linux/drivers/crypto/ccree/cc_cipher.c
dingsenjie b2cd1d812b crypto: ccree - fix spelling typo of allocated
allocted -> allocated

Signed-off-by: dingsenjie <dingsenjie@yulong.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2021-02-05 14:31:35 +11:00

1510 lines
41 KiB
C

// SPDX-License-Identifier: GPL-2.0
/* Copyright (C) 2012-2019 ARM Limited (or its affiliates). */
#include <linux/kernel.h>
#include <linux/module.h>
#include <crypto/algapi.h>
#include <crypto/internal/skcipher.h>
#include <crypto/internal/des.h>
#include <crypto/xts.h>
#include <crypto/sm4.h>
#include <crypto/scatterwalk.h>
#include "cc_driver.h"
#include "cc_lli_defs.h"
#include "cc_buffer_mgr.h"
#include "cc_cipher.h"
#include "cc_request_mgr.h"
#define MAX_SKCIPHER_SEQ_LEN 6
#define template_skcipher template_u.skcipher
struct cc_user_key_info {
u8 *key;
dma_addr_t key_dma_addr;
};
struct cc_hw_key_info {
enum cc_hw_crypto_key key1_slot;
enum cc_hw_crypto_key key2_slot;
};
struct cc_cpp_key_info {
u8 slot;
enum cc_cpp_alg alg;
};
enum cc_key_type {
CC_UNPROTECTED_KEY, /* User key */
CC_HW_PROTECTED_KEY, /* HW (FDE) key */
CC_POLICY_PROTECTED_KEY, /* CPP key */
CC_INVALID_PROTECTED_KEY /* Invalid key */
};
struct cc_cipher_ctx {
struct cc_drvdata *drvdata;
int keylen;
int cipher_mode;
int flow_mode;
unsigned int flags;
enum cc_key_type key_type;
struct cc_user_key_info user;
union {
struct cc_hw_key_info hw;
struct cc_cpp_key_info cpp;
};
struct crypto_shash *shash_tfm;
struct crypto_skcipher *fallback_tfm;
bool fallback_on;
};
static void cc_cipher_complete(struct device *dev, void *cc_req, int err);
static inline enum cc_key_type cc_key_type(struct crypto_tfm *tfm)
{
struct cc_cipher_ctx *ctx_p = crypto_tfm_ctx(tfm);
return ctx_p->key_type;
}
static int validate_keys_sizes(struct cc_cipher_ctx *ctx_p, u32 size)
{
switch (ctx_p->flow_mode) {
case S_DIN_to_AES:
switch (size) {
case CC_AES_128_BIT_KEY_SIZE:
case CC_AES_192_BIT_KEY_SIZE:
if (ctx_p->cipher_mode != DRV_CIPHER_XTS)
return 0;
break;
case CC_AES_256_BIT_KEY_SIZE:
return 0;
case (CC_AES_192_BIT_KEY_SIZE * 2):
case (CC_AES_256_BIT_KEY_SIZE * 2):
if (ctx_p->cipher_mode == DRV_CIPHER_XTS ||
ctx_p->cipher_mode == DRV_CIPHER_ESSIV)
return 0;
break;
default:
break;
}
break;
case S_DIN_to_DES:
if (size == DES3_EDE_KEY_SIZE || size == DES_KEY_SIZE)
return 0;
break;
case S_DIN_to_SM4:
if (size == SM4_KEY_SIZE)
return 0;
break;
default:
break;
}
return -EINVAL;
}
static int validate_data_size(struct cc_cipher_ctx *ctx_p,
unsigned int size)
{
switch (ctx_p->flow_mode) {
case S_DIN_to_AES:
switch (ctx_p->cipher_mode) {
case DRV_CIPHER_XTS:
case DRV_CIPHER_CBC_CTS:
if (size >= AES_BLOCK_SIZE)
return 0;
break;
case DRV_CIPHER_OFB:
case DRV_CIPHER_CTR:
return 0;
case DRV_CIPHER_ECB:
case DRV_CIPHER_CBC:
case DRV_CIPHER_ESSIV:
if (IS_ALIGNED(size, AES_BLOCK_SIZE))
return 0;
break;
default:
break;
}
break;
case S_DIN_to_DES:
if (IS_ALIGNED(size, DES_BLOCK_SIZE))
return 0;
break;
case S_DIN_to_SM4:
switch (ctx_p->cipher_mode) {
case DRV_CIPHER_CTR:
return 0;
case DRV_CIPHER_ECB:
case DRV_CIPHER_CBC:
if (IS_ALIGNED(size, SM4_BLOCK_SIZE))
return 0;
break;
