linux/drivers/crypto/sa2ul.c
Colin Ian King 854b773719 crypto: sa2ul - Fix memory leak of rxd
There are two error return paths that are not freeing rxd and causing
memory leaks.  Fix these.

Addresses-Coverity: ("Resource leak")
Fixes: 00c9211f60 ("crypto: sa2ul - Fix DMA mapping API usage")
Signed-off-by: Colin Ian King <colin.king@canonical.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2021-04-09 17:45:13 +10:00

2443 lines
65 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* K3 SA2UL crypto accelerator driver
*
* Copyright (C) 2018-2020 Texas Instruments Incorporated - http://www.ti.com
*
* Authors: Keerthy
* Vitaly Andrianov
* Tero Kristo
*/
#include <linux/clk.h>
#include <linux/dma-mapping.h>
#include <linux/dmaengine.h>
#include <linux/dmapool.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/of_device.h>
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>
#include <crypto/aes.h>
#include <crypto/authenc.h>
#include <crypto/des.h>
#include <crypto/internal/aead.h>
#include <crypto/internal/hash.h>
#include <crypto/internal/skcipher.h>
#include <crypto/scatterwalk.h>
#include <crypto/sha1.h>
#include <crypto/sha2.h>
#include "sa2ul.h"
/* Byte offset for key in encryption security context */
#define SC_ENC_KEY_OFFSET (1 + 27 + 4)
/* Byte offset for Aux-1 in encryption security context */
#define SC_ENC_AUX1_OFFSET (1 + 27 + 4 + 32)
#define SA_CMDL_UPD_ENC 0x0001
#define SA_CMDL_UPD_AUTH 0x0002
#define SA_CMDL_UPD_ENC_IV 0x0004
#define SA_CMDL_UPD_AUTH_IV 0x0008
#define SA_CMDL_UPD_AUX_KEY 0x0010
#define SA_AUTH_SUBKEY_LEN 16
#define SA_CMDL_PAYLOAD_LENGTH_MASK 0xFFFF
#define SA_CMDL_SOP_BYPASS_LEN_MASK 0xFF000000
#define MODE_CONTROL_BYTES 27
#define SA_HASH_PROCESSING 0
#define SA_CRYPTO_PROCESSING 0
#define SA_UPLOAD_HASH_TO_TLR BIT(6)
#define SA_SW0_FLAGS_MASK 0xF0000
#define SA_SW0_CMDL_INFO_MASK 0x1F00000
#define SA_SW0_CMDL_PRESENT BIT(4)
#define SA_SW0_ENG_ID_MASK 0x3E000000
#define SA_SW0_DEST_INFO_PRESENT BIT(30)
#define SA_SW2_EGRESS_LENGTH 0xFF000000
#define SA_BASIC_HASH 0x10
#define SHA256_DIGEST_WORDS 8
/* Make 32-bit word from 4 bytes */
#define SA_MK_U32(b0, b1, b2, b3) (((b0) << 24) | ((b1) << 16) | \
((b2) << 8) | (b3))
/* size of SCCTL structure in bytes */
#define SA_SCCTL_SZ 16
/* Max Authentication tag size */
#define SA_MAX_AUTH_TAG_SZ 64
#define PRIV_ID 0x1
#define PRIV 0x1
static struct device *sa_k3_dev;
/**
* struct sa_cmdl_cfg - Command label configuration descriptor
* @aalg: authentication algorithm ID
* @enc_eng_id: Encryption Engine ID supported by the SA hardware
* @auth_eng_id: Authentication Engine ID
* @iv_size: Initialization Vector size
* @akey: Authentication key
* @akey_len: Authentication key length
* @enc: True, if this is an encode request
*/
struct sa_cmdl_cfg {
int aalg;
u8 enc_eng_id;
u8 auth_eng_id;
u8 iv_size;
const u8 *akey;
u16 akey_len;
bool enc;
};
/**
* struct algo_data - Crypto algorithm specific data
* @enc_eng: Encryption engine info structure
* @auth_eng: Authentication engine info structure
* @auth_ctrl: Authentication control word
* @hash_size: Size of digest
* @iv_idx: iv index in psdata
* @iv_out_size: iv out size
* @ealg_id: Encryption Algorithm ID
* @aalg_id: Authentication algorithm ID
* @mci_enc: Mode Control Instruction for Encryption algorithm
* @mci_dec: Mode Control Instruction for Decryption
* @inv_key: Whether the encryption algorithm demands key inversion
* @ctx: Pointer to the algorithm context
* @keyed_mac: Whether the authentication algorithm has key
* @prep_iopad: Function pointer to generate intermediate ipad/opad
*/
struct algo_data {
struct sa_eng_info enc_eng;
struct sa_eng_info auth_eng;
u8 auth_ctrl;
u8 hash_size;
u8 iv_idx;
u8 iv_out_size;
u8 ealg_id;
u8 aalg_id;
u8 *mci_enc;
u8 *mci_dec;
bool inv_key;
struct sa_tfm_ctx *ctx;
bool keyed_mac;
void (*prep_iopad)(struct algo_data *algo, const u8 *key,
u16 key_sz, __be32 *ipad, __be32 *opad);
};
/**
* struct sa_alg_tmpl: A generic template encompassing crypto/aead algorithms
* @type: Type of the crypto algorithm.
* @alg: Union of crypto algorithm definitions.
* @registered: Flag indicating if the crypto algorithm is already registered
*/
struct sa_alg_tmpl {
u32 type; /* CRYPTO_ALG_TYPE from <linux/crypto.h> */
union {
struct skcipher_alg skcipher;
struct ahash_alg ahash;
struct aead_alg aead;
} alg;
bool registered;
};
/**
* struct sa_mapped_sg: scatterlist information for tx and rx
* @mapped: Set to true if the @sgt is mapped
* @dir: mapping direction used for @sgt
* @split_sg: Set if the sg is split and needs to be freed up
* @static_sg: Static scatterlist entry for overriding data
* @sgt: scatterlist table for DMA API use
*/
struct sa_mapped_sg {
bool mapped;
enum dma_data_direction dir;
struct scatterlist static_sg;
struct scatterlist *split_sg;
struct sg_table sgt;
};
/**
* struct sa_rx_data: RX Packet miscellaneous data place holder
* @req: crypto request data pointer
* @ddev: pointer to the DMA device
* @tx_in: dma_async_tx_descriptor pointer for rx channel
* @mapped_sg: Information on tx (0) and rx (1) scatterlist DMA mapping
* @enc: Flag indicating either encryption or decryption
* @enc_iv_size: Initialisation vector size
* @iv_idx: Initialisation vector index
*/
struct sa_rx_data {
void *req;
struct device *ddev;
struct dma_async_tx_descriptor *tx_in;
struct sa_mapped_sg mapped_sg[2];
u8 enc;
u8 enc_iv_size;
u8 iv_idx;
};
/**
* struct sa_req: SA request definition
* @dev: device for the request
* @size: total data to the xmitted via DMA
* @enc_offset: offset of cipher data
* @enc_size: data to be passed to cipher engine
* @enc_iv: cipher IV
* @auth_offset: offset of the authentication data
* @auth_size: size of the authentication data
* @auth_iv: authentication IV
* @type: algorithm type for the request
* @cmdl: command label pointer
* @base: pointer to the base request
* @ctx: pointer to the algorithm context data
* @enc: true if this is an encode request
* @src: source data
* @dst: destination data
* @callback: DMA callback for the request
* @mdata_size: metadata size passed to DMA
*/
struct sa_req {
struct device *dev;
u16 size;
u8 enc_offset;
u16 enc_size;
u8 *enc_iv;
u8 auth_offset;
u16 auth_size;
u8 *auth_iv;
u32 type;
u32 *cmdl;
struct crypto_async_request *base;
struct sa_tfm_ctx *ctx;
bool enc;
struct scatterlist *src;
struct scatterlist *dst;
dma_async_tx_callback callback;
u16 mdata_size;
};
/*
* Mode Control Instructions for various Key lengths 128, 192, 256
* For CBC (Cipher Block Chaining) mode for encryption
*/
static u8 mci_cbc_enc_array[3][MODE_CONTROL_BYTES] = {
{ 0x61, 0x00, 0x00, 0x18, 0x88, 0x0a, 0xaa, 0x4b, 0x7e, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
{ 0x61, 0x00, 0x00, 0x18, 0x88, 0x4a, 0xaa, 0x4b, 0x7e, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
{ 0x61, 0x00, 0x00, 0x18, 0x88, 0x8a, 0xaa, 0x4b, 0x7e, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
};
/*
* Mode Control Instructions for various Key lengths 128, 192, 256
* For CBC (Cipher Block Chaining) mode for decryption
*/
static u8 mci_cbc_dec_array[3][MODE_CONTROL_BYTES] = {
{ 0x71, 0x00, 0x00, 0x80, 0x8a, 0xca, 0x98, 0xf4, 0x40, 0xc0,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
{ 0x71, 0x00, 0x00, 0x84, 0x8a, 0xca, 0x98, 0xf4, 0x40, 0xc0,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
{ 0x71, 0x00, 0x00, 0x88, 0x8a, 0xca, 0x98, 0xf4, 0x40, 0xc0,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
};
/*
* Mode Control Instructions for various Key lengths 128, 192, 256
* For CBC (Cipher Block Chaining) mode for encryption
*/
static u8 mci_cbc_enc_no_iv_array[3][MODE_CONTROL_BYTES] = {
{ 0x21, 0x00, 0x00, 0x18, 0x88, 0x0a, 0xaa, 0x4b, 0x7e, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
{ 0x21, 0x00, 0x00, 0x18, 0x88, 0x4a, 0xaa, 0x4b, 0x7e, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
{ 0x21, 0x00, 0x00, 0x18, 0x88, 0x8a, 0xaa, 0x4b, 0x7e, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
};
/*
* Mode Control Instructions for various Key lengths 128, 192, 256
* For CBC (Cipher Block Chaining) mode for decryption
*/
