mirror of
https://github.com/torvalds/linux.git
synced 2024-11-18 01:51:53 +00:00
f99ba9add6
Meta area is not included in section_count computation. So the minimum number of total_sections is 1 meanwhile it cannot be greater than segment_count_main. The minimum number of meta segments is 8 (SB + 2 (CP + SIT + NAT) + SSA). Signed-off-by: Wang Xiaojun <wangxiaojun11@huawei.com> Reviewed-by: Chao Yu <yuchao0@huawei.com> Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
904 lines
27 KiB
C
904 lines
27 KiB
C
/* SPDX-License-Identifier: GPL-2.0 */
|
|
/*
|
|
* fs/f2fs/segment.h
|
|
*
|
|
* Copyright (c) 2012 Samsung Electronics Co., Ltd.
|
|
* http://www.samsung.com/
|
|
*/
|
|
#include <linux/blkdev.h>
|
|
#include <linux/backing-dev.h>
|
|
|
|
/* constant macro */
|
|
#define NULL_SEGNO ((unsigned int)(~0))
|
|
#define NULL_SECNO ((unsigned int)(~0))
|
|
|
|
#define DEF_RECLAIM_PREFREE_SEGMENTS 5 /* 5% over total segments */
|
|
#define DEF_MAX_RECLAIM_PREFREE_SEGMENTS 4096 /* 8GB in maximum */
|
|
|
|
#define F2FS_MIN_SEGMENTS 9 /* SB + 2 (CP + SIT + NAT) + SSA + MAIN */
|
|
#define F2FS_MIN_META_SEGMENTS 8 /* SB + 2 (CP + SIT + NAT) + SSA */
|
|
|
|
/* L: Logical segment # in volume, R: Relative segment # in main area */
|
|
#define GET_L2R_SEGNO(free_i, segno) ((segno) - (free_i)->start_segno)
|
|
#define GET_R2L_SEGNO(free_i, segno) ((segno) + (free_i)->start_segno)
|
|
|
|
#define IS_DATASEG(t) ((t) <= CURSEG_COLD_DATA)
|
|
#define IS_NODESEG(t) ((t) >= CURSEG_HOT_NODE && (t) <= CURSEG_COLD_NODE)
|
|
|
|
static inline void sanity_check_seg_type(struct f2fs_sb_info *sbi,
|
|
unsigned short seg_type)
|
|
{
|
|
f2fs_bug_on(sbi, seg_type >= NR_PERSISTENT_LOG);
|
|
}
|
|
|
|
#define IS_HOT(t) ((t) == CURSEG_HOT_NODE || (t) == CURSEG_HOT_DATA)
|
|
#define IS_WARM(t) ((t) == CURSEG_WARM_NODE || (t) == CURSEG_WARM_DATA)
|
|
#define IS_COLD(t) ((t) == CURSEG_COLD_NODE || (t) == CURSEG_COLD_DATA)
|
|
|
|
#define IS_CURSEG(sbi, seg) \
|
|
(((seg) == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno) || \
|
|
((seg) == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno) || \
|
|
((seg) == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno) || \
|
|
((seg) == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno) || \
|
|
((seg) == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno) || \
|
|
((seg) == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno) || \
|
|
((seg) == CURSEG_I(sbi, CURSEG_COLD_DATA_PINNED)->segno) || \
|
|
((seg) == CURSEG_I(sbi, CURSEG_ALL_DATA_ATGC)->segno))
|
|
|
|
#define IS_CURSEC(sbi, secno) \
|
|
(((secno) == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno / \
|
|
(sbi)->segs_per_sec) || \
|
|
((secno) == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno / \
|
|
(sbi)->segs_per_sec) || \
|
|
((secno) == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno / \
|
|
(sbi)->segs_per_sec) || \
|
|
((secno) == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno / \
|
|
(sbi)->segs_per_sec) || \
|
|
((secno) == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno / \
|
|
(sbi)->segs_per_sec) || \
|
|
((secno) == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno / \
|
|
(sbi)->segs_per_sec) || \
|
|
((secno) == CURSEG_I(sbi, CURSEG_COLD_DATA_PINNED)->segno / \
|
|
(sbi)->segs_per_sec) || \
|
|
((secno) == CURSEG_I(sbi, CURSEG_ALL_DATA_ATGC)->segno / \
|
|
(sbi)->segs_per_sec))
|
|
|
|
#define MAIN_BLKADDR(sbi) \
|
|
(SM_I(sbi) ? SM_I(sbi)->main_blkaddr : \
|
|
le32_to_cpu(F2FS_RAW_SUPER(sbi)->main_blkaddr))
|
|
#define SEG0_BLKADDR(sbi) \
|
|
(SM_I(sbi) ? SM_I(sbi)->seg0_blkaddr : \
|
|
