
|
|
req->locked = 0;
|
|
if (!err && req->interrupted)
|
|
err = -ENOENT;
|
|
if (err) {
|
|
if (!req->interrupted)
|
|
req->out.h.error = -EIO;
|
|
request_end(fc, req);
|
|
return err;
|
|
}
|
|
if (!req->isreply)
|
|
request_end(fc, req);
|
|
else {
|
|
req->state = FUSE_REQ_SENT;
|
|
list_move_tail(&req->list, &fc->processing);
|
|
spin_unlock(&fc->lock);
|
|
}
|
|
return reqsize;
|
|
|
|
err_unlock:
|
|
spin_unlock(&fc->lock);
|
|
return err;
|
|
}
|
|
|
|
static ssize_t fuse_dev_read(struct file *file, char __user *buf,
|
|
size_t nbytes, loff_t *off)
|
|
{
|
|
struct iovec iov;
|
|
iov.iov_len = nbytes;
|
|
iov.iov_base = buf;
|
|
return fuse_dev_readv(file, &iov, 1, off);
|
|
}
|
|
|
|
/* Look up request on processing list by unique ID */
|
|
static struct fuse_req *request_find(struct fuse_conn *fc, u64 unique)
|
|
{
|
|
struct list_head *entry;
|
|
|
|
list_for_each(entry, &fc->processing) {
|
|
struct fuse_req *req;
|
|
req = list_entry(entry, struct fuse_req, list);
|
|
if (req->in.h.unique == unique)
|
|
return req;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
static int copy_out_args(struct fuse_copy_state *cs, struct fuse_out *out,
|
|
unsigned nbytes)
|
|
{
|
|
unsigned reqsize = sizeof(struct fuse_out_header);
|
|
|
|
if (out->h.error)
|
|
return nbytes != reqsize ? -EINVAL : 0;
|
|
|
|
reqsize += len_args(out->numargs, out->args);
|
|
|
|
if (reqsize < nbytes || (reqsize > nbytes && !out->argvar))
|
|
return -EINVAL;
|
|
else if (reqsize > nbytes) {
|
|
struct fuse_arg *lastarg = &out->args[out->numargs-1];
|
|
unsigned diffsize = reqsize - nbytes;
|
|
if (diffsize > lastarg->size)
|
|
return -EINVAL;
|
|
lastarg->size -= diffsize;
|
|
}
|
|
return fuse_copy_args(cs, out->numargs, out->argpages, out->args,
|
|
out->page_zeroing);
|
|
}
|
|
|
|
/*
|
|
* Write a single reply to a request. First the header is copied from
|
|
* the write buffer. The request is then searched on the processing
|
|
* list by the unique ID found in the header. If found, then remove
|
|
* it from the list and copy the rest of the buffer to the request.
|
|
* The request is finished by calling request_end()
|
|
*/
|
|
static ssize_t fuse_dev_writev(struct file *file, const struct iovec *iov,
|
|
unsigned long nr_segs, loff_t *off)
|
|
{
|
|
int err;
|
|
unsigned nbytes = iov_length(iov, nr_segs);
|
|
struct fuse_req *req;
|
|
struct fuse_out_header oh;
|
|
struct fuse_copy_state cs;
|
|
struct fuse_conn *fc = fuse_get_conn(file);
|
|
if (!fc)
|
|
return -EPERM;
|
|
|
|
fuse_copy_init(&cs, fc, 0, NULL, iov, nr_segs);
|
|
if (nbytes < sizeof(struct fuse_out_header))
|
|
return -EINVAL;
|
|
|
|
err = fuse_copy_one(&cs, &oh, sizeof(oh));
|
|
if (err)
|
|
goto err_finish;
|
|
err = -EINVAL;
|
|
if (!oh.unique || oh.error <= -1000 || oh.error > 0 ||
|
|
oh.len != nbytes)
|
|
goto err_finish;
|
|
|
|
spin_lock(&fc->lock);
|
|
err = -ENOENT;
|
|
if (!fc->connected)
|
|
goto err_unlock;
|
|
|
|
req = request_find(fc, oh.unique);
|
|
err = -EINVAL;
|
|
if (!req)
|
|
goto err_unlock;