static u8 mci_cbc_dec_no_iv_array[3][MODE_CONTROL_BYTES] = {
{ 0x31, 0x00, 0x00, 0x80, 0x8a, 0xca, 0x98, 0xf4, 0x40, 0xc0,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
{ 0x31, 0x00, 0x00, 0x84, 0x8a, 0xca, 0x98, 0xf4, 0x40, 0xc0,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
{ 0x31, 0x00, 0x00, 0x88, 0x8a, 0xca, 0x98, 0xf4, 0x40, 0xc0,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
};
/*
* Mode Control Instructions for various Key lengths 128, 192, 256
* For ECB (Electronic Code Book) mode for encryption
*/
static u8 mci_ecb_enc_array[3][27] = {
{ 0x21, 0x00, 0x00, 0x80, 0x8a, 0x04, 0xb7, 0x90, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
{ 0x21, 0x00, 0x00, 0x84, 0x8a, 0x04, 0xb7, 0x90, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
{ 0x21, 0x00, 0x00, 0x88, 0x8a, 0x04, 0xb7, 0x90, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
};
/*
* Mode Control Instructions for various Key lengths 128, 192, 256
* For ECB (Electronic Code Book) mode for decryption
*/
static u8 mci_ecb_dec_array[3][27] = {
{ 0x31, 0x00, 0x00, 0x80, 0x8a, 0x04, 0xb7, 0x90, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
{ 0x31, 0x00, 0x00, 0x84, 0x8a, 0x04, 0xb7, 0x90, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
{ 0x31, 0x00, 0x00, 0x88, 0x8a, 0x04, 0xb7, 0x90, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
};
/*
* Mode Control Instructions for DES algorithm
* For CBC (Cipher Block Chaining) mode and ECB mode
* encryption and for decryption respectively
*/
static u8 mci_cbc_3des_enc_array[MODE_CONTROL_BYTES] = {
0x60, 0x00, 0x00, 0x18, 0x88, 0x52, 0xaa, 0x4b, 0x7e, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00,
};
static u8 mci_cbc_3des_dec_array[MODE_CONTROL_BYTES] = {
0x70, 0x00, 0x00, 0x85, 0x0a, 0xca, 0x98, 0xf4, 0x40, 0xc0, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00,
};
static u8 mci_ecb_3des_enc_array[MODE_CONTROL_BYTES] = {
0x20, 0x00, 0x00, 0x85, 0x0a, 0x04, 0xb7, 0x90, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00,
};
static u8 mci_ecb_3des_dec_array[MODE_CONTROL_BYTES] = {
0x30, 0x00, 0x00, 0x85, 0x0a, 0x04, 0xb7, 0x90, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00,
};
/*
* Perform 16 byte or 128 bit swizzling
* The SA2UL Expects the security context to
* be in little Endian and the bus width is 128 bits or 16 bytes
* Hence swap 16 bytes at a time from higher to lower address
*/
static void sa_swiz_128(u8 *in, u16 len)
{
u8 data[16];
int i, j;
for (i = 0; i < len; i += 16) {
memcpy(data, &in[i], 16);
for (j = 0; j < 16; j++)
in[i + j] = data[15 - j];
}
}
/* Prepare the ipad and opad from key as per SHA algorithm step 1*/
static void prepare_kipad(u8 *k_ipad, const u8 *key, u16 key_sz)
{
int i;
for (i = 0; i < key_sz; i++)
k_ipad[i] = key[i] ^ 0x36;
/* Instead of XOR with 0 */
for (; i < SHA1_BLOCK_SIZE; i++)
k_ipad[i] = 0x36;
}
static void prepare_kopad(u8 *k_opad, const u8 *key, u16 key_sz)
{
int i;
for (i = 0; i < key_sz; i++)
k_opad[i] = key[i] ^ 0x5c;
/* Instead of XOR with 0 */
for (; i < SHA1_BLOCK_SIZE; i++)
k_opad[i] = 0x5c;
}
static void sa_export_shash(void *state, struct shash_desc *hash,
int digest_size, __be32 *out)
{
struct sha1_state *sha1;
struct sha256_state *sha256;
u32 *result;
switch (digest_size) {
case SHA1_DIGEST_SIZE:
sha1 = state;
result = sha1->state;
break;
case SHA256_DIGEST_SIZE:
sha256 = state;
result = sha256->state;
break;
default:
dev_err(sa_k3_dev, "%s: bad digest_size=%d\n", __func__,
digest_size);
return;
}
crypto_shash_export(hash, state);
cpu_to_be32_array(out, result, digest_size / 4);
}
static void sa_prepare_iopads(struct algo_data *data, const u8 *key,
u16 key_sz, __be32 *ipad, __be32 *opad)
{
SHASH_DESC_ON_STACK(shash, data->ctx->shash);
int block_size = crypto_shash_blocksize(data->ctx->shash);
int digest_size = crypto_shash_digestsize(data->ctx->shash);
union {
struct sha1_state sha1;
struct sha256_state sha256;
u8 k_pad[SHA1_BLOCK_SIZE];
} sha;
shash->tfm = data->ctx->shash;
prepare_kipad(sha.k_pad, key, key_sz);
crypto_shash_init(shash);
crypto_shash_update(shash, sha.k_pad, block_size);
sa_export_shash(&sha, shash, digest_size, ipad);
prepare_kopad(sha.k_pad, key, key_sz);
crypto_shash_init(shash);
crypto_shash_update(shash, sha.k_pad, block_size);
sa_export_shash(&sha, shash, digest_size, opad);
memzero_explicit(&sha, sizeof(sha));
}
/* Derive the inverse key used in AES-CBC decryption operation */
static inline int sa_aes_inv_key(u8 *inv_key, const u8 *key, u16 key_sz)
{
struct crypto_aes_ctx ctx;
int key_pos;
if (aes_expandkey(&ctx, key, key_sz)) {
dev_err(sa_k3_dev, "%s: bad key len(%d)\n", __func__, key_sz);
return -EINVAL;
}
/* work around to get the right inverse for AES_KEYSIZE_192 size keys */
if (key_sz == AES_KEYSIZE_192) {
ctx.key_enc[52] = ctx.key_enc[51] ^ ctx.key_enc[46];
ctx.key_enc[53] = ctx.key_enc[52] ^ ctx.key_enc[47];
}
/* Based crypto_aes_expand_key logic */
switch (key_sz) {
case AES_KEYSIZE_128:
case AES_KEYSIZE_192:
key_pos = key_sz + 24;
break;
case AES_KEYSIZE_256:
key_pos = key_sz + 24 - 4;
break;
default:
dev_err(sa_k3_dev, "%s: bad key len(%d)\n", __func__, key_sz);
return -EINVAL;
}
memcpy(inv_key, &ctx.key_enc[key_pos], key_sz);
return 0;
}
/* Set Security context for the encryption engine */
static int sa_set_sc_enc(struct algo_data *ad, const u8 *key, u16 key_sz,
u8 enc, u8 *sc_buf)
{
const u8 *mci = NULL;
/* Set Encryption mode selector to crypto processing */
sc_buf[0] = SA_CRYPTO_PROCESSING;
if (enc)
mci = ad->mci_enc;
else
mci = ad->mci_dec;
/* Set the mode control instructions in security context */
if (mci)
memcpy(&sc_buf[1], mci, MODE_CONTROL_BYTES);
/* For AES-CBC decryption get the inverse key */
if (ad->inv_key && !enc) {
if (sa_aes_inv_key(&sc_buf[SC_ENC_KEY_OFFSET], key, key_sz))
return -EINVAL;
/* For all other cases: key is used */
} else {
memcpy(&sc_buf[SC_ENC_KEY_OFFSET], key, key_sz);
}
return 0;
}
/* Set Security context for the authentication engine */
static void sa_set_sc_auth(struct algo_data *ad, const u8 *key, u16 key_sz,
u8 *sc_buf)
{
__be32 *ipad = (void *)(sc_buf + 32);
__be32 *opad = (void *)(sc_buf + 64);
/* Set Authentication mode selector to hash processing */
sc_buf[0] = SA_HASH_PROCESSING;
/* Auth SW ctrl word: bit[6]=1 (upload computed hash to TLR section) */
sc_buf[1] = SA_UPLOAD_HASH_TO_TLR;
sc_buf[1] |= ad->auth_ctrl;
/* Copy the keys or ipad/opad */
if (ad->keyed_mac)
ad->prep_iopad(ad, key, key_sz, ipad, opad);
else {
/* basic hash */
sc_buf[1] |= SA_BASIC_HASH;
}
}
static inline void sa_copy_iv(__be32 *out, const u8 *iv, bool size16)
{
int j;
for (j = 0; j < ((size16) ? 4 : 2); j++) {
*out = cpu_to_be32(*((u32 *)iv));
iv += 4;
out++;
}
}
/* Format general command label */
static int sa_format_cmdl_gen(struct sa_cmdl_cfg *cfg, u8 *cmdl,
struct sa_cmdl_upd_info *upd_info)
{
u8 enc_offset = 0, auth_offset = 0, total = 0;
u8 enc_next_eng = SA_ENG_ID_OUTPORT2;
u8 auth_next_eng = SA_ENG_ID_OUTPORT2;
u32 *word_ptr = (u32 *)cmdl;
int i;
/* Clear the command label */
memzero_explicit(cmdl, (SA_MAX_CMDL_WORDS * sizeof(u32)));
/* Iniialize the command update structure */
memzero_explicit(upd_info, sizeof(*upd_info));
if (cfg->enc_eng_id && cfg->auth_eng_id) {
if (cfg->enc) {
auth_offset = SA_CMDL_HEADER_SIZE_BYTES;
enc_next_eng = cfg->auth_eng_id;
if (cfg->iv_size)
auth_offset += cfg->iv_size;
} else {
enc_offset = SA_CMDL_HEADER_SIZE_BYTES;
auth_next_eng = cfg->enc_eng_id;
}
}
if (cfg->enc_eng_id) {
upd_info->flags |= SA_CMDL_UPD_ENC;
upd_info->enc_size.index = enc_offset >> 2;
upd_info->enc_offset.index = upd_info->enc_size.index + 1;
/* Encryption command label */
cmdl[enc_offset + SA_CMDL_OFFSET_NESC] = enc_next_eng;
/* Encryption modes requiring IV */
if (cfg->iv_size) {
upd_info->flags |= SA_CMDL_UPD_ENC_IV;
upd_info->enc_iv.index =
(enc_offset + SA_CMDL_HEADER_SIZE_BYTES) >> 2;
upd_info->enc_iv.size = cfg->iv_size;
cmdl[enc_offset + SA_CMDL_OFFSET_LABEL_LEN] =
SA_CMDL_HEADER_SIZE_BYTES + cfg->iv_size;
cmdl[enc_offset + SA_CMDL_OFFSET_OPTION_CTRL1] =
(SA_CTX_ENC_AUX2_OFFSET | (cfg->iv_size >> 3));
total += SA_CMDL_HEADER_SIZE_BYTES + cfg->iv_size;