le32_to_cpu(F2FS_RAW_SUPER(sbi)->segment0_blkaddr))
|
|
|
|
#define MAIN_SEGS(sbi) (SM_I(sbi)->main_segments)
|
|
#define MAIN_SECS(sbi) ((sbi)->total_sections)
|
|
|
|
#define TOTAL_SEGS(sbi) \
|
|
(SM_I(sbi) ? SM_I(sbi)->segment_count : \
|
|
le32_to_cpu(F2FS_RAW_SUPER(sbi)->segment_count))
|
|
#define TOTAL_BLKS(sbi) (TOTAL_SEGS(sbi) << (sbi)->log_blocks_per_seg)
|
|
|
|
#define MAX_BLKADDR(sbi) (SEG0_BLKADDR(sbi) + TOTAL_BLKS(sbi))
|
|
#define SEGMENT_SIZE(sbi) (1ULL << ((sbi)->log_blocksize + \
|
|
(sbi)->log_blocks_per_seg))
|
|
|
|
#define START_BLOCK(sbi, segno) (SEG0_BLKADDR(sbi) + \
|
|
(GET_R2L_SEGNO(FREE_I(sbi), segno) << (sbi)->log_blocks_per_seg))
|
|
|
|
#define NEXT_FREE_BLKADDR(sbi, curseg) \
|
|
(START_BLOCK(sbi, (curseg)->segno) + (curseg)->next_blkoff)
|
|
|
|
#define GET_SEGOFF_FROM_SEG0(sbi, blk_addr) ((blk_addr) - SEG0_BLKADDR(sbi))
|
|
#define GET_SEGNO_FROM_SEG0(sbi, blk_addr) \
|
|
(GET_SEGOFF_FROM_SEG0(sbi, blk_addr) >> (sbi)->log_blocks_per_seg)
|
|
#define GET_BLKOFF_FROM_SEG0(sbi, blk_addr) \
|
|
(GET_SEGOFF_FROM_SEG0(sbi, blk_addr) & ((sbi)->blocks_per_seg - 1))
|
|
|
|
#define GET_SEGNO(sbi, blk_addr) \
|
|
((!__is_valid_data_blkaddr(blk_addr)) ? \
|
|
NULL_SEGNO : GET_L2R_SEGNO(FREE_I(sbi), \
|
|
GET_SEGNO_FROM_SEG0(sbi, blk_addr)))
|
|
#define BLKS_PER_SEC(sbi) \
|
|
((sbi)->segs_per_sec * (sbi)->blocks_per_seg)
|
|
#define GET_SEC_FROM_SEG(sbi, segno) \
|
|
((segno) / (sbi)->segs_per_sec)
|
|
#define GET_SEG_FROM_SEC(sbi, secno) \
|
|
((secno) * (sbi)->segs_per_sec)
|
|
#define GET_ZONE_FROM_SEC(sbi, secno) \
|
|
((secno) / (sbi)->secs_per_zone)
|
|
#define GET_ZONE_FROM_SEG(sbi, segno) \
|
|
GET_ZONE_FROM_SEC(sbi, GET_SEC_FROM_SEG(sbi, segno))
|
|
|
|
#define GET_SUM_BLOCK(sbi, segno) \
|
|
((sbi)->sm_info->ssa_blkaddr + (segno))
|
|
|
|
#define GET_SUM_TYPE(footer) ((footer)->entry_type)
|
|
#define SET_SUM_TYPE(footer, type) ((footer)->entry_type = (type))
|
|
|
|
#define SIT_ENTRY_OFFSET(sit_i, segno) \
|
|
((segno) % (sit_i)->sents_per_block)
|
|
#define SIT_BLOCK_OFFSET(segno) \
|
|
((segno) / SIT_ENTRY_PER_BLOCK)
|
|
#define START_SEGNO(segno) \
|
|
(SIT_BLOCK_OFFSET(segno) * SIT_ENTRY_PER_BLOCK)
|
|
#define SIT_BLK_CNT(sbi) \
|
|
DIV_ROUND_UP(MAIN_SEGS(sbi), SIT_ENTRY_PER_BLOCK)
|
|
#define f2fs_bitmap_size(nr) \
|
|
(BITS_TO_LONGS(nr) * sizeof(unsigned long))
|
|
|
|
#define SECTOR_FROM_BLOCK(blk_addr) \
|
|
(((sector_t)blk_addr) << F2FS_LOG_SECTORS_PER_BLOCK)
|
|
#define SECTOR_TO_BLOCK(sectors) \
|
|
((sectors) >> F2FS_LOG_SECTORS_PER_BLOCK)
|
|
|
|
/*
|
|
* indicate a block allocation direction: RIGHT and LEFT.
|
|
* RIGHT means allocating new sections towards the end of volume.
|
|
* LEFT means the opposite direction.
|
|
*/
|
|
enum {
|
|
ALLOC_RIGHT = 0,
|
|
ALLOC_LEFT
|
|
};
|
|
|
|
/*
|
|
* In the victim_sel_policy->alloc_mode, there are two block allocation modes.
|
|
* LFS writes data sequentially with cleaning operations.
|
|
* SSR (Slack Space Recycle) reuses obsolete space without cleaning operations.
|
|
* AT_SSR (Age Threshold based Slack Space Recycle) merges fragments into
|
|
* fragmented segment which has similar aging degree.
|
|
*/
|
|
enum {
|
|
LFS = 0,
|
|
SSR,
|
|
AT_SSR,
|
|
};
|
|
|
|
/*
|
|
* In the victim_sel_policy->gc_mode, there are two gc, aka cleaning, modes.
|
|
* GC_CB is based on cost-benefit algorithm.
|
|
* GC_GREEDY is based on greedy algorithm.
|
|
* GC_AT is based on age-threshold algorithm.
|
|
*/
|
|
enum {
|
|
GC_CB = 0,
|
|
GC_GREEDY,
|
|
GC_AT,
|
|
ALLOC_NEXT,
|
|
FLUSH_DEVICE,
|
|
MAX_GC_POLICY,
|
|
};
|
|
|
|
/*
|
|
* BG_GC means the background cleaning job.