default:
break;
}
break;
default:
break;
}
return -EINVAL;
}
static int cc_cipher_init(struct crypto_tfm *tfm)
{
struct cc_cipher_ctx *ctx_p = crypto_tfm_ctx(tfm);
struct cc_crypto_alg *cc_alg =
container_of(tfm->__crt_alg, struct cc_crypto_alg,
skcipher_alg.base);
struct device *dev = drvdata_to_dev(cc_alg->drvdata);
unsigned int max_key_buf_size = cc_alg->skcipher_alg.max_keysize;
unsigned int fallback_req_size = 0;
dev_dbg(dev, "Initializing context @%p for %s\n", ctx_p,
crypto_tfm_alg_name(tfm));
ctx_p->cipher_mode = cc_alg->cipher_mode;
ctx_p->flow_mode = cc_alg->flow_mode;
ctx_p->drvdata = cc_alg->drvdata;
if (ctx_p->cipher_mode == DRV_CIPHER_ESSIV) {
const char *name = crypto_tfm_alg_name(tfm);
/* Alloc hash tfm for essiv */
ctx_p->shash_tfm = crypto_alloc_shash("sha256", 0, 0);
if (IS_ERR(ctx_p->shash_tfm)) {
dev_err(dev, "Error allocating hash tfm for ESSIV.\n");
return PTR_ERR(ctx_p->shash_tfm);
}
max_key_buf_size <<= 1;
/* Alloc fallabck tfm or essiv when key size != 256 bit */
ctx_p->fallback_tfm =
crypto_alloc_skcipher(name, 0, CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC);
if (IS_ERR(ctx_p->fallback_tfm)) {
/* Note we're still allowing registration with no fallback since it's
* better to have most modes supported than none at all.
*/
dev_warn(dev, "Error allocating fallback algo %s. Some modes may be available.\n",
name);
ctx_p->fallback_tfm = NULL;
} else {
fallback_req_size = crypto_skcipher_reqsize(ctx_p->fallback_tfm);
}
}
crypto_skcipher_set_reqsize(__crypto_skcipher_cast(tfm),
sizeof(struct cipher_req_ctx) + fallback_req_size);
/* Allocate key buffer, cache line aligned */
ctx_p->user.key = kzalloc(max_key_buf_size, GFP_KERNEL);
if (!ctx_p->user.key)
goto free_fallback;
dev_dbg(dev, "Allocated key buffer in context. key=@%p\n",
ctx_p->user.key);
/* Map key buffer */
ctx_p->user.key_dma_addr = dma_map_single(dev, ctx_p->user.key,
max_key_buf_size,
DMA_TO_DEVICE);
if (dma_mapping_error(dev, ctx_p->user.key_dma_addr)) {
dev_err(dev, "Mapping Key %u B at va=%pK for DMA failed\n",
max_key_buf_size, ctx_p->user.key);
goto free_key;
}
dev_dbg(dev, "Mapped key %u B at va=%pK to dma=%pad\n",
max_key_buf_size, ctx_p->user.key, &ctx_p->user.key_dma_addr);
return 0;
free_key:
kfree(ctx_p->user.key);
free_fallback:
crypto_free_skcipher(ctx_p->fallback_tfm);
crypto_free_shash(ctx_p->shash_tfm);
return -ENOMEM;
}
static void cc_cipher_exit(struct crypto_tfm *tfm)
{
struct crypto_alg *alg = tfm->__crt_alg;
struct cc_crypto_alg *cc_alg =
container_of(alg, struct cc_crypto_alg,
skcipher_alg.base);
unsigned int max_key_buf_size = cc_alg->skcipher_alg.max_keysize;
struct cc_cipher_ctx *ctx_p = crypto_tfm_ctx(tfm);
struct device *dev = drvdata_to_dev(ctx_p->drvdata);
dev_dbg(dev, "Clearing context @%p for %s\n",
crypto_tfm_ctx(tfm), crypto_tfm_alg_name(tfm));
if (ctx_p->cipher_mode == DRV_CIPHER_ESSIV) {
/* Free hash tfm for essiv */
crypto_free_shash(ctx_p->shash_tfm);
ctx_p->shash_tfm = NULL;
crypto_free_skcipher(ctx_p->fallback_tfm);
ctx_p->fallback_tfm = NULL;
}
/* Unmap key buffer */
dma_unmap_single(dev, ctx_p->user.key_dma_addr, max_key_buf_size,
DMA_TO_DEVICE);