} else {
cmdl[enc_offset + SA_CMDL_OFFSET_LABEL_LEN] =
SA_CMDL_HEADER_SIZE_BYTES;
total += SA_CMDL_HEADER_SIZE_BYTES;
}
}
if (cfg->auth_eng_id) {
upd_info->flags |= SA_CMDL_UPD_AUTH;
upd_info->auth_size.index = auth_offset >> 2;
upd_info->auth_offset.index = upd_info->auth_size.index + 1;
cmdl[auth_offset + SA_CMDL_OFFSET_NESC] = auth_next_eng;
cmdl[auth_offset + SA_CMDL_OFFSET_LABEL_LEN] =
SA_CMDL_HEADER_SIZE_BYTES;
total += SA_CMDL_HEADER_SIZE_BYTES;
}
total = roundup(total, 8);
for (i = 0; i < total / 4; i++)
word_ptr[i] = swab32(word_ptr[i]);
return total;
}
/* Update Command label */
static inline void sa_update_cmdl(struct sa_req *req, u32 *cmdl,
struct sa_cmdl_upd_info *upd_info)
{
int i = 0, j;
if (likely(upd_info->flags & SA_CMDL_UPD_ENC)) {
cmdl[upd_info->enc_size.index] &= ~SA_CMDL_PAYLOAD_LENGTH_MASK;
cmdl[upd_info->enc_size.index] |= req->enc_size;
cmdl[upd_info->enc_offset.index] &=
~SA_CMDL_SOP_BYPASS_LEN_MASK;
cmdl[upd_info->enc_offset.index] |=
((u32)req->enc_offset <<
__ffs(SA_CMDL_SOP_BYPASS_LEN_MASK));
if (likely(upd_info->flags & SA_CMDL_UPD_ENC_IV)) {
__be32 *data = (__be32 *)&cmdl[upd_info->enc_iv.index];
u32 *enc_iv = (u32 *)req->enc_iv;
for (j = 0; i < upd_info->enc_iv.size; i += 4, j++) {
data[j] = cpu_to_be32(*enc_iv);
enc_iv++;
}
}
}
if (likely(upd_info->flags & SA_CMDL_UPD_AUTH)) {
cmdl[upd_info->auth_size.index] &= ~SA_CMDL_PAYLOAD_LENGTH_MASK;
cmdl[upd_info->auth_size.index] |= req->auth_size;
cmdl[upd_info->auth_offset.index] &=
~SA_CMDL_SOP_BYPASS_LEN_MASK;
cmdl[upd_info->auth_offset.index] |=
((u32)req->auth_offset <<
__ffs(SA_CMDL_SOP_BYPASS_LEN_MASK));
if (upd_info->flags & SA_CMDL_UPD_AUTH_IV) {
sa_copy_iv((void *)&cmdl[upd_info->auth_iv.index],
req->auth_iv,
(upd_info->auth_iv.size > 8));
}
if (upd_info->flags & SA_CMDL_UPD_AUX_KEY) {
int offset = (req->auth_size & 0xF) ? 4 : 0;
memcpy(&cmdl[upd_info->aux_key_info.index],
&upd_info->aux_key[offset], 16);
}
}
}
/* Format SWINFO words to be sent to SA */
static
void sa_set_swinfo(u8 eng_id, u16 sc_id, dma_addr_t sc_phys,
u8 cmdl_present, u8 cmdl_offset, u8 flags,
u8 hash_size, u32 *swinfo)
{
swinfo[0] = sc_id;
swinfo[0] |= (flags << __ffs(SA_SW0_FLAGS_MASK));
if (likely(cmdl_present))
swinfo[0] |= ((cmdl_offset | SA_SW0_CMDL_PRESENT) <<
__ffs(SA_SW0_CMDL_INFO_MASK));
swinfo[0] |= (eng_id << __ffs(SA_SW0_ENG_ID_MASK));
swinfo[0] |= SA_SW0_DEST_INFO_PRESENT;
swinfo[1] = (u32)(sc_phys & 0xFFFFFFFFULL);
swinfo[2] = (u32)((sc_phys & 0xFFFFFFFF00000000ULL) >> 32);
swinfo[2] |= (hash_size << __ffs(SA_SW2_EGRESS_LENGTH));
}
/* Dump the security context */
static void sa_dump_sc(u8 *buf, dma_addr_t dma_addr)
{
#ifdef DEBUG
dev_info(sa_k3_dev, "Security context dump:: 0x%pad\n", &dma_addr);
print_hex_dump(KERN_CONT, "", DUMP_PREFIX_OFFSET,
16, 1, buf, SA_CTX_MAX_SZ, false);
#endif
}
static
int sa_init_sc(struct sa_ctx_info *ctx, const u8 *enc_key,
u16 enc_key_sz, const u8 *auth_key, u16 auth_key_sz,
struct algo_data *ad, u8 enc, u32 *swinfo)
{
int enc_sc_offset = 0;
int auth_sc_offset = 0;
u8 *sc_buf = ctx->sc;
u16 sc_id = ctx->sc_id;
u8 first_engine = 0;
memzero_explicit(sc_buf, SA_CTX_MAX_SZ);
if (ad->auth_eng.eng_id) {
if (enc)
first_engine = ad->enc_eng.eng_id;
else
first_engine = ad->auth_eng.eng_id;
enc_sc_offset = SA_CTX_PHP_PE_CTX_SZ;
auth_sc_offset = enc_sc_offset + ad->enc_eng.sc_size;
sc_buf[1] = SA_SCCTL_FE_AUTH_ENC;
if (!ad->hash_size)
return -EINVAL;
ad->hash_size = roundup(ad->hash_size, 8);
} else if (ad->enc_eng.eng_id && !ad->auth_eng.eng_id) {
enc_sc_offset = SA_CTX_PHP_PE_CTX_SZ;
first_engine = ad->enc_eng.eng_id;
sc_buf[1] = SA_SCCTL_FE_ENC;
ad->hash_size = ad->iv_out_size;
}
/* SCCTL Owner info: 0=host, 1=CP_ACE */
sc_buf[SA_CTX_SCCTL_OWNER_OFFSET] = 0;
memcpy(&sc_buf[2], &sc_id, 2);
sc_buf[4] = 0x0;
sc_buf[5] = PRIV_ID;
sc_buf[6] = PRIV;
sc_buf[7] = 0x0;
/* Prepare context for encryption engine */
if (ad->enc_eng.sc_size) {
if (sa_set_sc_enc(ad, enc_key, enc_key_sz, enc,
&sc_buf[enc_sc_offset]))
return -EINVAL;
}
/* Prepare context for authentication engine */
if (ad->auth_eng.sc_size)
sa_set_sc_auth(ad, auth_key, auth_key_sz,
&sc_buf[auth_sc_offset]);
/* Set the ownership of context to CP_ACE */
sc_buf[SA_CTX_SCCTL_OWNER_OFFSET] = 0x80;
/* swizzle the security context */
sa_swiz_128(sc_buf, SA_CTX_MAX_SZ);
sa_set_swinfo(first_engine, ctx->sc_id, ctx->sc_phys, 1, 0,
SA_SW_INFO_FLAG_EVICT, ad->hash_size, swinfo);
sa_dump_sc(sc_buf, ctx->sc_phys);
return 0;
}
/* Free the per direction context memory */
static void sa_free_ctx_info(struct sa_ctx_info *ctx,
struct sa_crypto_data *data)
{
unsigned long bn;
bn = ctx->sc_id - data->sc_id_start;
spin_lock(&data->scid_lock);
__clear_bit(bn, data->ctx_bm);
data->sc_id--;
spin_unlock(&data->scid_lock);
if (ctx->sc) {
dma_pool_free(data->sc_pool, ctx->sc, ctx->sc_phys);
ctx->sc = NULL;
}
}
static int sa_init_ctx_info(struct sa_ctx_info *ctx,
struct sa_crypto_data *data)
{
unsigned long bn;
int err;
spin_lock(&data->scid_lock);
bn = find_first_zero_bit(data->ctx_bm, SA_MAX_NUM_CTX);
__set_bit(bn, data->ctx_bm);
data->sc_id++;
spin_unlock(&data->scid_lock);
ctx->sc_id = (u16)(data->sc_id_start + bn);
ctx->sc = dma_pool_alloc(data->sc_pool, GFP_KERNEL, &ctx->sc_phys);
if (!ctx->sc) {
dev_err(&data->pdev->dev, "Failed to allocate SC memory\n");
err = -ENOMEM;
goto scid_rollback;
}
return 0;
scid_rollback:
spin_lock(&data->scid_lock);
__clear_bit(bn, data->ctx_bm);
data->sc_id--;
spin_unlock(&data->scid_lock);
return err;
}
static void sa_cipher_cra_exit(struct crypto_skcipher *tfm)
{
struct sa_tfm_ctx *ctx = crypto_skcipher_ctx(tfm);
struct sa_crypto_data *data = dev_get_drvdata(sa_k3_dev);
dev_dbg(sa_k3_dev, "%s(0x%p) sc-ids(0x%x(0x%pad), 0x%x(0x%pad))\n",
__func__, tfm, ctx->enc.sc_id, &ctx->enc.sc_phys,
ctx->dec.sc_id, &ctx->dec.sc_phys);
sa_free_ctx_info(&ctx->enc, data);
sa_free_ctx_info(&ctx->dec, data);
crypto_free_skcipher(ctx->fallback.skcipher);
}
static int sa_cipher_cra_init(struct crypto_skcipher *tfm)
{
struct sa_tfm_ctx *ctx = crypto_skcipher_ctx(tfm);
struct sa_crypto_data *data = dev_get_drvdata(sa_k3_dev);
const char *name = crypto_tfm_alg_name(&tfm->base);
struct crypto_skcipher *child;
int ret;
memzero_explicit(ctx, sizeof(*ctx));
ctx->dev_data = data;
ret = sa_init_ctx_info(&ctx->enc, data);
if (ret)
return ret;
ret = sa_init_ctx_info(&ctx->dec, data);
if (ret) {
sa_free_ctx_info(&ctx->enc, data);
return ret;
}
child = crypto_alloc_skcipher(name, 0, CRYPTO_ALG_NEED_FALLBACK);
if (IS_ERR(child)) {
dev_err(sa_k3_dev, "Error allocating fallback algo %s\n", name);
return PTR_ERR(child);
}
ctx->fallback.skcipher = child;
crypto_skcipher_set_reqsize(tfm, crypto_skcipher_reqsize(child) +
sizeof(struct skcipher_request));
dev_dbg(sa_k3_dev, "%s(0x%p) sc-ids(0x%x(0x%pad), 0x%x(0x%pad))\n",
__func__, tfm, ctx->enc.sc_id, &ctx->enc.sc_phys,
ctx->dec.sc_id, &ctx->dec.sc_phys);
return 0;
}
static int sa_cipher_setkey(struct crypto_skcipher *tfm, const u8 *key,
unsigned int keylen, struct algo_data *ad)
{
struct sa_tfm_ctx *ctx = crypto_skcipher_ctx(tfm);
struct crypto_skcipher *child = ctx->fallback.skcipher;
int cmdl_len;
struct sa_cmdl_cfg cfg;
int ret;
if (keylen != AES_KEYSIZE_128 && keylen != AES_KEYSIZE_192 &&
keylen != AES_KEYSIZE_256)
return -EINVAL;
ad->enc_eng.eng_id = SA_ENG_ID_EM1;
ad->enc_eng.sc_size = SA_CTX_ENC_TYPE1_SZ;
memzero_explicit(&cfg, sizeof(cfg));
cfg.enc_eng_id = ad->enc_eng.eng_id;
cfg.iv_size = crypto_skcipher_ivsize(tfm);
crypto_skcipher_clear_flags(child, CRYPTO_TFM_REQ_MASK);
crypto_skcipher_set_flags(child, tfm->base.crt_flags &
CRYPTO_TFM_REQ_MASK);
ret = crypto_skcipher_setkey(child, key, keylen);
if (ret)
return ret;
/* Setup Encryption Security Context & Command label template */
if (sa_init_sc(&ctx->enc, key, keylen, NULL, 0, ad, 1,
&ctx->enc.epib[1]))
goto badkey;
cmdl_len = sa_format_cmdl_gen(&cfg,
(u8 *)ctx->enc.cmdl,
&ctx->enc.cmdl_upd_info);
if (cmdl_len <= 0 || (cmdl_len > SA_MAX_CMDL_WORDS * sizeof(u32)))
goto badkey;
ctx->enc.cmdl_size = cmdl_len;
/* Setup Decryption Security Context & Command label template */