|
|
* FG_GC means the on-demand cleaning job.
|
|
* FORCE_FG_GC means on-demand cleaning job in background.
|
|
*/
|
|
enum {
|
|
BG_GC = 0,
|
|
FG_GC,
|
|
FORCE_FG_GC,
|
|
};
|
|
|
|
/* for a function parameter to select a victim segment */
|
|
struct victim_sel_policy {
|
|
int alloc_mode; /* LFS or SSR */
|
|
int gc_mode; /* GC_CB or GC_GREEDY */
|
|
unsigned long *dirty_bitmap; /* dirty segment/section bitmap */
|
|
unsigned int max_search; /*
|
|
* maximum # of segments/sections
|
|
* to search
|
|
*/
|
|
unsigned int offset; /* last scanned bitmap offset */
|
|
unsigned int ofs_unit; /* bitmap search unit */
|
|
unsigned int min_cost; /* minimum cost */
|
|
unsigned long long oldest_age; /* oldest age of segments having the same min cost */
|
|
unsigned int min_segno; /* segment # having min. cost */
|
|
unsigned long long age; /* mtime of GCed section*/
|
|
unsigned long long age_threshold;/* age threshold */
|
|
};
|
|
|
|
struct seg_entry {
|
|
unsigned int type:6; /* segment type like CURSEG_XXX_TYPE */
|
|
unsigned int valid_blocks:10; /* # of valid blocks */
|
|
unsigned int ckpt_valid_blocks:10; /* # of valid blocks last cp */
|
|
unsigned int padding:6; /* padding */
|
|
unsigned char *cur_valid_map; /* validity bitmap of blocks */
|
|
#ifdef CONFIG_F2FS_CHECK_FS
|
|
unsigned char *cur_valid_map_mir; /* mirror of current valid bitmap */
|
|
#endif
|
|
/*
|
|
* # of valid blocks and the validity bitmap stored in the last
|
|
* checkpoint pack. This information is used by the SSR mode.
|
|
*/
|
|
unsigned char *ckpt_valid_map; /* validity bitmap of blocks last cp */
|
|
unsigned char *discard_map;
|
|
unsigned long long mtime; /* modification time of the segment */
|
|
};
|
|
|
|
struct sec_entry {
|
|
unsigned int valid_blocks; /* # of valid blocks in a section */
|
|
};
|
|
|
|
struct segment_allocation {
|
|
void (*allocate_segment)(struct f2fs_sb_info *, int, bool);
|
|
};
|
|
|
|
#define MAX_SKIP_GC_COUNT 16
|
|
|
|
struct inmem_pages {
|
|
struct list_head list;
|
|
struct page *page;
|
|
block_t old_addr; /* for revoking when fail to commit */
|
|
};
|
|
|
|
struct sit_info {
|
|
const struct segment_allocation *s_ops;
|
|
|
|
block_t sit_base_addr; /* start block address of SIT area */
|
|
block_t sit_blocks; /* # of blocks used by SIT area */
|
|
block_t written_valid_blocks; /* # of valid blocks in main area */
|
|
char *bitmap; /* all bitmaps pointer */
|
|
char *sit_bitmap; /* SIT bitmap pointer */
|
|
#ifdef CONFIG_F2FS_CHECK_FS
|
|
char *sit_bitmap_mir; /* SIT bitmap mirror */
|
|
|
|
/* bitmap of segments to be ignored by GC in case of errors */
|
|
unsigned long *invalid_segmap;
|
|
#endif
|
|
unsigned int bitmap_size; /* SIT bitmap size */
|
|
|
|
unsigned long *tmp_map; /* bitmap for temporal use */
|
|
unsigned long *dirty_sentries_bitmap; /* bitmap for dirty sentries */
|
|
unsigned int dirty_sentries; /* # of dirty sentries */
|
|
unsigned int sents_per_block; /* # of SIT entries per block */
|
|
struct rw_semaphore sentry_lock; /* to protect SIT cache */
|
|
struct seg_entry *sentries; /* SIT segment-level cache */
|
|
struct sec_entry *sec_entries; /* SIT section-level cache */
|
|
|
|
/* for cost-benefit algorithm in cleaning procedure */
|
|
unsigned long long elapsed_time; /* elapsed time after mount */
|
|
unsigned long long mounted_time; /* mount time */
|
|
unsigned long long min_mtime; /* min. modification time */
|
|
unsigned long long max_mtime; /* max. modification time */
|
|
unsigned long long dirty_min_mtime; /* rerange candidates in GC_AT */
|
|
unsigned long long dirty_max_mtime; /* rerange candidates in GC_AT */
|
|
|
|
unsigned int last_victim[MAX_GC_POLICY]; /* last victim segment # */
|
|
};
|
|
|
|
struct free_segmap_info {
|
|
unsigned int start_segno; /* start segment number logically */
|
|
unsigned int free_segments; /* # of free segments */
|
|
unsigned int free_sections; /* # of free sections */
|
|
spinlock_t segmap_lock; /* free segmap lock */
|
|
unsigned long *free_segmap; /* free segment bitmap */
|
|
unsigned long *free_secmap; /* free section bitmap */
|
|
};
|
|
|
|
/* Notice: The order of dirty type is same with CURSEG_XXX in f2fs.h */