dev_dbg(dev, "Unmapped key buffer key_dma_addr=%pad\n",
&ctx_p->user.key_dma_addr);
/* Free key buffer in context */
kfree_sensitive(ctx_p->user.key);
dev_dbg(dev, "Free key buffer in context. key=@%p\n", ctx_p->user.key);
}
struct tdes_keys {
u8 key1[DES_KEY_SIZE];
u8 key2[DES_KEY_SIZE];
u8 key3[DES_KEY_SIZE];
};
static enum cc_hw_crypto_key cc_slot_to_hw_key(u8 slot_num)
{
switch (slot_num) {
case 0:
return KFDE0_KEY;
case 1:
return KFDE1_KEY;
case 2:
return KFDE2_KEY;
case 3:
return KFDE3_KEY;
}
return END_OF_KEYS;
}
static u8 cc_slot_to_cpp_key(u8 slot_num)
{
return (slot_num - CC_FIRST_CPP_KEY_SLOT);
}
static inline enum cc_key_type cc_slot_to_key_type(u8 slot_num)
{
if (slot_num >= CC_FIRST_HW_KEY_SLOT && slot_num <= CC_LAST_HW_KEY_SLOT)
return CC_HW_PROTECTED_KEY;
else if (slot_num >= CC_FIRST_CPP_KEY_SLOT &&
slot_num <= CC_LAST_CPP_KEY_SLOT)
return CC_POLICY_PROTECTED_KEY;
else
return CC_INVALID_PROTECTED_KEY;
}
static int cc_cipher_sethkey(struct crypto_skcipher *sktfm, const u8 *key,
unsigned int keylen)
{
struct crypto_tfm *tfm = crypto_skcipher_tfm(sktfm);
struct cc_cipher_ctx *ctx_p = crypto_tfm_ctx(tfm);
struct device *dev = drvdata_to_dev(ctx_p->drvdata);
struct cc_hkey_info hki;
dev_dbg(dev, "Setting HW key in context @%p for %s. keylen=%u\n",
ctx_p, crypto_tfm_alg_name(tfm), keylen);
dump_byte_array("key", key, keylen);
/* STAT_PHASE_0: Init and sanity checks */
/* This check the size of the protected key token */
if (keylen != sizeof(hki)) {
dev_err(dev, "Unsupported protected key size %d.\n", keylen);
return -EINVAL;
}
memcpy(&hki, key, keylen);
/* The real key len for crypto op is the size of the HW key
* referenced by the HW key slot, not the hardware key token
*/
keylen = hki.keylen;
if (validate_keys_sizes(ctx_p, keylen)) {
dev_dbg(dev, "Unsupported key size %d.\n", keylen);
return -EINVAL;
}
ctx_p->keylen = keylen;
ctx_p->fallback_on = false;
switch (cc_slot_to_key_type(hki.hw_key1)) {
case CC_HW_PROTECTED_KEY:
if (ctx_p->flow_mode == S_DIN_to_SM4) {
dev_err(dev, "Only AES HW protected keys are supported\n");
return -EINVAL;
}
ctx_p->hw.key1_slot = cc_slot_to_hw_key(hki.hw_key1);
if (ctx_p->hw.key1_slot == END_OF_KEYS) {
dev_err(dev, "Unsupported hw key1 number (%d)\n",
hki.hw_key1);
return -EINVAL;
}
if (ctx_p->cipher_mode == DRV_CIPHER_XTS ||
ctx_p->cipher_mode == DRV_CIPHER_ESSIV) {
if (hki.hw_key1 == hki.hw_key2) {
dev_err(dev, "Illegal hw key numbers (%d,%d)\n",
hki.hw_key1, hki.hw_key2);
return -EINVAL;
}
ctx_p->hw.key2_slot = cc_slot_to_hw_key(hki.hw_key2);
if (ctx_p->hw.key2_slot == END_OF_KEYS) {
dev_err(dev, "Unsupported hw key2 number (%d)\n",
hki.hw_key2);
return -EINVAL;
}
}
ctx_p->key_type = CC_HW_PROTECTED_KEY;
dev_dbg(dev, "HW protected key %d/%d set\n.",
ctx_p->hw.key1_slot, ctx_p->hw.key2_slot);
break;
case CC_POLICY_PROTECTED_KEY:
if (ctx_p->drvdata->hw_rev < CC_HW_REV_713) {
dev_err(dev, "CPP keys not supported in this hardware revision.\n");
return -EINVAL;
}
if (ctx_p->cipher_mode != DRV_CIPHER_CBC &&
ctx_p->cipher_mode != DRV_CIPHER_CTR) {
dev_err(dev, "CPP keys only supported in CBC or CTR modes.\n");
return -EINVAL;
}