if (sa_init_sc(&ctx->dec, key, keylen, NULL, 0, ad, 0,
&ctx->dec.epib[1]))
goto badkey;
cfg.enc_eng_id = ad->enc_eng.eng_id;
cmdl_len = sa_format_cmdl_gen(&cfg, (u8 *)ctx->dec.cmdl,
&ctx->dec.cmdl_upd_info);
if (cmdl_len <= 0 || (cmdl_len > SA_MAX_CMDL_WORDS * sizeof(u32)))
goto badkey;
ctx->dec.cmdl_size = cmdl_len;
ctx->iv_idx = ad->iv_idx;
return 0;
badkey:
dev_err(sa_k3_dev, "%s: badkey\n", __func__);
return -EINVAL;
}
static int sa_aes_cbc_setkey(struct crypto_skcipher *tfm, const u8 *key,
unsigned int keylen)
{
struct algo_data ad = { 0 };
/* Convert the key size (16/24/32) to the key size index (0/1/2) */
int key_idx = (keylen >> 3) - 2;
if (key_idx >= 3)
return -EINVAL;
ad.mci_enc = mci_cbc_enc_array[key_idx];
ad.mci_dec = mci_cbc_dec_array[key_idx];
ad.inv_key = true;
ad.ealg_id = SA_EALG_ID_AES_CBC;
ad.iv_idx = 4;
ad.iv_out_size = 16;
return sa_cipher_setkey(tfm, key, keylen, &ad);
}
static int sa_aes_ecb_setkey(struct crypto_skcipher *tfm, const u8 *key,
unsigned int keylen)
{
struct algo_data ad = { 0 };
/* Convert the key size (16/24/32) to the key size index (0/1/2) */
int key_idx = (keylen >> 3) - 2;
if (key_idx >= 3)
return -EINVAL;
ad.mci_enc = mci_ecb_enc_array[key_idx];
ad.mci_dec = mci_ecb_dec_array[key_idx];
ad.inv_key = true;
ad.ealg_id = SA_EALG_ID_AES_ECB;
return sa_cipher_setkey(tfm, key, keylen, &ad);
}
static int sa_3des_cbc_setkey(struct crypto_skcipher *tfm, const u8 *key,
unsigned int keylen)
{
struct algo_data ad = { 0 };
ad.mci_enc = mci_cbc_3des_enc_array;
ad.mci_dec = mci_cbc_3des_dec_array;
ad.ealg_id = SA_EALG_ID_3DES_CBC;
ad.iv_idx = 6;
ad.iv_out_size = 8;
return sa_cipher_setkey(tfm, key, keylen, &ad);
}
static int sa_3des_ecb_setkey(struct crypto_skcipher *tfm, const u8 *key,
unsigned int keylen)
{
struct algo_data ad = { 0 };
ad.mci_enc = mci_ecb_3des_enc_array;
ad.mci_dec = mci_ecb_3des_dec_array;
return sa_cipher_setkey(tfm, key, keylen, &ad);
}
static void sa_sync_from_device(struct sa_rx_data *rxd)
{
struct sg_table *sgt;
if (rxd->mapped_sg[0].dir == DMA_BIDIRECTIONAL)
sgt = &rxd->mapped_sg[0].sgt;
else
sgt = &rxd->mapped_sg[1].sgt;
dma_sync_sgtable_for_cpu(rxd->ddev, sgt, DMA_FROM_DEVICE);
}
static void sa_free_sa_rx_data(struct sa_rx_data *rxd)
{
int i;
for (i = 0; i < ARRAY_SIZE(rxd->mapped_sg); i++) {
struct sa_mapped_sg *mapped_sg = &rxd->mapped_sg[i];
if (mapped_sg->mapped) {
dma_unmap_sgtable(rxd->ddev, &mapped_sg->sgt,
mapped_sg->dir, 0);
kfree(mapped_sg->split_sg);
}
}
kfree(rxd);
}
static void sa_aes_dma_in_callback(void *data)
{
struct sa_rx_data *rxd = (struct sa_rx_data *)data;
struct skcipher_request *req;
u32 *result;
__be32 *mdptr;
size_t ml, pl;
int i;
sa_sync_from_device(rxd);
req = container_of(rxd->req, struct skcipher_request, base);
if (req->iv) {
mdptr = (__be32 *)dmaengine_desc_get_metadata_ptr(rxd->tx_in, &pl,
&ml);
result = (u32 *)req->iv;
for (i = 0; i < (rxd->enc_iv_size / 4); i++)
result[i] = be32_to_cpu(mdptr[i + rxd->iv_idx]);
}
sa_free_sa_rx_data(rxd);
skcipher_request_complete(req, 0);
}
static void
sa_prepare_tx_desc(u32 *mdptr, u32 pslen, u32 *psdata, u32 epiblen, u32 *epib)
{
u32 *out, *in;
int i;
for (out = mdptr, in = epib, i = 0; i < epiblen / sizeof(u32); i++)
*out++ = *in++;
mdptr[4] = (0xFFFF << 16);
for (out = &mdptr[5], in = psdata, i = 0;
i < pslen / sizeof(u32); i++)
*out++ = *in++;
}
static int sa_run(struct sa_req *req)
{
struct sa_rx_data *rxd;
gfp_t gfp_flags;
u32 cmdl[SA_MAX_CMDL_WORDS];
struct sa_crypto_data *pdata = dev_get_drvdata(sa_k3_dev);
struct device *ddev;
struct dma_chan *dma_rx;
int sg_nents, src_nents, dst_nents;
struct scatterlist *src, *dst;
size_t pl, ml, split_size;
struct sa_ctx_info *sa_ctx = req->enc ? &req->ctx->enc : &req->ctx->dec;
int ret;
struct dma_async_tx_descriptor *tx_out;
u32 *mdptr;
bool diff_dst;
enum dma_data_direction dir_src;
struct sa_mapped_sg *mapped_sg;
gfp_flags = req->base->flags & CRYPTO_TFM_REQ_MAY_SLEEP ?
GFP_KERNEL : GFP_ATOMIC;
rxd = kzalloc(sizeof(*rxd), gfp_flags);
if (!rxd)
return -ENOMEM;
if (req->src != req->dst) {
diff_dst = true;
dir_src = DMA_TO_DEVICE;
} else {
diff_dst = false;
dir_src = DMA_BIDIRECTIONAL;
}
/*
* SA2UL has an interesting feature where the receive DMA channel
* is selected based on the data passed to the engine. Within the
* transition range, there is also a space where it is impossible
* to determine where the data will end up, and this should be
* avoided. This will be handled by the SW fallback mechanism by
* the individual algorithm implementations.
*/
if (req->size >= 256)
dma_rx = pdata->dma_rx2;
else
dma_rx = pdata->dma_rx1;
ddev = dma_rx->device->dev;
rxd->ddev = ddev;
memcpy(cmdl, sa_ctx->cmdl, sa_ctx->cmdl_size);
sa_update_cmdl(req, cmdl, &sa_ctx->cmdl_upd_info);
if (req->type != CRYPTO_ALG_TYPE_AHASH) {
if (req->enc)
req->type |=
(SA_REQ_SUBTYPE_ENC << SA_REQ_SUBTYPE_SHIFT);
else
req->type |=
(SA_REQ_SUBTYPE_DEC << SA_REQ_SUBTYPE_SHIFT);
}
cmdl[sa_ctx->cmdl_size / sizeof(u32)] = req->type;
/*
* Map the packets, first we check if the data fits into a single
* sg entry and use that if possible. If it does not fit, we check
* if we need to do sg_split to align the scatterlist data on the
* actual data size being processed by the crypto engine.
*/
src = req->src;
sg_nents = sg_nents_for_len(src, req->size);
split_size = req->size;
mapped_sg = &rxd->mapped_sg[0];
if (sg_nents == 1 && split_size <= req->src->length) {
src = &mapped_sg->static_sg;
src_nents = 1;
sg_init_table(src, 1);
sg_set_page(src, sg_page(req->src), split_size,
req->src->offset);
mapped_sg->sgt.sgl = src;
mapped_sg->sgt.orig_nents = src_nents;
ret = dma_map_sgtable(ddev, &mapped_sg->sgt, dir_src, 0);
if (ret) {
kfree(rxd);
return ret;
}
mapped_sg->dir = dir_src;
mapped_sg->mapped = true;
} else {
mapped_sg->sgt.sgl = req->src;
mapped_sg->sgt.orig_nents = sg_nents;
ret = dma_map_sgtable(ddev, &mapped_sg->sgt, dir_src, 0);
if (ret) {
kfree(rxd);
return ret;
}
mapped_sg->dir = dir_src;
mapped_sg->mapped = true;
ret = sg_split(mapped_sg->sgt.sgl, mapped_sg->sgt.nents, 0, 1,
&split_size, &src, &src_nents, gfp_flags);
if (ret) {
src_nents = mapped_sg->sgt.nents;
src = mapped_sg->sgt.sgl;
} else {
mapped_sg->split_sg = src;
}
}
dma_sync_sgtable_for_device(ddev, &mapped_sg->sgt, DMA_TO_DEVICE);
if (!diff_dst) {
dst_nents = src_nents;
dst = src;
} else {
dst_nents = sg_nents_for_len(req->dst, req->size);
mapped_sg = &rxd->mapped_sg[1];
if (dst_nents == 1 && split_size <= req->dst->length) {
dst = &mapped_sg->static_sg;
dst_nents = 1;
sg_init_table(dst, 1);
sg_set_page(dst, sg_page(req->dst), split_size,
req->dst->offset);
mapped_sg->sgt.sgl = dst;
mapped_sg->sgt.orig_nents = dst_nents;
ret = dma_map_sgtable(ddev, &mapped_sg->sgt,
DMA_FROM_DEVICE, 0);
if (ret)
goto err_cleanup;
mapped_sg->dir = DMA_FROM_DEVICE;
mapped_sg->mapped = true;
} else {
mapped_sg->sgt.sgl = req->dst;
mapped_sg->sgt.orig_nents = dst_nents;
ret = dma_map_sgtable(ddev, &mapped_sg->sgt,
DMA_FROM_DEVICE, 0);
if (ret)
goto err_cleanup;
mapped_sg->dir = DMA_FROM_DEVICE;
mapped_sg->mapped = true;
ret = sg_split(mapped_sg->sgt.sgl, mapped_sg->sgt.nents,
0, 1, &split_size, &dst, &dst_nents,
gfp_flags);
if (ret) {
dst_nents = mapped_sg->sgt.nents;
dst = mapped_sg->sgt.sgl;
} else {
mapped_sg->split_sg = dst;
}
}
}
rxd->tx_in = dmaengine_prep_slave_sg(dma_rx, dst, dst_nents,
DMA_DEV_TO_MEM,
DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
if (!rxd->tx_in) {
dev_err(pdata->dev, "IN prep_slave_sg() failed\n");
ret = -EINVAL;
goto err_cleanup;
}
rxd->req = (void *)req->base;
rxd->enc = req->enc;
rxd->iv_idx = req->ctx->iv_idx;
rxd->enc_iv_size = sa_ctx->cmdl_upd_info.enc_iv.size;
rxd->tx_in->callback = req->callback;
rxd->tx_in->callback_param = rxd;
tx_out = dmaengine_prep_slave_sg(pdata->dma_tx, src,
src_nents, DMA_MEM_TO_DEV,
DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
if (!tx_out) {
dev_err(pdata->dev, "OUT prep_slave_sg() failed\n");
ret = -EINVAL;
goto err_cleanup;
}
/*
* Prepare metadata for DMA engine. This essentially describes the
* crypto algorithm to be used, data sizes, different keys etc.