|
|
enum dirty_type {
|
|
DIRTY_HOT_DATA, /* dirty segments assigned as hot data logs */
|
|
DIRTY_WARM_DATA, /* dirty segments assigned as warm data logs */
|
|
DIRTY_COLD_DATA, /* dirty segments assigned as cold data logs */
|
|
DIRTY_HOT_NODE, /* dirty segments assigned as hot node logs */
|
|
DIRTY_WARM_NODE, /* dirty segments assigned as warm node logs */
|
|
DIRTY_COLD_NODE, /* dirty segments assigned as cold node logs */
|
|
DIRTY, /* to count # of dirty segments */
|
|
PRE, /* to count # of entirely obsolete segments */
|
|
NR_DIRTY_TYPE
|
|
};
|
|
|
|
struct dirty_seglist_info {
|
|
const struct victim_selection *v_ops; /* victim selction operation */
|
|
unsigned long *dirty_segmap[NR_DIRTY_TYPE];
|
|
unsigned long *dirty_secmap;
|
|
struct mutex seglist_lock; /* lock for segment bitmaps */
|
|
int nr_dirty[NR_DIRTY_TYPE]; /* # of dirty segments */
|
|
unsigned long *victim_secmap; /* background GC victims */
|
|
};
|
|
|
|
/* victim selection function for cleaning and SSR */
|
|
struct victim_selection {
|
|
int (*get_victim)(struct f2fs_sb_info *, unsigned int *,
|
|
int, int, char, unsigned long long);
|
|
};
|
|
|
|
/* for active log information */
|
|
struct curseg_info {
|
|
struct mutex curseg_mutex; /* lock for consistency */
|
|
struct f2fs_summary_block *sum_blk; /* cached summary block */
|
|
struct rw_semaphore journal_rwsem; /* protect journal area */
|
|
struct f2fs_journal *journal; /* cached journal info */
|
|
unsigned char alloc_type; /* current allocation type */
|
|
unsigned short seg_type; /* segment type like CURSEG_XXX_TYPE */
|
|
unsigned int segno; /* current segment number */
|
|
unsigned short next_blkoff; /* next block offset to write */
|
|
unsigned int zone; /* current zone number */
|
|
unsigned int next_segno; /* preallocated segment */
|
|
bool inited; /* indicate inmem log is inited */
|
|
};
|
|
|
|
struct sit_entry_set {
|
|
struct list_head set_list; /* link with all sit sets */
|
|
unsigned int start_segno; /* start segno of sits in set */
|
|
unsigned int entry_cnt; /* the # of sit entries in set */
|
|
};
|
|
|
|
/*
|
|
* inline functions
|
|
*/
|
|
static inline struct curseg_info *CURSEG_I(struct f2fs_sb_info *sbi, int type)
|
|
{
|
|
return (struct curseg_info *)(SM_I(sbi)->curseg_array + type);
|
|
}
|
|
|
|
static inline struct seg_entry *get_seg_entry(struct f2fs_sb_info *sbi,
|
|
unsigned int segno)
|
|
{
|
|
struct sit_info *sit_i = SIT_I(sbi);
|
|
return &sit_i->sentries[segno];
|
|
}
|
|
|
|
static inline struct sec_entry *get_sec_entry(struct f2fs_sb_info *sbi,
|
|
unsigned int segno)
|
|
{
|
|
struct sit_info *sit_i = SIT_I(sbi);
|
|
return &sit_i->sec_entries[GET_SEC_FROM_SEG(sbi, segno)];
|
|
}
|
|
|
|
static inline unsigned int get_valid_blocks(struct f2fs_sb_info *sbi,
|
|
unsigned int segno, bool use_section)
|
|
{
|
|
/*
|
|
* In order to get # of valid blocks in a section instantly from many
|
|
* segments, f2fs manages two counting structures separately.
|
|
*/
|
|
if (use_section && __is_large_section(sbi))
|
|
return get_sec_entry(sbi, segno)->valid_blocks;
|
|
else
|
|
return get_seg_entry(sbi, segno)->valid_blocks;
|
|
}
|
|
|
|
static inline unsigned int get_ckpt_valid_blocks(struct f2fs_sb_info *sbi,
|
|
unsigned int segno)
|
|
{
|
|
return get_seg_entry(sbi, segno)->ckpt_valid_blocks;
|
|
}
|
|
|
|
static inline void seg_info_from_raw_sit(struct seg_entry *se,
|
|
struct f2fs_sit_entry *rs)
|
|
{
|
|
se->valid_blocks = GET_SIT_VBLOCKS(rs);
|
|
se->ckpt_valid_blocks = GET_SIT_VBLOCKS(rs);
|
|
memcpy(se->cur_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
|
|
memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
|
|
#ifdef CONFIG_F2FS_CHECK_FS
|
|
memcpy(se->cur_valid_map_mir, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
|
|
#endif
|
|
se->type = GET_SIT_TYPE(rs);
|
|
se->mtime = le64_to_cpu(rs->mtime);
|
|
}
|
|
|
|
static inline void __seg_info_to_raw_sit(struct seg_entry *se,
|
|
struct f2fs_sit_entry *rs)
|
|
{
|
|
unsigned short raw_vblocks = (se->type << SIT_VBLOCKS_SHIFT) |
|
|
se->valid_blocks;
|
|
rs->vblocks = cpu_to_le16(raw_vblocks);
|
|