ctx_p->cpp.slot = cc_slot_to_cpp_key(hki.hw_key1);
if (ctx_p->flow_mode == S_DIN_to_AES)
ctx_p->cpp.alg = CC_CPP_AES;
else /* Must be SM4 since due to sethkey registration */
ctx_p->cpp.alg = CC_CPP_SM4;
ctx_p->key_type = CC_POLICY_PROTECTED_KEY;
dev_dbg(dev, "policy protected key alg: %d slot: %d.\n",
ctx_p->cpp.alg, ctx_p->cpp.slot);
break;
default:
dev_err(dev, "Unsupported protected key (%d)\n", hki.hw_key1);
return -EINVAL;
}
return 0;
}
static int cc_cipher_setkey(struct crypto_skcipher *sktfm, const u8 *key,
unsigned int keylen)
{
struct crypto_tfm *tfm = crypto_skcipher_tfm(sktfm);
struct cc_cipher_ctx *ctx_p = crypto_tfm_ctx(tfm);
struct device *dev = drvdata_to_dev(ctx_p->drvdata);
struct cc_crypto_alg *cc_alg =
container_of(tfm->__crt_alg, struct cc_crypto_alg,
skcipher_alg.base);
unsigned int max_key_buf_size = cc_alg->skcipher_alg.max_keysize;
dev_dbg(dev, "Setting key in context @%p for %s. keylen=%u\n",
ctx_p, crypto_tfm_alg_name(tfm), keylen);
dump_byte_array("key", key, keylen);
/* STAT_PHASE_0: Init and sanity checks */
if (validate_keys_sizes(ctx_p, keylen)) {
dev_dbg(dev, "Invalid key size %d.\n", keylen);
return -EINVAL;
}
if (ctx_p->cipher_mode == DRV_CIPHER_ESSIV) {
/* We only support 256 bit ESSIV-CBC-AES keys */
if (keylen != AES_KEYSIZE_256) {
unsigned int flags = crypto_tfm_get_flags(tfm) & CRYPTO_TFM_REQ_MASK;
if (likely(ctx_p->fallback_tfm)) {
ctx_p->fallback_on = true;
crypto_skcipher_clear_flags(ctx_p->fallback_tfm,
CRYPTO_TFM_REQ_MASK);
crypto_skcipher_clear_flags(ctx_p->fallback_tfm, flags);
return crypto_skcipher_setkey(ctx_p->fallback_tfm, key, keylen);
}
dev_dbg(dev, "Unsupported key size %d and no fallback.\n", keylen);
return -EINVAL;
}
/* Internal ESSIV key buffer is double sized */
max_key_buf_size <<= 1;
}
ctx_p->fallback_on = false;
ctx_p->key_type = CC_UNPROTECTED_KEY;
/*
* Verify DES weak keys
* Note that we're dropping the expanded key since the
* HW does the expansion on its own.
*/
if (ctx_p->flow_mode == S_DIN_to_DES) {
if ((keylen == DES3_EDE_KEY_SIZE &&
verify_skcipher_des3_key(sktfm, key)) ||
verify_skcipher_des_key(sktfm, key)) {
dev_dbg(dev, "weak DES key");
return -EINVAL;
}
}
if (ctx_p->cipher_mode == DRV_CIPHER_XTS &&
xts_check_key(tfm, key, keylen)) {
dev_dbg(dev, "weak XTS key");
return -EINVAL;
}
/* STAT_PHASE_1: Copy key to ctx */
dma_sync_single_for_cpu(dev, ctx_p->user.key_dma_addr,
max_key_buf_size, DMA_TO_DEVICE);
memcpy(ctx_p->user.key, key, keylen);
if (ctx_p->cipher_mode == DRV_CIPHER_ESSIV) {
/* sha256 for key2 - use sw implementation */
int err;
err = crypto_shash_tfm_digest(ctx_p->shash_tfm,
ctx_p->user.key, keylen,
ctx_p->user.key + keylen);
if (err) {
dev_err(dev, "Failed to hash ESSIV key.\n");
return err;
}
keylen <<= 1;
}
dma_sync_single_for_device(dev, ctx_p->user.key_dma_addr,
max_key_buf_size, DMA_TO_DEVICE);
ctx_p->keylen = keylen;
dev_dbg(dev, "return safely");
return 0;
}
static int cc_out_setup_mode(struct cc_cipher_ctx *ctx_p)
{
switch (ctx_p->flow_mode) {
case S_DIN_to_AES:
return S_AES_to_DOUT;
case S_DIN_to_DES:
return S_DES_to_DOUT;
case S_DIN_to_SM4:
return S_SM4_to_DOUT;
default:
return ctx_p->flow_mode;
}
}
static void cc_setup_readiv_desc(struct crypto_tfm *tfm,
struct cipher_req_ctx *req_ctx,
unsigned int ivsize, struct cc_hw_desc desc[],
unsigned int *seq_size)
{
struct cc_cipher_ctx *ctx_p = crypto_tfm_ctx(tfm);
struct device *dev = drvdata_to_dev(ctx_p->drvdata);
int cipher_mode = ctx_p->cipher_mode;
int flow_mode = cc_out_setup_mode(ctx_p);
int direction = req_ctx->gen_ctx.op_type;
dma_addr_t iv_dma_addr = req_ctx->gen_ctx.iv_dma_addr;
if (ctx_p->key_type == CC_POLICY_PROTECTED_KEY)
return;
switch (cipher_mode) {
case DRV_CIPHER_ECB:
break;
case DRV_CIPHER_CBC:
case DRV_CIPHER_CBC_CTS:
case DRV_CIPHER_CTR:
case DRV_CIPHER_OFB:
/* Read next IV */
hw_desc_init(&desc[*seq_size]);
set_dout_dlli(&desc[*seq_size], iv_dma_addr, ivsize, NS_BIT, 1);
set_cipher_config0(&desc[*seq_size], direction);
set_flow_mode(&desc[*seq_size], flow_mode);
set_cipher_mode(&desc[*seq_size], cipher_mode);
if (cipher_mode == DRV_CIPHER_CTR ||
cipher_mode == DRV_CIPHER_OFB) {
set_setup_mode(&desc[*seq_size], SETUP_WRITE_STATE1);
} else {
set_setup_mode(&desc[*seq_size], SETUP_WRITE_STATE0);
}
set_queue_last_ind(ctx_p->drvdata, &desc[*seq_size]);
(*seq_size)++;
break;
case DRV_CIPHER_XTS:
case DRV_CIPHER_ESSIV:
/* IV */
hw_desc_init(&desc[*seq_size]);
set_setup_mode(&desc[*seq_size], SETUP_WRITE_STATE1);
set_cipher_mode(&desc[*seq_size], cipher_mode);
set_cipher_config0(&desc[*seq_size], direction);
set_flow_mode(&desc[*seq_size], flow_mode);
set_dout_dlli(&desc[*seq_size], iv_dma_addr, CC_AES_BLOCK_SIZE,
NS_BIT, 1);
set_queue_last_ind(ctx_p->drvdata, &desc[*seq_size]);
(*seq_size)++;
break;
default:
dev_err(dev, "Unsupported cipher mode (%d)\n", cipher_mode);
}
}
static void cc_setup_state_desc(struct crypto_tfm *tfm,
struct cipher_req_ctx *req_ctx,
unsigned int ivsize, unsigned int nbytes,
struct cc_hw_desc desc[],
unsigned int *seq_size)
{
struct cc_cipher_ctx *ctx_p = crypto_tfm_ctx(tfm);
struct device *dev = drvdata_to_dev(ctx_p->drvdata);
int cipher_mode = ctx_p->cipher_mode;
int flow_mode = ctx_p->flow_mode;
int direction = req_ctx->gen_ctx.op_type;
dma_addr_t iv_dma_addr = req_ctx->gen_ctx.iv_dma_addr;
switch (cipher_mode) {
case DRV_CIPHER_ECB:
break;
case DRV_CIPHER_CBC:
case DRV_CIPHER_CBC_CTS:
case DRV_CIPHER_CTR:
case DRV_CIPHER_OFB:
/* Load IV */
hw_desc_init(&desc[*seq_size]);
set_din_type(&desc[*seq_size], DMA_DLLI, iv_dma_addr, ivsize,
NS_BIT);
set_cipher_config0(&desc[*seq_size], direction);
set_flow_mode(&desc[*seq_size], flow_mode);
set_cipher_mode(&desc[*seq_size], cipher_mode);
if (cipher_mode == DRV_CIPHER_CTR ||
cipher_mode == DRV_CIPHER_OFB) {
set_setup_mode(&desc[*seq_size], SETUP_LOAD_STATE1);
} else {
set_setup_mode(&desc[*seq_size], SETUP_LOAD_STATE0);
}
(*seq_size)++;
break;
case DRV_CIPHER_XTS:
case DRV_CIPHER_ESSIV:
break;
default:
dev_err(dev, "Unsupported cipher mode (%d)\n", cipher_mode);
}
}
static void cc_setup_xex_state_desc(struct crypto_tfm *tfm,
struct cipher_req_ctx *req_ctx,
unsigned int ivsize, unsigned int nbytes,
struct cc_hw_desc desc[],
unsigned int *seq_size)
{
struct cc_cipher_ctx *ctx_p = crypto_tfm_ctx(tfm);