*/
mdptr = (u32 *)dmaengine_desc_get_metadata_ptr(tx_out, &pl, &ml);
sa_prepare_tx_desc(mdptr, (sa_ctx->cmdl_size + (SA_PSDATA_CTX_WORDS *
sizeof(u32))), cmdl, sizeof(sa_ctx->epib),
sa_ctx->epib);
ml = sa_ctx->cmdl_size + (SA_PSDATA_CTX_WORDS * sizeof(u32));
dmaengine_desc_set_metadata_len(tx_out, req->mdata_size);
dmaengine_submit(tx_out);
dmaengine_submit(rxd->tx_in);
dma_async_issue_pending(dma_rx);
dma_async_issue_pending(pdata->dma_tx);
return -EINPROGRESS;
err_cleanup:
sa_free_sa_rx_data(rxd);
return ret;
}
static int sa_cipher_run(struct skcipher_request *req, u8 *iv, int enc)
{
struct sa_tfm_ctx *ctx =
crypto_skcipher_ctx(crypto_skcipher_reqtfm(req));
struct crypto_alg *alg = req->base.tfm->__crt_alg;
struct sa_req sa_req = { 0 };
if (!req->cryptlen)
return 0;
if (req->cryptlen % alg->cra_blocksize)
return -EINVAL;
/* Use SW fallback if the data size is not supported */
if (req->cryptlen > SA_MAX_DATA_SZ ||
(req->cryptlen >= SA_UNSAFE_DATA_SZ_MIN &&
req->cryptlen <= SA_UNSAFE_DATA_SZ_MAX)) {
struct skcipher_request *subreq = skcipher_request_ctx(req);
skcipher_request_set_tfm(subreq, ctx->fallback.skcipher);
skcipher_request_set_callback(subreq, req->base.flags,
req->base.complete,
req->base.data);
skcipher_request_set_crypt(subreq, req->src, req->dst,
req->cryptlen, req->iv);
if (enc)
return crypto_skcipher_encrypt(subreq);
else
return crypto_skcipher_decrypt(subreq);
}
sa_req.size = req->cryptlen;
sa_req.enc_size = req->cryptlen;
sa_req.src = req->src;
sa_req.dst = req->dst;
sa_req.enc_iv = iv;
sa_req.type = CRYPTO_ALG_TYPE_SKCIPHER;
sa_req.enc = enc;
sa_req.callback = sa_aes_dma_in_callback;
sa_req.mdata_size = 44;
sa_req.base = &req->base;
sa_req.ctx = ctx;
return sa_run(&sa_req);
}
static int sa_encrypt(struct skcipher_request *req)
{
return sa_cipher_run(req, req->iv, 1);
}
static int sa_decrypt(struct skcipher_request *req)
{
return sa_cipher_run(req, req->iv, 0);
}
static void sa_sha_dma_in_callback(void *data)
{
struct sa_rx_data *rxd = (struct sa_rx_data *)data;
struct ahash_request *req;
struct crypto_ahash *tfm;
unsigned int authsize;
int i;
size_t ml, pl;
u32 *result;
__be32 *mdptr;
sa_sync_from_device(rxd);
req = container_of(rxd->req, struct ahash_request, base);
tfm = crypto_ahash_reqtfm(req);
authsize = crypto_ahash_digestsize(tfm);
mdptr = (__be32 *)dmaengine_desc_get_metadata_ptr(rxd->tx_in, &pl, &ml);
result = (u32 *)req->result;
for (i = 0; i < (authsize / 4); i++)
result[i] = be32_to_cpu(mdptr[i + 4]);
sa_free_sa_rx_data(rxd);
ahash_request_complete(req, 0);
}
static int zero_message_process(struct ahash_request *req)
{
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
int sa_digest_size = crypto_ahash_digestsize(tfm);
switch (sa_digest_size) {
case SHA1_DIGEST_SIZE:
memcpy(req->result, sha1_zero_message_hash, sa_digest_size);
break;
case SHA256_DIGEST_SIZE:
memcpy(req->result, sha256_zero_message_hash, sa_digest_size);
break;
case SHA512_DIGEST_SIZE:
memcpy(req->result, sha512_zero_message_hash, sa_digest_size);
break;
default:
return -EINVAL;
}
return 0;
}
static int sa_sha_run(struct ahash_request *req)
{
struct sa_tfm_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(req));
struct sa_sha_req_ctx *rctx = ahash_request_ctx(req);
struct sa_req sa_req = { 0 };
size_t auth_len;
auth_len = req->nbytes;
if (!auth_len)
return zero_message_process(req);
if (auth_len > SA_MAX_DATA_SZ ||
(auth_len >= SA_UNSAFE_DATA_SZ_MIN &&
auth_len <= SA_UNSAFE_DATA_SZ_MAX)) {
struct ahash_request *subreq = &rctx->fallback_req;
int ret = 0;
ahash_request_set_tfm(subreq, ctx->fallback.ahash);
subreq->base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
crypto_ahash_init(subreq);
subreq->nbytes = auth_len;
subreq->src = req->src;
subreq->result = req->result;
ret |= crypto_ahash_update(subreq);
subreq->nbytes = 0;
ret |= crypto_ahash_final(subreq);
return ret;
}
sa_req.size = auth_len;
sa_req.auth_size = auth_len;
sa_req.src = req->src;
sa_req.dst = req->src;
sa_req.enc = true;
sa_req.type = CRYPTO_ALG_TYPE_AHASH;
sa_req.callback = sa_sha_dma_in_callback;
sa_req.mdata_size = 28;
sa_req.ctx = ctx;
sa_req.base = &req->base;
return sa_run(&sa_req);
}
static int sa_sha_setup(struct sa_tfm_ctx *ctx, struct algo_data *ad)
{
int bs = crypto_shash_blocksize(ctx->shash);
int cmdl_len;
struct sa_cmdl_cfg cfg;
ad->enc_eng.sc_size = SA_CTX_ENC_TYPE1_SZ;
ad->auth_eng.eng_id = SA_ENG_ID_AM1;
ad->auth_eng.sc_size = SA_CTX_AUTH_TYPE2_SZ;
memset(ctx->authkey, 0, bs);
memset(&cfg, 0, sizeof(cfg));
cfg.aalg = ad->aalg_id;
cfg.enc_eng_id = ad->enc_eng.eng_id;
cfg.auth_eng_id = ad->auth_eng.eng_id;
cfg.iv_size = 0;
cfg.akey = NULL;
cfg.akey_len = 0;
/* Setup Encryption Security Context & Command label template */
if (sa_init_sc(&ctx->enc, NULL, 0, NULL, 0, ad, 0,
&ctx->enc.epib[1]))
goto badkey;
cmdl_len = sa_format_cmdl_gen(&cfg,
(u8 *)ctx->enc.cmdl,
&ctx->enc.cmdl_upd_info);
if (cmdl_len <= 0 || (cmdl_len > SA_MAX_CMDL_WORDS * sizeof(u32)))
goto badkey;
ctx->enc.cmdl_size = cmdl_len;
return 0;
badkey:
dev_err(sa_k3_dev, "%s: badkey\n", __func__);
return -EINVAL;
}
static int sa_sha_cra_init_alg(struct crypto_tfm *tfm, const char *alg_base)
{
struct sa_tfm_ctx *ctx = crypto_tfm_ctx(tfm);
struct sa_crypto_data *data = dev_get_drvdata(sa_k3_dev);
int ret;
memset(ctx, 0, sizeof(*ctx));
ctx->dev_data = data;
ret = sa_init_ctx_info(&ctx->enc, data);
if (ret)
return ret;
if (alg_base) {
ctx->shash = crypto_alloc_shash(alg_base, 0,
CRYPTO_ALG_NEED_FALLBACK);
if (IS_ERR(ctx->shash)) {
dev_err(sa_k3_dev, "base driver %s couldn't be loaded\n",
alg_base);
return PTR_ERR(ctx->shash);
}
/* for fallback */
ctx->fallback.ahash =
crypto_alloc_ahash(alg_base, 0,
CRYPTO_ALG_NEED_FALLBACK);
if (IS_ERR(ctx->fallback.ahash)) {
dev_err(ctx->dev_data->dev,
"Could not load fallback driver\n");
return PTR_ERR(ctx->fallback.ahash);
}
}
dev_dbg(sa_k3_dev, "%s(0x%p) sc-ids(0x%x(0x%pad), 0x%x(0x%pad))\n",
__func__, tfm, ctx->enc.sc_id, &ctx->enc.sc_phys,
ctx->dec.sc_id, &ctx->dec.sc_phys);
crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
sizeof(struct sa_sha_req_ctx) +
crypto_ahash_reqsize(ctx->fallback.ahash));
return 0;
}
static int sa_sha_digest(struct ahash_request *req)
{
return sa_sha_run(req);
}
static int sa_sha_init(struct ahash_request *req)
{
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
struct sa_sha_req_ctx *rctx = ahash_request_ctx(req);
struct sa_tfm_ctx *ctx = crypto_ahash_ctx(tfm);
dev_dbg(sa_k3_dev, "init: digest size: %u, rctx=%p\n",
crypto_ahash_digestsize(tfm), rctx);
ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback.ahash);
rctx->fallback_req.base.flags =
req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
return crypto_ahash_init(&rctx->fallback_req);
}
static int sa_sha_update(struct ahash_request *req)
{
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
struct sa_sha_req_ctx *rctx = ahash_request_ctx(req);
struct sa_tfm_ctx *ctx = crypto_ahash_ctx(tfm);
ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback.ahash);
rctx->fallback_req.base.flags =
req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
rctx->fallback_req.nbytes = req->nbytes;
rctx->fallback_req.src = req->src;
return crypto_ahash_update(&rctx->fallback_req);
}
static int sa_sha_final(struct ahash_request *req)
{
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