memcpy(rs->valid_map, se->cur_valid_map, SIT_VBLOCK_MAP_SIZE);
|
|
rs->mtime = cpu_to_le64(se->mtime);
|
|
}
|
|
|
|
static inline void seg_info_to_sit_page(struct f2fs_sb_info *sbi,
|
|
struct page *page, unsigned int start)
|
|
{
|
|
struct f2fs_sit_block *raw_sit;
|
|
struct seg_entry *se;
|
|
struct f2fs_sit_entry *rs;
|
|
unsigned int end = min(start + SIT_ENTRY_PER_BLOCK,
|
|
(unsigned long)MAIN_SEGS(sbi));
|
|
int i;
|
|
|
|
raw_sit = (struct f2fs_sit_block *)page_address(page);
|
|
memset(raw_sit, 0, PAGE_SIZE);
|
|
for (i = 0; i < end - start; i++) {
|
|
rs = &raw_sit->entries[i];
|
|
se = get_seg_entry(sbi, start + i);
|
|
__seg_info_to_raw_sit(se, rs);
|
|
}
|
|
}
|
|
|
|
static inline void seg_info_to_raw_sit(struct seg_entry *se,
|
|
struct f2fs_sit_entry *rs)
|
|
{
|
|
__seg_info_to_raw_sit(se, rs);
|
|
|
|
memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
|
|
se->ckpt_valid_blocks = se->valid_blocks;
|
|
}
|
|
|
|
static inline unsigned int find_next_inuse(struct free_segmap_info *free_i,
|
|
unsigned int max, unsigned int segno)
|
|
{
|
|
unsigned int ret;
|
|
spin_lock(&free_i->segmap_lock);
|
|
ret = find_next_bit(free_i->free_segmap, max, segno);
|
|
spin_unlock(&free_i->segmap_lock);
|
|
return ret;
|
|
}
|
|
|
|
static inline void __set_free(struct f2fs_sb_info *sbi, unsigned int segno)
|
|
{
|
|
struct free_segmap_info *free_i = FREE_I(sbi);
|
|
unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
|
|
unsigned int start_segno = GET_SEG_FROM_SEC(sbi, secno);
|
|
unsigned int next;
|
|
unsigned int usable_segs = f2fs_usable_segs_in_sec(sbi, segno);
|
|
|
|
spin_lock(&free_i->segmap_lock);
|
|
clear_bit(segno, free_i->free_segmap);
|
|
free_i->free_segments++;
|
|
|
|
next = find_next_bit(free_i->free_segmap,
|
|
start_segno + sbi->segs_per_sec, start_segno);
|
|
if (next >= start_segno + usable_segs) {
|
|
clear_bit(secno, free_i->free_secmap);
|
|
free_i->free_sections++;
|
|
}
|
|
spin_unlock(&free_i->segmap_lock);
|
|
}
|
|
|
|
static inline void __set_inuse(struct f2fs_sb_info *sbi,
|
|
unsigned int segno)
|
|
{
|
|
struct free_segmap_info *free_i = FREE_I(sbi);
|
|
unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
|
|
|
|
set_bit(segno, free_i->free_segmap);
|
|
free_i->free_segments--;
|
|
if (!test_and_set_bit(secno, free_i->free_secmap))
|
|
free_i->free_sections--;
|
|
}
|
|
|
|
static inline void __set_test_and_free(struct f2fs_sb_info *sbi,
|
|
unsigned int segno, bool inmem)
|
|
{
|
|
struct free_segmap_info *free_i = FREE_I(sbi);
|
|
unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
|
|
unsigned int start_segno = GET_SEG_FROM_SEC(sbi, secno);
|
|
unsigned int next;
|
|
unsigned int usable_segs = f2fs_usable_segs_in_sec(sbi, segno);
|
|
|
|
spin_lock(&free_i->segmap_lock);
|
|
if (test_and_clear_bit(segno, free_i->free_segmap)) {
|
|
free_i->free_segments++;
|
|
|
|
if (!inmem && IS_CURSEC(sbi, secno))
|
|
goto skip_free;
|
|
next = find_next_bit(free_i->free_segmap,
|
|
start_segno + sbi->segs_per_sec, start_segno);
|
|
if (next >= start_segno + usable_segs) {
|
|
if (test_and_clear_bit(secno, free_i->free_secmap))
|
|
free_i->free_sections++;
|
|
}
|
|
}
|
|
skip_free:
|
|
spin_unlock(&free_i->segmap_lock);
|
|
}
|
|
|
|
static inline void __set_test_and_inuse(struct f2fs_sb_info *sbi,
|
|
unsigned int segno)
|
|
{
|
|
struct free_segmap_info *free_i = FREE_I(sbi);
|
|
unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
|
|
|
|
spin_lock(&free_i->segmap_lock);
|
|
if (!test_and_set_bit(segno, free_i->free_segmap)) {
|
|
free_i->free_segments--;
|
|
if (!test_and_set_bit(secno, free_i->free_secmap))
|
|
free_i->free_sections--;
|
|
}
|
|
spin_unlock(&free_i->segmap_lock);
|
|
}
|
|
|
|
static inline void get_sit_bitmap(struct f2fs_sb_info *sbi,
|
|
void *dst_addr)
|
|
{
|
|
struct sit_info *sit_i = SIT_I(sbi);
|
|
|
|
#ifdef CONFIG_F2FS_CHECK_FS
|
|
if (memcmp(sit_i->sit_bitmap, sit_i->sit_bitmap_mir,
|
|
sit_i->bitmap_size))
|
|
f2fs_bug_on(sbi, 1);
|
|
#endif
|
|
memcpy(dst_addr, sit_i->sit_bitmap, sit_i->bitmap_size);
|
|
}
|
|
|
|
static inline block_t written_block_count(struct f2fs_sb_info *sbi)
|
|
{
|
|
return SIT_I(sbi)->written_valid_blocks;