|
|
|
|
if (req->interrupted) {
|
|
spin_unlock(&fc->lock);
|
|
fuse_copy_finish(&cs);
|
|
spin_lock(&fc->lock);
|
|
request_end(fc, req);
|
|
return -ENOENT;
|
|
}
|
|
list_move(&req->list, &fc->io);
|
|
req->out.h = oh;
|
|
req->locked = 1;
|
|
cs.req = req;
|
|
spin_unlock(&fc->lock);
|
|
|
|
err = copy_out_args(&cs, &req->out, nbytes);
|
|
fuse_copy_finish(&cs);
|
|
|
|
spin_lock(&fc->lock);
|
|
req->locked = 0;
|
|
if (!err) {
|
|
if (req->interrupted)
|
|
err = -ENOENT;
|
|
} else if (!req->interrupted)
|
|
req->out.h.error = -EIO;
|
|
request_end(fc, req);
|
|
|
|
return err ? err : nbytes;
|
|
|
|
err_unlock:
|
|
spin_unlock(&fc->lock);
|
|
err_finish:
|
|
fuse_copy_finish(&cs);
|
|
return err;
|
|
}
|
|
|
|
static ssize_t fuse_dev_write(struct file *file, const char __user *buf,
|
|
size_t nbytes, loff_t *off)
|
|
{
|
|
struct iovec iov;
|
|
iov.iov_len = nbytes;
|
|
iov.iov_base = (char __user *) buf;
|
|
return fuse_dev_writev(file, &iov, 1, off);
|
|
}
|
|
|
|
static unsigned fuse_dev_poll(struct file *file, poll_table *wait)
|
|
{
|
|
unsigned mask = POLLOUT | POLLWRNORM;
|
|
struct fuse_conn *fc = fuse_get_conn(file);
|
|
if (!fc)
|
|
return POLLERR;
|
|
|
|
poll_wait(file, &fc->waitq, wait);
|
|
|
|
spin_lock(&fc->lock);
|
|
if (!fc->connected)
|
|
mask = POLLERR;
|
|
else if (!list_empty(&fc->pending))
|
|
mask |= POLLIN | POLLRDNORM;
|
|
spin_unlock(&fc->lock);
|
|
|
|
return mask;
|
|
}
|
|
|
|
/*
|
|
* Abort all requests on the given list (pending or processing)
|
|
*
|
|
* This function releases and reacquires fc->lock
|
|
*/
|
|
static void end_requests(struct fuse_conn *fc, struct list_head *head)
|
|
{
|
|
while (!list_empty(head)) {
|
|
struct fuse_req *req;
|
|
req = list_entry(head->next, struct fuse_req, list);
|
|
req->out.h.error = -ECONNABORTED;
|
|
request_end(fc, req);
|
|
spin_lock(&fc->lock);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Abort requests under I/O
|
|
*
|
|
* The requests are set to interrupted and finished, and the request
|
|
* waiter is woken up. This will make request_wait_answer() wait
|
|
* until the request is unlocked and then return.
|
|
*
|
|
* If the request is asynchronous, then the end function needs to be
|
|
* called after waiting for the request to be unlocked (if it was
|
|
* locked).
|
|
*/
|
|
static void end_io_requests(struct fuse_conn *fc)
|
|
{
|
|
while (!list_empty(&fc->io)) {
|
|
struct fuse_req *req =
|
|
list_entry(fc->io.next, struct fuse_req, list);
|
|
void (*end) (struct fuse_conn *, struct fuse_req *) = req->end;
|
|
|
|
req->interrupted = 1;
|
|
req->out.h.error = -ECONNABORTED;
|
|
req->state = FUSE_REQ_FINISHED;
|
|
list_del_init(&req->list);
|
|
wake_up(&req->waitq);
|
|
if (end) {
|
|
req->end = NULL;
|
|
/* The end function will consume this reference */
|
|
__fuse_get_request(req);
|
|
spin_unlock(&fc->lock);
|
|
wait_event(req->waitq, !req->locked);
|
|
end(fc, req);
|
|
spin_lock(&fc->lock);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Abort all requests.