struct device *dev = drvdata_to_dev(ctx_p->drvdata);
int cipher_mode = ctx_p->cipher_mode;
int flow_mode = ctx_p->flow_mode;
int direction = req_ctx->gen_ctx.op_type;
dma_addr_t key_dma_addr = ctx_p->user.key_dma_addr;
unsigned int key_len = (ctx_p->keylen / 2);
dma_addr_t iv_dma_addr = req_ctx->gen_ctx.iv_dma_addr;
unsigned int key_offset = key_len;
switch (cipher_mode) {
case DRV_CIPHER_ECB:
break;
case DRV_CIPHER_CBC:
case DRV_CIPHER_CBC_CTS:
case DRV_CIPHER_CTR:
case DRV_CIPHER_OFB:
break;
case DRV_CIPHER_XTS:
case DRV_CIPHER_ESSIV:
if (cipher_mode == DRV_CIPHER_ESSIV)
key_len = SHA256_DIGEST_SIZE;
/* load XEX key */
hw_desc_init(&desc[*seq_size]);
set_cipher_mode(&desc[*seq_size], cipher_mode);
set_cipher_config0(&desc[*seq_size], direction);
if (cc_key_type(tfm) == CC_HW_PROTECTED_KEY) {
set_hw_crypto_key(&desc[*seq_size],
ctx_p->hw.key2_slot);
} else {
set_din_type(&desc[*seq_size], DMA_DLLI,
(key_dma_addr + key_offset),
key_len, NS_BIT);
}
set_xex_data_unit_size(&desc[*seq_size], nbytes);
set_flow_mode(&desc[*seq_size], S_DIN_to_AES2);
set_key_size_aes(&desc[*seq_size], key_len);
set_setup_mode(&desc[*seq_size], SETUP_LOAD_XEX_KEY);
(*seq_size)++;
/* Load IV */
hw_desc_init(&desc[*seq_size]);
set_setup_mode(&desc[*seq_size], SETUP_LOAD_STATE1);
set_cipher_mode(&desc[*seq_size], cipher_mode);
set_cipher_config0(&desc[*seq_size], direction);
set_key_size_aes(&desc[*seq_size], key_len);
set_flow_mode(&desc[*seq_size], flow_mode);
set_din_type(&desc[*seq_size], DMA_DLLI, iv_dma_addr,
CC_AES_BLOCK_SIZE, NS_BIT);
(*seq_size)++;
break;
default:
dev_err(dev, "Unsupported cipher mode (%d)\n", cipher_mode);
}
}
static int cc_out_flow_mode(struct cc_cipher_ctx *ctx_p)
{
switch (ctx_p->flow_mode) {
case S_DIN_to_AES:
return DIN_AES_DOUT;
case S_DIN_to_DES:
return DIN_DES_DOUT;
case S_DIN_to_SM4:
return DIN_SM4_DOUT;
default:
return ctx_p->flow_mode;
}
}
static void cc_setup_key_desc(struct crypto_tfm *tfm,
struct cipher_req_ctx *req_ctx,
unsigned int nbytes, struct cc_hw_desc desc[],
unsigned int *seq_size)
{
struct cc_cipher_ctx *ctx_p = crypto_tfm_ctx(tfm);
struct device *dev = drvdata_to_dev(ctx_p->drvdata);
int cipher_mode = ctx_p->cipher_mode;
int flow_mode = ctx_p->flow_mode;
int direction = req_ctx->gen_ctx.op_type;
dma_addr_t key_dma_addr = ctx_p->user.key_dma_addr;
unsigned int key_len = ctx_p->keylen;
unsigned int din_size;
switch (cipher_mode) {
case DRV_CIPHER_CBC:
case DRV_CIPHER_CBC_CTS:
case DRV_CIPHER_CTR:
case DRV_CIPHER_OFB:
case DRV_CIPHER_ECB:
/* Load key */
hw_desc_init(&desc[*seq_size]);
set_cipher_mode(&desc[*seq_size], cipher_mode);
set_cipher_config0(&desc[*seq_size], direction);
if (cc_key_type(tfm) == CC_POLICY_PROTECTED_KEY) {
/* We use the AES key size coding for all CPP algs */
set_key_size_aes(&desc[*seq_size], key_len);
set_cpp_crypto_key(&desc[*seq_size], ctx_p->cpp.slot);
flow_mode = cc_out_flow_mode(ctx_p);
} else {
if (flow_mode == S_DIN_to_AES) {
if (cc_key_type(tfm) == CC_HW_PROTECTED_KEY) {
set_hw_crypto_key(&desc[*seq_size],
ctx_p->hw.key1_slot);
} else {
/* CC_POLICY_UNPROTECTED_KEY
* Invalid keys are filtered out in
* sethkey()
*/
din_size = (key_len == 24) ?