|
|
}
|
|
|
|
static inline unsigned int free_segments(struct f2fs_sb_info *sbi)
|
|
{
|
|
return FREE_I(sbi)->free_segments;
|
|
}
|
|
|
|
static inline unsigned int reserved_segments(struct f2fs_sb_info *sbi)
|
|
{
|
|
return SM_I(sbi)->reserved_segments;
|
|
}
|
|
|
|
static inline unsigned int free_sections(struct f2fs_sb_info *sbi)
|
|
{
|
|
return FREE_I(sbi)->free_sections;
|
|
}
|
|
|
|
static inline unsigned int prefree_segments(struct f2fs_sb_info *sbi)
|
|
{
|
|
return DIRTY_I(sbi)->nr_dirty[PRE];
|
|
}
|
|
|
|
static inline unsigned int dirty_segments(struct f2fs_sb_info *sbi)
|
|
{
|
|
return DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_DATA] +
|
|
DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_DATA] +
|
|
DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_DATA] +
|
|
DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_NODE] +
|
|
DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_NODE] +
|
|
DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_NODE];
|
|
}
|
|
|
|
static inline int overprovision_segments(struct f2fs_sb_info *sbi)
|
|
{
|
|
return SM_I(sbi)->ovp_segments;
|
|
}
|
|
|
|
static inline int reserved_sections(struct f2fs_sb_info *sbi)
|
|
{
|
|
return GET_SEC_FROM_SEG(sbi, reserved_segments(sbi));
|
|
}
|
|
|
|
static inline bool has_curseg_enough_space(struct f2fs_sb_info *sbi)
|
|
{
|
|
unsigned int node_blocks = get_pages(sbi, F2FS_DIRTY_NODES) +
|
|
get_pages(sbi, F2FS_DIRTY_DENTS);
|
|
unsigned int dent_blocks = get_pages(sbi, F2FS_DIRTY_DENTS);
|
|
unsigned int segno, left_blocks;
|
|
int i;
|
|
|
|
/* check current node segment */
|
|
for (i = CURSEG_HOT_NODE; i <= CURSEG_COLD_NODE; i++) {
|
|
segno = CURSEG_I(sbi, i)->segno;
|
|
left_blocks = f2fs_usable_blks_in_seg(sbi, segno) -
|
|
get_seg_entry(sbi, segno)->ckpt_valid_blocks;
|
|
|
|
if (node_blocks > left_blocks)
|
|
return false;
|
|
}
|
|
|
|
/* check current data segment */
|
|
segno = CURSEG_I(sbi, CURSEG_HOT_DATA)->segno;
|
|
left_blocks = f2fs_usable_blks_in_seg(sbi, segno) -
|
|
get_seg_entry(sbi, segno)->ckpt_valid_blocks;
|
|
if (dent_blocks > left_blocks)
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
static inline bool has_not_enough_free_secs(struct f2fs_sb_info *sbi,
|
|
int freed, int needed)
|
|
{
|
|
int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
|
|
int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
|
|
int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA);
|
|
|
|
if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
|
|
return false;
|
|
|
|
if (free_sections(sbi) + freed == reserved_sections(sbi) + needed &&
|
|
has_curseg_enough_space(sbi))
|
|
return false;
|
|
return (free_sections(sbi) + freed) <=
|
|
(node_secs + 2 * dent_secs + imeta_secs +
|
|
reserved_sections(sbi) + needed);
|
|
}
|
|
|
|
static inline bool f2fs_is_checkpoint_ready(struct f2fs_sb_info *sbi)
|
|
{
|
|
if (likely(!is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
|
|
return true;
|
|
if (likely(!has_not_enough_free_secs(sbi, 0, 0)))
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
static inline bool excess_prefree_segs(struct f2fs_sb_info *sbi)
|
|
{
|
|
return prefree_segments(sbi) > SM_I(sbi)->rec_prefree_segments;
|
|
}
|
|
|
|
static inline int utilization(struct f2fs_sb_info *sbi)
|
|
{
|
|
return div_u64((u64)valid_user_blocks(sbi) * 100,
|
|
sbi->user_block_count);
|
|
}
|
|
|
|
/*
|
|
* Sometimes f2fs may be better to drop out-of-place update policy.
|
|
* And, users can control the policy through sysfs entries.
|
|
* There are five policies with triggering conditions as follows.
|
|
* F2FS_IPU_FORCE - all the time,
|
|
* F2FS_IPU_SSR - if SSR mode is activated,
|
|
* F2FS_IPU_UTIL - if FS utilization is over threashold,
|
|
* F2FS_IPU_SSR_UTIL - if SSR mode is activated and FS utilization is over
|
|
* threashold,
|
|
* F2FS_IPU_FSYNC - activated in fsync path only for high performance flash
|
|
* storages. IPU will be triggered only if the # of dirty
|
|
* pages over min_fsync_blocks. (=default option)
|
|
* F2FS_IPU_ASYNC - do IPU given by asynchronous write requests.
|
|
* F2FS_IPU_NOCACHE - disable IPU bio cache.