struct sa_sha_req_ctx *rctx = ahash_request_ctx(req);
struct sa_tfm_ctx *ctx = crypto_ahash_ctx(tfm);
ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback.ahash);
rctx->fallback_req.base.flags =
req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
rctx->fallback_req.result = req->result;
return crypto_ahash_final(&rctx->fallback_req);
}
static int sa_sha_finup(struct ahash_request *req)
{
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
struct sa_sha_req_ctx *rctx = ahash_request_ctx(req);
struct sa_tfm_ctx *ctx = crypto_ahash_ctx(tfm);
ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback.ahash);
rctx->fallback_req.base.flags =
req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
rctx->fallback_req.nbytes = req->nbytes;
rctx->fallback_req.src = req->src;
rctx->fallback_req.result = req->result;
return crypto_ahash_finup(&rctx->fallback_req);
}
static int sa_sha_import(struct ahash_request *req, const void *in)
{
struct sa_sha_req_ctx *rctx = ahash_request_ctx(req);
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
struct sa_tfm_ctx *ctx = crypto_ahash_ctx(tfm);
ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback.ahash);
rctx->fallback_req.base.flags = req->base.flags &
CRYPTO_TFM_REQ_MAY_SLEEP;
return crypto_ahash_import(&rctx->fallback_req, in);
}
static int sa_sha_export(struct ahash_request *req, void *out)
{
struct sa_sha_req_ctx *rctx = ahash_request_ctx(req);
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
struct sa_tfm_ctx *ctx = crypto_ahash_ctx(tfm);
struct ahash_request *subreq = &rctx->fallback_req;
ahash_request_set_tfm(subreq, ctx->fallback.ahash);
subreq->base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
return crypto_ahash_export(subreq, out);
}
static int sa_sha1_cra_init(struct crypto_tfm *tfm)
{
struct algo_data ad = { 0 };
struct sa_tfm_ctx *ctx = crypto_tfm_ctx(tfm);
sa_sha_cra_init_alg(tfm, "sha1");
ad.aalg_id = SA_AALG_ID_SHA1;
ad.hash_size = SHA1_DIGEST_SIZE;
ad.auth_ctrl = SA_AUTH_SW_CTRL_SHA1;
sa_sha_setup(ctx, &ad);
return 0;
}
static int sa_sha256_cra_init(struct crypto_tfm *tfm)
{
struct algo_data ad = { 0 };
struct sa_tfm_ctx *ctx = crypto_tfm_ctx(tfm);
sa_sha_cra_init_alg(tfm, "sha256");
ad.aalg_id = SA_AALG_ID_SHA2_256;
ad.hash_size = SHA256_DIGEST_SIZE;
ad.auth_ctrl = SA_AUTH_SW_CTRL_SHA256;
sa_sha_setup(ctx, &ad);
return 0;
}
static int sa_sha512_cra_init(struct crypto_tfm *tfm)
{
struct algo_data ad = { 0 };
struct sa_tfm_ctx *ctx = crypto_tfm_ctx(tfm);
sa_sha_cra_init_alg(tfm, "sha512");
ad.aalg_id = SA_AALG_ID_SHA2_512;
ad.hash_size = SHA512_DIGEST_SIZE;
ad.auth_ctrl = SA_AUTH_SW_CTRL_SHA512;
sa_sha_setup(ctx, &ad);
return 0;
}
static void sa_sha_cra_exit(struct crypto_tfm *tfm)
{
struct sa_tfm_ctx *ctx = crypto_tfm_ctx(tfm);
struct sa_crypto_data *data = dev_get_drvdata(sa_k3_dev);
dev_dbg(sa_k3_dev, "%s(0x%p) sc-ids(0x%x(0x%pad), 0x%x(0x%pad))\n",
__func__, tfm, ctx->enc.sc_id, &ctx->enc.sc_phys,
ctx->dec.sc_id, &ctx->dec.sc_phys);
if (crypto_tfm_alg_type(tfm) == CRYPTO_ALG_TYPE_AHASH)
sa_free_ctx_info(&ctx->enc, data);
crypto_free_shash(ctx->shash);
crypto_free_ahash(ctx->fallback.ahash);
}
static void sa_aead_dma_in_callback(void *data)
{
struct sa_rx_data *rxd = (struct sa_rx_data *)data;
struct aead_request *req;
struct crypto_aead *tfm;
unsigned int start;
unsigned int authsize;
u8 auth_tag[SA_MAX_AUTH_TAG_SZ];
size_t pl, ml;
int i;
int err = 0;
u16 auth_len;
u32 *mdptr;
sa_sync_from_device(rxd);
req = container_of(rxd->req, struct aead_request, base);
tfm = crypto_aead_reqtfm(req);
start = req->assoclen + req->cryptlen;
authsize = crypto_aead_authsize(tfm);
mdptr = (u32 *)dmaengine_desc_get_metadata_ptr(rxd->tx_in, &pl, &ml);
for (i = 0; i < (authsize / 4); i++)
mdptr[i + 4] = swab32(mdptr[i + 4]);
auth_len = req->assoclen + req->cryptlen;
if (rxd->enc) {
scatterwalk_map_and_copy(&mdptr[4], req->dst, start, authsize,
1);
} else {
auth_len -= authsize;
start -= authsize;
scatterwalk_map_and_copy(auth_tag, req->src, start, authsize,
0);
err = memcmp(&mdptr[4], auth_tag, authsize) ? -EBADMSG : 0;
}
sa_free_sa_rx_data(rxd);
aead_request_complete(req, err);
}
static int sa_cra_init_aead(struct crypto_aead *tfm, const char *hash,
const char *fallback)
{
struct sa_tfm_ctx *ctx = crypto_aead_ctx(tfm);
struct sa_crypto_data *data = dev_get_drvdata(sa_k3_dev);
int ret;
memzero_explicit(ctx, sizeof(*ctx));
ctx->shash = crypto_alloc_shash(hash, 0, CRYPTO_ALG_NEED_FALLBACK);
if (IS_ERR(ctx->shash)) {
dev_err(sa_k3_dev, "base driver %s couldn't be loaded\n", hash);
return PTR_ERR(ctx->shash);
}
ctx->fallback.aead = crypto_alloc_aead(fallback, 0,
CRYPTO_ALG_NEED_FALLBACK);
if (IS_ERR(ctx->fallback.aead)) {
dev_err(sa_k3_dev, "fallback driver %s couldn't be loaded\n",
fallback);
return PTR_ERR(ctx->fallback.aead);
}
crypto_aead_set_reqsize(tfm, sizeof(struct aead_request) +
crypto_aead_reqsize(ctx->fallback.aead));
ret = sa_init_ctx_info(&ctx->enc, data);
if (ret)
return ret;
ret = sa_init_ctx_info(&ctx->dec, data);
if (ret) {
sa_free_ctx_info(&ctx->enc, data);
return ret;
}
dev_dbg(sa_k3_dev, "%s(0x%p) sc-ids(0x%x(0x%pad), 0x%x(0x%pad))\n",
__func__, tfm, ctx->enc.sc_id, &ctx->enc.sc_phys,
ctx->dec.sc_id, &ctx->dec.sc_phys);
return ret;
}
static int sa_cra_init_aead_sha1(struct crypto_aead *tfm)
{
return sa_cra_init_aead(tfm, "sha1",
"authenc(hmac(sha1-ce),cbc(aes-ce))");
}
static int sa_cra_init_aead_sha256(struct crypto_aead *tfm)
{
return sa_cra_init_aead(tfm, "sha256",
"authenc(hmac(sha256-ce),cbc(aes-ce))");
}
static void sa_exit_tfm_aead(struct crypto_aead *tfm)
{
struct sa_tfm_ctx *ctx = crypto_aead_ctx(tfm);
struct sa_crypto_data *data = dev_get_drvdata(sa_k3_dev);
crypto_free_shash(ctx->shash);
crypto_free_aead(ctx->fallback.aead);
sa_free_ctx_info(&ctx->enc, data);
sa_free_ctx_info(&ctx->dec, data);
}
/* AEAD algorithm configuration interface function */
static int sa_aead_setkey(struct crypto_aead *authenc,
const u8 *key, unsigned int keylen,
struct algo_data *ad)
{
struct sa_tfm_ctx *ctx = crypto_aead_ctx(authenc);
struct crypto_authenc_keys keys;
int cmdl_len;
struct sa_cmdl_cfg cfg;
int key_idx;
if (crypto_authenc_extractkeys(&keys, key, keylen) != 0)
return -EINVAL;
/* Convert the key size (16/24/32) to the key size index (0/1/2) */
key_idx = (keys.enckeylen >> 3) - 2;
if (key_idx >= 3)
return -EINVAL;
ad->ctx = ctx;
ad->enc_eng.eng_id = SA_ENG_ID_EM1;
ad->enc_eng.sc_size = SA_CTX_ENC_TYPE1_SZ;
ad->auth_eng.eng_id = SA_ENG_ID_AM1;
ad->auth_eng.sc_size = SA_CTX_AUTH_TYPE2_SZ;
ad->mci_enc = mci_cbc_enc_no_iv_array[key_idx];
ad->mci_dec = mci_cbc_dec_no_iv_array[key_idx];
ad->inv_key = true;
ad->keyed_mac = true;
ad->ealg_id = SA_EALG_ID_AES_CBC;
ad->prep_iopad = sa_prepare_iopads;
memset(&cfg, 0, sizeof(cfg));
cfg.enc = true;
cfg.aalg = ad->aalg_id;
cfg.enc_eng_id = ad->enc_eng.eng_id;
cfg.auth_eng_id = ad->auth_eng.eng_id;
cfg.iv_size = crypto_aead_ivsize(authenc);
cfg.akey = keys.authkey;
cfg.akey_len = keys.authkeylen;
/* Setup Encryption Security Context & Command label template */
if (sa_init_sc(&ctx->enc, keys.enckey, keys.enckeylen,
keys.authkey, keys.authkeylen,
ad, 1, &ctx->enc.epib[1]))
return -EINVAL;
cmdl_len = sa_format_cmdl_gen(&cfg,
(u8 *)ctx->enc.cmdl,
&ctx->enc.cmdl_upd_info);
if (cmdl_len <= 0 || (cmdl_len > SA_MAX_CMDL_WORDS * sizeof(u32)))
return -EINVAL;
ctx->enc.cmdl_size = cmdl_len;