AES_MAX_KEY_SIZE : key_len;
set_din_type(&desc[*seq_size], DMA_DLLI,
key_dma_addr, din_size,
NS_BIT);
}
set_key_size_aes(&desc[*seq_size], key_len);
} else {
/*des*/
set_din_type(&desc[*seq_size], DMA_DLLI,
key_dma_addr, key_len, NS_BIT);
set_key_size_des(&desc[*seq_size], key_len);
}
set_setup_mode(&desc[*seq_size], SETUP_LOAD_KEY0);
}
set_flow_mode(&desc[*seq_size], flow_mode);
(*seq_size)++;
break;
case DRV_CIPHER_XTS:
case DRV_CIPHER_ESSIV:
/* Load AES key */
hw_desc_init(&desc[*seq_size]);
set_cipher_mode(&desc[*seq_size], cipher_mode);
set_cipher_config0(&desc[*seq_size], direction);
if (cc_key_type(tfm) == CC_HW_PROTECTED_KEY) {
set_hw_crypto_key(&desc[*seq_size],
ctx_p->hw.key1_slot);
} else {
set_din_type(&desc[*seq_size], DMA_DLLI, key_dma_addr,
(key_len / 2), NS_BIT);
}
set_key_size_aes(&desc[*seq_size], (key_len / 2));
set_flow_mode(&desc[*seq_size], flow_mode);
set_setup_mode(&desc[*seq_size], SETUP_LOAD_KEY0);
(*seq_size)++;
break;
default:
dev_err(dev, "Unsupported cipher mode (%d)\n", cipher_mode);
}
}
static void cc_setup_mlli_desc(struct crypto_tfm *tfm,
struct cipher_req_ctx *req_ctx,
struct scatterlist *dst, struct scatterlist *src,
unsigned int nbytes, void *areq,
struct cc_hw_desc desc[], unsigned int *seq_size)
{
struct cc_cipher_ctx *ctx_p = crypto_tfm_ctx(tfm);
struct device *dev = drvdata_to_dev(ctx_p->drvdata);
if (req_ctx->dma_buf_type == CC_DMA_BUF_MLLI) {
/* bypass */
dev_dbg(dev, " bypass params addr %pad length 0x%X addr 0x%08X\n",
&req_ctx->mlli_params.mlli_dma_addr,
req_ctx->mlli_params.mlli_len,
ctx_p->drvdata->mlli_sram_addr);
hw_desc_init(&desc[*seq_size]);
set_din_type(&desc[*seq_size], DMA_DLLI,
req_ctx->mlli_params.mlli_dma_addr,
req_ctx->mlli_params.mlli_len, NS_BIT);
set_dout_sram(&desc[*seq_size],
ctx_p->drvdata->mlli_sram_addr,
req_ctx->mlli_params.mlli_len);
set_flow_mode(&desc[*seq_size], BYPASS);
(*seq_size)++;
}
}
static void cc_setup_flow_desc(struct crypto_tfm *tfm,
struct cipher_req_ctx *req_ctx,
struct scatterlist *dst, struct scatterlist *src,
unsigned int nbytes, struct cc_hw_desc desc[],
unsigned int *seq_size)
{
struct cc_cipher_ctx *ctx_p = crypto_tfm_ctx(tfm);
struct device *dev = drvdata_to_dev(ctx_p->drvdata);
unsigned int flow_mode = cc_out_flow_mode(ctx_p);
bool last_desc = (ctx_p->key_type == CC_POLICY_PROTECTED_KEY ||
ctx_p->cipher_mode == DRV_CIPHER_ECB);
/* Process */
if (req_ctx->dma_buf_type == CC_DMA_BUF_DLLI) {
dev_dbg(dev, " data params addr %pad length 0x%X\n",
&sg_dma_address(src), nbytes);
dev_dbg(dev, " data params addr %pad length 0x%X\n",
&sg_dma_address(dst), nbytes);
hw_desc_init(&desc[*seq_size]);
set_din_type(&desc[*seq_size], DMA_DLLI, sg_dma_address(src),
nbytes, NS_BIT);
set_dout_dlli(&desc[*seq_size], sg_dma_address(dst),
nbytes, NS_BIT, (!last_desc ? 0 : 1));
if (last_desc)
set_queue_last_ind(ctx_p->drvdata, &desc[*seq_size]);
set_flow_mode(&desc[*seq_size], flow_mode);
(*seq_size)++;
} else {
hw_desc_init(&desc[*seq_size]);
set_din_type(&desc[*seq_size], DMA_MLLI,
ctx_p->drvdata->mlli_sram_addr,
req_ctx->in_mlli_nents, NS_BIT);
if (req_ctx->out_nents == 0) {
dev_dbg(dev, " din/dout params addr 0x%08X addr 0x%08X\n",
ctx_p->drvdata->mlli_sram_addr,
ctx_p->drvdata->mlli_sram_addr);
set_dout_mlli(&desc[*seq_size],
ctx_p->drvdata->mlli_sram_addr,
req_ctx->in_mlli_nents, NS_BIT,
(!last_desc ? 0 : 1));
} else {
dev_dbg(dev, " din/dout params addr 0x%08X addr 0x%08X\n",
ctx_p->drvdata->mlli_sram_addr,
ctx_p->drvdata->mlli_sram_addr +
(u32)LLI_ENTRY_BYTE_SIZE * req_ctx->in_nents);
set_dout_mlli(&desc[*seq_size],
(ctx_p->drvdata->mlli_sram_addr +
(LLI_ENTRY_BYTE_SIZE *
req_ctx->in_mlli_nents)),
req_ctx->out_mlli_nents, NS_BIT,
(!last_desc ? 0 : 1));
}
if (last_desc)
set_queue_last_ind(ctx_p->drvdata, &desc[*seq_size]);