|
|
* F2FS_IPUT_DISABLE - disable IPU. (=default option in LFS mode)
|
|
*/
|
|
#define DEF_MIN_IPU_UTIL 70
|
|
#define DEF_MIN_FSYNC_BLOCKS 8
|
|
#define DEF_MIN_HOT_BLOCKS 16
|
|
|
|
#define SMALL_VOLUME_SEGMENTS (16 * 512) /* 16GB */
|
|
|
|
enum {
|
|
F2FS_IPU_FORCE,
|
|
F2FS_IPU_SSR,
|
|
F2FS_IPU_UTIL,
|
|
F2FS_IPU_SSR_UTIL,
|
|
F2FS_IPU_FSYNC,
|
|
F2FS_IPU_ASYNC,
|
|
F2FS_IPU_NOCACHE,
|
|
};
|
|
|
|
static inline unsigned int curseg_segno(struct f2fs_sb_info *sbi,
|
|
int type)
|
|
{
|
|
struct curseg_info *curseg = CURSEG_I(sbi, type);
|
|
return curseg->segno;
|
|
}
|
|
|
|
static inline unsigned char curseg_alloc_type(struct f2fs_sb_info *sbi,
|
|
int type)
|
|
{
|
|
struct curseg_info *curseg = CURSEG_I(sbi, type);
|
|
return curseg->alloc_type;
|
|
}
|
|
|
|
static inline unsigned short curseg_blkoff(struct f2fs_sb_info *sbi, int type)
|
|
{
|
|
struct curseg_info *curseg = CURSEG_I(sbi, type);
|
|
return curseg->next_blkoff;
|
|
}
|
|
|
|
static inline void check_seg_range(struct f2fs_sb_info *sbi, unsigned int segno)
|
|
{
|
|
f2fs_bug_on(sbi, segno > TOTAL_SEGS(sbi) - 1);
|
|
}
|
|
|
|
static inline void verify_fio_blkaddr(struct f2fs_io_info *fio)
|
|
{
|
|
struct f2fs_sb_info *sbi = fio->sbi;
|
|
|
|
if (__is_valid_data_blkaddr(fio->old_blkaddr))
|
|
verify_blkaddr(sbi, fio->old_blkaddr, __is_meta_io(fio) ?
|
|
META_GENERIC : DATA_GENERIC);
|
|
verify_blkaddr(sbi, fio->new_blkaddr, __is_meta_io(fio) ?
|
|
META_GENERIC : DATA_GENERIC_ENHANCE);
|
|
}
|
|
|
|
/*
|
|
* Summary block is always treated as an invalid block
|
|
*/
|
|
static inline int check_block_count(struct f2fs_sb_info *sbi,
|
|
int segno, struct f2fs_sit_entry *raw_sit)
|
|
{
|
|
bool is_valid = test_bit_le(0, raw_sit->valid_map) ? true : false;
|
|
int valid_blocks = 0;
|
|
int cur_pos = 0, next_pos;
|
|
unsigned int usable_blks_per_seg = f2fs_usable_blks_in_seg(sbi, segno);
|
|
|
|
/* check bitmap with valid block count */
|
|
do {
|
|
if (is_valid) {
|
|
next_pos = find_next_zero_bit_le(&raw_sit->valid_map,
|
|
usable_blks_per_seg,
|
|
cur_pos);
|
|
valid_blocks += next_pos - cur_pos;
|
|
} else
|
|
next_pos = find_next_bit_le(&raw_sit->valid_map,
|
|
usable_blks_per_seg,
|
|
cur_pos);
|
|
cur_pos = next_pos;
|
|
is_valid = !is_valid;
|
|
} while (cur_pos < usable_blks_per_seg);
|
|
|
|
if (unlikely(GET_SIT_VBLOCKS(raw_sit) != valid_blocks)) {
|
|
f2fs_err(sbi, "Mismatch valid blocks %d vs. %d",
|
|
GET_SIT_VBLOCKS(raw_sit), valid_blocks);
|
|
set_sbi_flag(sbi, SBI_NEED_FSCK);
|
|
return -EFSCORRUPTED;
|
|
}
|
|
|
|
if (usable_blks_per_seg < sbi->blocks_per_seg)
|
|
f2fs_bug_on(sbi, find_next_bit_le(&raw_sit->valid_map,
|
|
sbi->blocks_per_seg,
|
|
usable_blks_per_seg) != sbi->blocks_per_seg);
|
|
|
|
/* check segment usage, and check boundary of a given segment number */
|
|
if (unlikely(GET_SIT_VBLOCKS(raw_sit) > usable_blks_per_seg
|
|
|| segno > TOTAL_SEGS(sbi) - 1)) {
|
|
f2fs_err(sbi, "Wrong valid blocks %d or segno %u",
|
|
GET_SIT_VBLOCKS(raw_sit), segno);
|
|
set_sbi_flag(sbi, SBI_NEED_FSCK);
|
|
return -EFSCORRUPTED;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static inline pgoff_t current_sit_addr(struct f2fs_sb_info *sbi,
|
|
unsigned int start)
|
|
{
|
|
struct sit_info *sit_i = SIT_I(sbi);
|
|
unsigned int offset = SIT_BLOCK_OFFSET(start);
|
|
block_t blk_addr = sit_i->sit_base_addr + offset;
|
|
|
|
check_seg_range(sbi, start);
|
|
|
|
#ifdef CONFIG_F2FS_CHECK_FS
|
|
if (f2fs_test_bit(offset, sit_i->sit_bitmap) !=
|
|
f2fs_test_bit(offset, sit_i->sit_bitmap_mir))
|
|
f2fs_bug_on(sbi, 1);
|
|
#endif
|
|
|
|
/* calculate sit block address */
|
|
if (f2fs_test_bit(offset, sit_i->sit_bitmap))
|
|
blk_addr += sit_i->sit_blocks;
|
|
|
|
return blk_addr;
|
|
}
|
|
|
|
static inline pgoff_t next_sit_addr(struct f2fs_sb_info *sbi,