/* Setup Decryption Security Context & Command label template */
if (sa_init_sc(&ctx->dec, keys.enckey, keys.enckeylen,
keys.authkey, keys.authkeylen,
ad, 0, &ctx->dec.epib[1]))
return -EINVAL;
cfg.enc = false;
cmdl_len = sa_format_cmdl_gen(&cfg, (u8 *)ctx->dec.cmdl,
&ctx->dec.cmdl_upd_info);
if (cmdl_len <= 0 || (cmdl_len > SA_MAX_CMDL_WORDS * sizeof(u32)))
return -EINVAL;
ctx->dec.cmdl_size = cmdl_len;
crypto_aead_clear_flags(ctx->fallback.aead, CRYPTO_TFM_REQ_MASK);
crypto_aead_set_flags(ctx->fallback.aead,
crypto_aead_get_flags(authenc) &
CRYPTO_TFM_REQ_MASK);
crypto_aead_setkey(ctx->fallback.aead, key, keylen);
return 0;
}
static int sa_aead_setauthsize(struct crypto_aead *tfm, unsigned int authsize)
{
struct sa_tfm_ctx *ctx = crypto_tfm_ctx(crypto_aead_tfm(tfm));
return crypto_aead_setauthsize(ctx->fallback.aead, authsize);
}
static int sa_aead_cbc_sha1_setkey(struct crypto_aead *authenc,
const u8 *key, unsigned int keylen)
{
struct algo_data ad = { 0 };
ad.ealg_id = SA_EALG_ID_AES_CBC;
ad.aalg_id = SA_AALG_ID_HMAC_SHA1;
ad.hash_size = SHA1_DIGEST_SIZE;
ad.auth_ctrl = SA_AUTH_SW_CTRL_SHA1;
return sa_aead_setkey(authenc, key, keylen, &ad);
}
static int sa_aead_cbc_sha256_setkey(struct crypto_aead *authenc,
const u8 *key, unsigned int keylen)
{
struct algo_data ad = { 0 };
ad.ealg_id = SA_EALG_ID_AES_CBC;
ad.aalg_id = SA_AALG_ID_HMAC_SHA2_256;
ad.hash_size = SHA256_DIGEST_SIZE;
ad.auth_ctrl = SA_AUTH_SW_CTRL_SHA256;
return sa_aead_setkey(authenc, key, keylen, &ad);
}
static int sa_aead_run(struct aead_request *req, u8 *iv, int enc)
{
struct crypto_aead *tfm = crypto_aead_reqtfm(req);
struct sa_tfm_ctx *ctx = crypto_aead_ctx(tfm);
struct sa_req sa_req = { 0 };
size_t auth_size, enc_size;
enc_size = req->cryptlen;
auth_size = req->assoclen + req->cryptlen;
if (!enc) {
enc_size -= crypto_aead_authsize(tfm);
auth_size -= crypto_aead_authsize(tfm);
}
if (auth_size > SA_MAX_DATA_SZ ||
(auth_size >= SA_UNSAFE_DATA_SZ_MIN &&
auth_size <= SA_UNSAFE_DATA_SZ_MAX)) {
struct aead_request *subreq = aead_request_ctx(req);
int ret;
aead_request_set_tfm(subreq, ctx->fallback.aead);
aead_request_set_callback(subreq, req->base.flags,
req->base.complete, req->base.data);
aead_request_set_crypt(subreq, req->src, req->dst,
req->cryptlen, req->iv);
aead_request_set_ad(subreq, req->assoclen);
ret = enc ? crypto_aead_encrypt(subreq) :
crypto_aead_decrypt(subreq);
return ret;
}
sa_req.enc_offset = req->assoclen;
sa_req.enc_size = enc_size;
sa_req.auth_size = auth_size;
sa_req.size = auth_size;
sa_req.enc_iv = iv;
sa_req.type = CRYPTO_ALG_TYPE_AEAD;
sa_req.enc = enc;
sa_req.callback = sa_aead_dma_in_callback;
sa_req.mdata_size = 52;
sa_req.base = &req->base;
sa_req.ctx = ctx;
sa_req.src = req->src;
sa_req.dst = req->dst;
return sa_run(&sa_req);
}
/* AEAD algorithm encrypt interface function */
static int sa_aead_encrypt(struct aead_request *req)
{
return sa_aead_run(req, req->iv, 1);
}
/* AEAD algorithm decrypt interface function */
static int sa_aead_decrypt(struct aead_request *req)
{
return sa_aead_run(req, req->iv, 0);
}
static struct sa_alg_tmpl sa_algs[] = {
{
.type = CRYPTO_ALG_TYPE_SKCIPHER,
.alg.skcipher = {
.base.cra_name = "cbc(aes)",
.base.cra_driver_name = "cbc-aes-sa2ul",
.base.cra_priority = 30000,
.base.cra_flags = CRYPTO_ALG_TYPE_SKCIPHER |
CRYPTO_ALG_KERN_DRIVER_ONLY |
CRYPTO_ALG_ASYNC |
CRYPTO_ALG_NEED_FALLBACK,
.base.cra_blocksize = AES_BLOCK_SIZE,
.base.cra_ctxsize = sizeof(struct sa_tfm_ctx),
.base.cra_module = THIS_MODULE,
.init = sa_cipher_cra_init,
.exit = sa_cipher_cra_exit,
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.ivsize = AES_BLOCK_SIZE,
.setkey = sa_aes_cbc_setkey,
.encrypt = sa_encrypt,
.decrypt = sa_decrypt,
}
},
{
.type = CRYPTO_ALG_TYPE_SKCIPHER,
.alg.skcipher = {
.base.cra_name = "ecb(aes)",
.base.cra_driver_name = "ecb-aes-sa2ul",
.base.cra_priority = 30000,
.base.cra_flags = CRYPTO_ALG_TYPE_SKCIPHER |
CRYPTO_ALG_KERN_DRIVER_ONLY |
CRYPTO_ALG_ASYNC |
CRYPTO_ALG_NEED_FALLBACK,
.base.cra_blocksize = AES_BLOCK_SIZE,
.base.cra_ctxsize = sizeof(struct sa_tfm_ctx),
.base.cra_module = THIS_MODULE,
.init = sa_cipher_cra_init,
.exit = sa_cipher_cra_exit,
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.setkey = sa_aes_ecb_setkey,
.encrypt = sa_encrypt,
.decrypt = sa_decrypt,
}
},
{
.type = CRYPTO_ALG_TYPE_SKCIPHER,
.alg.skcipher = {
.base.cra_name = "cbc(des3_ede)",
.base.cra_driver_name = "cbc-des3-sa2ul",
.base.cra_priority = 30000,
.base.cra_flags = CRYPTO_ALG_TYPE_SKCIPHER |
CRYPTO_ALG_KERN_DRIVER_ONLY |
CRYPTO_ALG_ASYNC |
CRYPTO_ALG_NEED_FALLBACK,
.base.cra_blocksize = DES_BLOCK_SIZE,
.base.cra_ctxsize = sizeof(struct sa_tfm_ctx),
.base.cra_module = THIS_MODULE,
.init = sa_cipher_cra_init,
.exit = sa_cipher_cra_exit,
.min_keysize = 3 * DES_KEY_SIZE,
.max_keysize = 3 * DES_KEY_SIZE,
.ivsize = DES_BLOCK_SIZE,
.setkey = sa_3des_cbc_setkey,
.encrypt = sa_encrypt,
.decrypt = sa_decrypt,
}
},
{
.type = CRYPTO_ALG_TYPE_SKCIPHER,
.alg.skcipher = {
.base.cra_name = "ecb(des3_ede)",
.base.cra_driver_name = "ecb-des3-sa2ul",
.base.cra_priority = 30000,
.base.cra_flags = CRYPTO_ALG_TYPE_SKCIPHER |
CRYPTO_ALG_KERN_DRIVER_ONLY |
CRYPTO_ALG_ASYNC |
CRYPTO_ALG_NEED_FALLBACK,
.base.cra_blocksize = DES_BLOCK_SIZE,
.base.cra_ctxsize = sizeof(struct sa_tfm_ctx),
.base.cra_module = THIS_MODULE,
.init = sa_cipher_cra_init,
.exit = sa_cipher_cra_exit,
.min_keysize = 3 * DES_KEY_SIZE,
.max_keysize = 3 * DES_KEY_SIZE,
.setkey = sa_3des_ecb_setkey,
.encrypt = sa_encrypt,
.decrypt = sa_decrypt,
}
},
{
.type = CRYPTO_ALG_TYPE_AHASH,
.alg.ahash = {
.halg.base = {
.cra_name = "sha1",
.cra_driver_name = "sha1-sa2ul",
.cra_priority = 400,
.cra_flags = CRYPTO_ALG_TYPE_AHASH |
CRYPTO_ALG_ASYNC |
CRYPTO_ALG_KERN_DRIVER_ONLY |
CRYPTO_ALG_NEED_FALLBACK,
.cra_blocksize = SHA1_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct sa_tfm_ctx),
.cra_module = THIS_MODULE,
.cra_init = sa_sha1_cra_init,
.cra_exit = sa_sha_cra_exit,
},
.halg.digestsize = SHA1_DIGEST_SIZE,
.halg.statesize = sizeof(struct sa_sha_req_ctx) +
sizeof(struct sha1_state),
.init = sa_sha_init,
.update = sa_sha_update,
.final = sa_sha_final,
.finup = sa_sha_finup,
.digest = sa_sha_digest,
.export = sa_sha_export,
.import = sa_sha_import,
},
},
{
.type = CRYPTO_ALG_TYPE_AHASH,
.alg.ahash = {
.halg.base = {
.cra_name = "sha256",
.cra_driver_name = "sha256-sa2ul",
.cra_priority = 400,
.cra_flags = CRYPTO_ALG_TYPE_AHASH |
CRYPTO_ALG_ASYNC |
CRYPTO_ALG_KERN_DRIVER_ONLY |
CRYPTO_ALG_NEED_FALLBACK,
.cra_blocksize = SHA256_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct sa_tfm_ctx),
.cra_module = THIS_MODULE,
.cra_init = sa_sha256_cra_init,
.cra_exit = sa_sha_cra_exit,
},
.halg.digestsize = SHA256_DIGEST_SIZE,
.halg.statesize = sizeof(struct sa_sha_req_ctx) +
sizeof(struct sha256_state),
.init = sa_sha_init,
.update = sa_sha_update,
.final = sa_sha_final,
.finup = sa_sha_finup,
.digest = sa_sha_digest,
.export = sa_sha_export,
.import = sa_sha_import,
},
},
{
.type = CRYPTO_ALG_TYPE_AHASH,
.alg.ahash = {
.halg.base = {
.cra_name = "sha512",
.cra_driver_name = "sha512-sa2ul",
.cra_priority = 400,
.cra_flags = CRYPTO_ALG_TYPE_AHASH |
CRYPTO_ALG_ASYNC |
CRYPTO_ALG_KERN_DRIVER_ONLY |
CRYPTO_ALG_NEED_FALLBACK,
.cra_blocksize = SHA512_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct sa_tfm_ctx),
.cra_module = THIS_MODULE,