|
|
*
|
|
* Emergency exit in case of a malicious or accidental deadlock, or
|
|
* just a hung filesystem.
|
|
*
|
|
* The same effect is usually achievable through killing the
|
|
* filesystem daemon and all users of the filesystem. The exception
|
|
* is the combination of an asynchronous request and the tricky
|
|
* deadlock (see Documentation/filesystems/fuse.txt).
|
|
*
|
|
* During the aborting, progression of requests from the pending and
|
|
* processing lists onto the io list, and progression of new requests
|
|
* onto the pending list is prevented by req->connected being false.
|
|
*
|
|
* Progression of requests under I/O to the processing list is
|
|
* prevented by the req->interrupted flag being true for these
|
|
* requests. For this reason requests on the io list must be aborted
|
|
* first.
|
|
*/
|
|
void fuse_abort_conn(struct fuse_conn *fc)
|
|
{
|
|
spin_lock(&fc->lock);
|
|
if (fc->connected) {
|
|
fc->connected = 0;
|
|
end_io_requests(fc);
|
|
end_requests(fc, &fc->pending);
|
|
end_requests(fc, &fc->processing);
|
|
wake_up_all(&fc->waitq);
|
|
kill_fasync(&fc->fasync, SIGIO, POLL_IN);
|
|
}
|
|
spin_unlock(&fc->lock);
|
|
}
|
|
|
|
static int fuse_dev_release(struct inode *inode, struct file *file)
|
|
{
|
|
struct fuse_conn *fc = fuse_get_conn(file);
|
|
if (fc) {
|
|
spin_lock(&fc->lock);
|
|
fc->connected = 0;
|
|
end_requests(fc, &fc->pending);
|
|
end_requests(fc, &fc->processing);
|
|
spin_unlock(&fc->lock);
|
|
fasync_helper(-1, file, 0, &fc->fasync);
|
|
kobject_put(&fc->kobj);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int fuse_dev_fasync(int fd, struct file *file, int on)
|
|
{
|
|
struct fuse_conn *fc = fuse_get_conn(file);
|
|
if (!fc)
|
|
return -EPERM;
|
|
|
|
/* No locking - fasync_helper does its own locking */
|
|
return fasync_helper(fd, file, on, &fc->fasync);
|
|
}
|
|
|
|
const struct file_operations fuse_dev_operations = {
|
|
.owner = THIS_MODULE,
|
|
.llseek = no_llseek,
|
|
.read = fuse_dev_read,
|
|
.readv = fuse_dev_readv,
|
|
.write = fuse_dev_write,
|
|
.writev = fuse_dev_writev,
|
|
.poll = fuse_dev_poll,
|
|
.release = fuse_dev_release,
|
|
.fasync = fuse_dev_fasync,
|
|
};
|
|
|
|
static struct miscdevice fuse_miscdevice = {
|
|
.minor = FUSE_MINOR,
|
|
.name = "fuse",
|
|
.fops = &fuse_dev_operations,
|
|
};
|
|
|
|
int __init fuse_dev_init(void)
|
|
{
|
|
int err = -ENOMEM;
|
|
fuse_req_cachep = kmem_cache_create("fuse_request",
|
|
sizeof(struct fuse_req),
|
|
0, 0, NULL, NULL);
|
|
if (!fuse_req_cachep)
|
|
goto out;
|
|
|
|
err = misc_register(&fuse_miscdevice);
|
|
if (err)
|
|
goto out_cache_clean;
|
|
|
|
return 0;
|
|
|
|
out_cache_clean:
|
|
kmem_cache_destroy(fuse_req_cachep);
|
|
out:
|
|
return err;
|
|
}
|
|
|
|
void fuse_dev_cleanup(void)
|
|
{
|
|
misc_deregister(&fuse_miscdevice);
|
|
kmem_cache_destroy(fuse_req_cachep);
|
|
}
|