|
|
pgoff_t block_addr)
|
|
{
|
|
struct sit_info *sit_i = SIT_I(sbi);
|
|
block_addr -= sit_i->sit_base_addr;
|
|
if (block_addr < sit_i->sit_blocks)
|
|
block_addr += sit_i->sit_blocks;
|
|
else
|
|
block_addr -= sit_i->sit_blocks;
|
|
|
|
return block_addr + sit_i->sit_base_addr;
|
|
}
|
|
|
|
static inline void set_to_next_sit(struct sit_info *sit_i, unsigned int start)
|
|
{
|
|
unsigned int block_off = SIT_BLOCK_OFFSET(start);
|
|
|
|
f2fs_change_bit(block_off, sit_i->sit_bitmap);
|
|
#ifdef CONFIG_F2FS_CHECK_FS
|
|
f2fs_change_bit(block_off, sit_i->sit_bitmap_mir);
|
|
#endif
|
|
}
|
|
|
|
static inline unsigned long long get_mtime(struct f2fs_sb_info *sbi,
|
|
bool base_time)
|
|
{
|
|
struct sit_info *sit_i = SIT_I(sbi);
|
|
time64_t diff, now = ktime_get_boottime_seconds();
|
|
|
|
if (now >= sit_i->mounted_time)
|
|
return sit_i->elapsed_time + now - sit_i->mounted_time;
|
|
|
|
/* system time is set to the past */
|
|
if (!base_time) {
|
|
diff = sit_i->mounted_time - now;
|
|
if (sit_i->elapsed_time >= diff)
|
|
return sit_i->elapsed_time - diff;
|
|
return 0;
|
|
}
|
|
return sit_i->elapsed_time;
|
|
}
|
|
|
|
static inline void set_summary(struct f2fs_summary *sum, nid_t nid,
|
|
unsigned int ofs_in_node, unsigned char version)
|
|
{
|
|
sum->nid = cpu_to_le32(nid);
|
|
sum->ofs_in_node = cpu_to_le16(ofs_in_node);
|
|
sum->version = version;
|
|
}
|
|
|
|
static inline block_t start_sum_block(struct f2fs_sb_info *sbi)
|
|
{
|
|
return __start_cp_addr(sbi) +
|
|
le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
|
|
}
|
|
|
|
static inline block_t sum_blk_addr(struct f2fs_sb_info *sbi, int base, int type)
|
|
{
|
|
return __start_cp_addr(sbi) +
|
|
le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_total_block_count)
|
|
- (base + 1) + type;
|
|
}
|
|
|
|
static inline bool sec_usage_check(struct f2fs_sb_info *sbi, unsigned int secno)
|
|
{
|
|
if (IS_CURSEC(sbi, secno) || (sbi->cur_victim_sec == secno))
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* It is very important to gather dirty pages and write at once, so that we can
|
|
* submit a big bio without interfering other data writes.
|
|
* By default, 512 pages for directory data,
|
|
* 512 pages (2MB) * 8 for nodes, and
|
|
* 256 pages * 8 for meta are set.
|
|
*/
|
|
static inline int nr_pages_to_skip(struct f2fs_sb_info *sbi, int type)
|
|
{
|
|
if (sbi->sb->s_bdi->wb.dirty_exceeded)
|
|
return 0;
|
|
|
|
if (type == DATA)
|
|
return sbi->blocks_per_seg;
|
|
else if (type == NODE)
|
|
return 8 * sbi->blocks_per_seg;
|
|
else if (type == META)
|
|
return 8 * BIO_MAX_PAGES;
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* When writing pages, it'd better align nr_to_write for segment size.
|
|
*/
|
|
static inline long nr_pages_to_write(struct f2fs_sb_info *sbi, int type,
|
|
struct writeback_control *wbc)
|
|
{
|
|
long nr_to_write, desired;
|
|
|
|
if (wbc->sync_mode != WB_SYNC_NONE)
|
|
return 0;
|
|
|
|
nr_to_write = wbc->nr_to_write;
|
|
desired = BIO_MAX_PAGES;
|
|
if (type == NODE)
|
|
desired <<= 1;
|
|
|
|
wbc->nr_to_write = desired;
|
|
return desired - nr_to_write;
|
|
}
|
|
|
|
static inline void wake_up_discard_thread(struct f2fs_sb_info *sbi, bool force)
|
|
{
|
|
struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
|
|
bool wakeup = false;
|
|
int i;
|
|
|
|
if (force)
|
|
goto wake_up;
|
|
|
|
mutex_lock(&dcc->cmd_lock);
|
|
for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
|
|
if (i + 1 < dcc->discard_granularity)
|
|
break;
|
|
if (!list_empty(&dcc->pend_list[i])) {
|
|
wakeup = true;
|
|
break;
|
|
}
|
|
}
|
|
mutex_unlock(&dcc->cmd_lock);
|
|
if (!wakeup || !is_idle(sbi, DISCARD_TIME))
|
|
return;
|
|
wake_up:
|
|
dcc->discard_wake = 1;
|
|
wake_up_interruptible_all(&dcc->discard_wait_queue);
|
|
}
|