.cra_init = sa_sha512_cra_init,
.cra_exit = sa_sha_cra_exit,
},
.halg.digestsize = SHA512_DIGEST_SIZE,
.halg.statesize = sizeof(struct sa_sha_req_ctx) +
sizeof(struct sha512_state),
.init = sa_sha_init,
.update = sa_sha_update,
.final = sa_sha_final,
.finup = sa_sha_finup,
.digest = sa_sha_digest,
.export = sa_sha_export,
.import = sa_sha_import,
},
},
{
.type = CRYPTO_ALG_TYPE_AEAD,
.alg.aead = {
.base = {
.cra_name = "authenc(hmac(sha1),cbc(aes))",
.cra_driver_name =
"authenc(hmac(sha1),cbc(aes))-sa2ul",
.cra_blocksize = AES_BLOCK_SIZE,
.cra_flags = CRYPTO_ALG_TYPE_AEAD |
CRYPTO_ALG_KERN_DRIVER_ONLY |
CRYPTO_ALG_ASYNC |
CRYPTO_ALG_NEED_FALLBACK,
.cra_ctxsize = sizeof(struct sa_tfm_ctx),
.cra_module = THIS_MODULE,
.cra_priority = 3000,
},
.ivsize = AES_BLOCK_SIZE,
.maxauthsize = SHA1_DIGEST_SIZE,
.init = sa_cra_init_aead_sha1,
.exit = sa_exit_tfm_aead,
.setkey = sa_aead_cbc_sha1_setkey,
.setauthsize = sa_aead_setauthsize,
.encrypt = sa_aead_encrypt,
.decrypt = sa_aead_decrypt,
},
},
{
.type = CRYPTO_ALG_TYPE_AEAD,
.alg.aead = {
.base = {
.cra_name = "authenc(hmac(sha256),cbc(aes))",
.cra_driver_name =
"authenc(hmac(sha256),cbc(aes))-sa2ul",
.cra_blocksize = AES_BLOCK_SIZE,
.cra_flags = CRYPTO_ALG_TYPE_AEAD |
CRYPTO_ALG_KERN_DRIVER_ONLY |
CRYPTO_ALG_ASYNC |
CRYPTO_ALG_NEED_FALLBACK,
.cra_ctxsize = sizeof(struct sa_tfm_ctx),
.cra_module = THIS_MODULE,
.cra_alignmask = 0,
.cra_priority = 3000,
},
.ivsize = AES_BLOCK_SIZE,
.maxauthsize = SHA256_DIGEST_SIZE,
.init = sa_cra_init_aead_sha256,
.exit = sa_exit_tfm_aead,
.setkey = sa_aead_cbc_sha256_setkey,
.setauthsize = sa_aead_setauthsize,
.encrypt = sa_aead_encrypt,
.decrypt = sa_aead_decrypt,
},
},
};
/* Register the algorithms in crypto framework */
static void sa_register_algos(const struct device *dev)
{
char *alg_name;
u32 type;
int i, err;
for (i = 0; i < ARRAY_SIZE(sa_algs); i++) {
type = sa_algs[i].type;
if (type == CRYPTO_ALG_TYPE_SKCIPHER) {
alg_name = sa_algs[i].alg.skcipher.base.cra_name;
err = crypto_register_skcipher(&sa_algs[i].alg.skcipher);
} else if (type == CRYPTO_ALG_TYPE_AHASH) {
alg_name = sa_algs[i].alg.ahash.halg.base.cra_name;
err = crypto_register_ahash(&sa_algs[i].alg.ahash);
} else if (type == CRYPTO_ALG_TYPE_AEAD) {
alg_name = sa_algs[i].alg.aead.base.cra_name;
err = crypto_register_aead(&sa_algs[i].alg.aead);
} else {
dev_err(dev,
"un-supported crypto algorithm (%d)",
sa_algs[i].type);
continue;
}
if (err)
dev_err(dev, "Failed to register '%s'\n", alg_name);
else
sa_algs[i].registered = true;
}
}
/* Unregister the algorithms in crypto framework */
static void sa_unregister_algos(const struct device *dev)
{
u32 type;
int i;
for (i = 0; i < ARRAY_SIZE(sa_algs); i++) {
type = sa_algs[i].type;
if (!sa_algs[i].registered)
continue;
if (type == CRYPTO_ALG_TYPE_SKCIPHER)
crypto_unregister_skcipher(&sa_algs[i].alg.skcipher);
else if (type == CRYPTO_ALG_TYPE_AHASH)
crypto_unregister_ahash(&sa_algs[i].alg.ahash);
else if (type == CRYPTO_ALG_TYPE_AEAD)
crypto_unregister_aead(&sa_algs[i].alg.aead);
sa_algs[i].registered = false;
}
}
static int sa_init_mem(struct sa_crypto_data *dev_data)
{
struct device *dev = &dev_data->pdev->dev;
/* Setup dma pool for security context buffers */
dev_data->sc_pool = dma_pool_create("keystone-sc", dev,
SA_CTX_MAX_SZ, 64, 0);
if (!dev_data->sc_pool) {
dev_err(dev, "Failed to create dma pool");
return -ENOMEM;
}
return 0;
}
static int sa_dma_init(struct sa_crypto_data *dd)
{
int ret;
struct dma_slave_config cfg;
dd->dma_rx1 = NULL;
dd->dma_tx = NULL;
dd->dma_rx2 = NULL;
ret = dma_coerce_mask_and_coherent(dd->dev, DMA_BIT_MASK(48));
if (ret)
return ret;
dd->dma_rx1 = dma_request_chan(dd->dev, "rx1");
if (IS_ERR(dd->dma_rx1))
return dev_err_probe(dd->dev, PTR_ERR(dd->dma_rx1),
"Unable to request rx1 DMA channel\n");
dd->dma_rx2 = dma_request_chan(dd->dev, "rx2");
if (IS_ERR(dd->dma_rx2)) {
dma_release_channel(dd->dma_rx1);
return dev_err_probe(dd->dev, PTR_ERR(dd->dma_rx2),
"Unable to request rx2 DMA channel\n");
}
dd->dma_tx = dma_request_chan(dd->dev, "tx");
if (IS_ERR(dd->dma_tx)) {
ret = dev_err_probe(dd->dev, PTR_ERR(dd->dma_tx),
"Unable to request tx DMA channel\n");
goto err_dma_tx;
}
memzero_explicit(&cfg, sizeof(cfg));
cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
cfg.src_maxburst = 4;
cfg.dst_maxburst = 4;
ret = dmaengine_slave_config(dd->dma_rx1, &cfg);
if (ret) {
dev_err(dd->dev, "can't configure IN dmaengine slave: %d\n",
ret);
return ret;
}
ret = dmaengine_slave_config(dd->dma_rx2, &cfg);
if (ret) {
dev_err(dd->dev, "can't configure IN dmaengine slave: %d\n",
ret);
return ret;
}
ret = dmaengine_slave_config(dd->dma_tx, &cfg);
if (ret) {
dev_err(dd->dev, "can't configure OUT dmaengine slave: %d\n",
ret);
return ret;
}
return 0;
err_dma_tx:
dma_release_channel(dd->dma_rx1);
dma_release_channel(dd->dma_rx2);
return ret;
}
static int sa_link_child(struct device *dev, void *data)
{
struct device *parent = data;
device_link_add(dev, parent, DL_FLAG_AUTOPROBE_CONSUMER);
return 0;
}
static int sa_ul_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct device_node *node = dev->of_node;
struct resource *res;
static void __iomem *saul_base;
struct sa_crypto_data *dev_data;
u32 val;
int ret;
dev_data = devm_kzalloc(dev, sizeof(*dev_data), GFP_KERNEL);
if (!dev_data)
return -ENOMEM;
sa_k3_dev = dev;
dev_data->dev = dev;
dev_data->pdev = pdev;
platform_set_drvdata(pdev, dev_data);
dev_set_drvdata(sa_k3_dev, dev_data);
pm_runtime_enable(dev);
ret = pm_runtime_get_sync(dev);
if (ret < 0) {
dev_err(&pdev->dev, "%s: failed to get sync: %d\n", __func__,
ret);
return ret;
}
sa_init_mem(dev_data);
ret = sa_dma_init(dev_data);
if (ret)
goto disable_pm_runtime;
spin_lock_init(&dev_data->scid_lock);
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
saul_base = devm_ioremap_resource(dev, res);
dev_data->base = saul_base;
val = SA_EEC_ENCSS_EN | SA_EEC_AUTHSS_EN | SA_EEC_CTXCACH_EN |
SA_EEC_CPPI_PORT_IN_EN | SA_EEC_CPPI_PORT_OUT_EN |
SA_EEC_TRNG_EN;
writel_relaxed(val, saul_base + SA_ENGINE_ENABLE_CONTROL);
sa_register_algos(dev);
ret = of_platform_populate(node, NULL, NULL, &pdev->dev);
if (ret)
goto release_dma;
device_for_each_child(&pdev->dev, &pdev->dev, sa_link_child);
return 0;
release_dma:
sa_unregister_algos(&pdev->dev);
dma_release_channel(dev_data->dma_rx2);
dma_release_channel(dev_data->dma_rx1);
dma_release_channel(dev_data->dma_tx);
dma_pool_destroy(dev_data->sc_pool);
disable_pm_runtime:
pm_runtime_put_sync(&pdev->dev);
pm_runtime_disable(&pdev->dev);
return ret;
}
static int sa_ul_remove(struct platform_device *pdev)
{
struct sa_crypto_data *dev_data = platform_get_drvdata(pdev);
sa_unregister_algos(&pdev->dev);
dma_release_channel(dev_data->dma_rx2);
dma_release_channel(dev_data->dma_rx1);
dma_release_channel(dev_data->dma_tx);
dma_pool_destroy(dev_data->sc_pool);
platform_set_drvdata(pdev, NULL);
pm_runtime_put_sync(&pdev->dev);
pm_runtime_disable(&pdev->dev);
return 0;
}
static const struct of_device_id of_match[] = {
{.compatible = "ti,j721e-sa2ul",},
{.compatible = "ti,am654-sa2ul",},
{},
};
MODULE_DEVICE_TABLE(of, of_match);
static struct platform_driver sa_ul_driver = {
.probe = sa_ul_probe,
.remove = sa_ul_remove,
.driver = {
.name = "saul-crypto",
.of_match_table = of_match,
},
};
module_platform_driver(sa_ul_driver);
MODULE_LICENSE("GPL v2");