set_flow_mode(&desc[*seq_size], flow_mode);
(*seq_size)++;
}
}
static void cc_cipher_complete(struct device *dev, void *cc_req, int err)
{
struct skcipher_request *req = (struct skcipher_request *)cc_req;
struct scatterlist *dst = req->dst;
struct scatterlist *src = req->src;
struct cipher_req_ctx *req_ctx = skcipher_request_ctx(req);
struct crypto_skcipher *sk_tfm = crypto_skcipher_reqtfm(req);
unsigned int ivsize = crypto_skcipher_ivsize(sk_tfm);
if (err != -EINPROGRESS) {
/* Not a BACKLOG notification */
cc_unmap_cipher_request(dev, req_ctx, ivsize, src, dst);
memcpy(req->iv, req_ctx->iv, ivsize);
kfree_sensitive(req_ctx->iv);
}
skcipher_request_complete(req, err);
}
static int cc_cipher_process(struct skcipher_request *req,
enum drv_crypto_direction direction)
{
struct crypto_skcipher *sk_tfm = crypto_skcipher_reqtfm(req);
struct crypto_tfm *tfm = crypto_skcipher_tfm(sk_tfm);
struct cipher_req_ctx *req_ctx = skcipher_request_ctx(req);
unsigned int ivsize = crypto_skcipher_ivsize(sk_tfm);
struct scatterlist *dst = req->dst;
struct scatterlist *src = req->src;
unsigned int nbytes = req->cryptlen;
void *iv = req->iv;
struct cc_cipher_ctx *ctx_p = crypto_tfm_ctx(tfm);
struct device *dev = drvdata_to_dev(ctx_p->drvdata);
struct cc_hw_desc desc[MAX_SKCIPHER_SEQ_LEN];
struct cc_crypto_req cc_req = {};
int rc;
unsigned int seq_len = 0;
gfp_t flags = cc_gfp_flags(&req->base);
dev_dbg(dev, "%s req=%p iv=%p nbytes=%d\n",
((direction == DRV_CRYPTO_DIRECTION_ENCRYPT) ?
"Encrypt" : "Decrypt"), req, iv, nbytes);
/* STAT_PHASE_0: Init and sanity checks */
if (validate_data_size(ctx_p, nbytes)) {
dev_dbg(dev, "Unsupported data size %d.\n", nbytes);
rc = -EINVAL;
goto exit_process;
}
if (nbytes == 0) {
/* No data to process is valid */
rc = 0;
goto exit_process;
}
if (ctx_p->fallback_on) {
struct skcipher_request *subreq = skcipher_request_ctx(req);
*subreq = *req;
skcipher_request_set_tfm(subreq, ctx_p->fallback_tfm);
if (direction == DRV_CRYPTO_DIRECTION_ENCRYPT)
return crypto_skcipher_encrypt(subreq);
else
return crypto_skcipher_decrypt(subreq);
}
/* The IV we are handed may be allocated from the stack so
* we must copy it to a DMAable buffer before use.
*/
req_ctx->iv = kmemdup(iv, ivsize, flags);
if (!req_ctx->iv) {
rc = -ENOMEM;
goto exit_process;
}
/* Setup request structure */
cc_req.user_cb = cc_cipher_complete;
cc_req.user_arg = req;
/* Setup CPP operation details */
if (ctx_p->key_type == CC_POLICY_PROTECTED_KEY) {
cc_req.cpp.is_cpp = true;
cc_req.cpp.alg = ctx_p->cpp.alg;
cc_req.cpp.slot = ctx_p->cpp.slot;
}
/* Setup request context */
req_ctx->gen_ctx.op_type = direction;
/* STAT_PHASE_1: Map buffers */
rc = cc_map_cipher_request(ctx_p->drvdata, req_ctx, ivsize, nbytes,
req_ctx->iv, src, dst, flags);
if (rc) {
dev_err(dev, "map_request() failed\n");
goto exit_process;
}
/* STAT_PHASE_2: Create sequence */
/* Setup state (IV) */
cc_setup_state_desc(tfm, req_ctx, ivsize, nbytes, desc, &seq_len);
/* Setup MLLI line, if needed */
cc_setup_mlli_desc(tfm, req_ctx, dst, src, nbytes, req, desc, &seq_len);
/* Setup key */
cc_setup_key_desc(tfm, req_ctx, nbytes, desc, &seq_len);
/* Setup state (IV and XEX key) */
cc_setup_xex_state_desc(tfm, req_ctx, ivsize, nbytes, desc, &seq_len);
/* Data processing */
cc_setup_flow_desc(tfm, req_ctx, dst, src, nbytes, desc, &seq_len);
/* Read next IV */
cc_setup_readiv_desc(tfm, req_ctx, ivsize, desc, &seq_len);
/* STAT_PHASE_3: Lock HW and push sequence */
rc = cc_send_request(ctx_p->drvdata, &cc_req, desc, seq_len,
&req->base);
if (rc != -EINPROGRESS && rc != -EBUSY) {
/* Failed to send the request or request completed
* synchronously
*/
cc_unmap_cipher_request(dev, req_ctx, ivsize, src, dst);
}
exit_process:
if (rc != -EINPROGRESS && rc != -EBUSY) {
kfree_sensitive(req_ctx->iv);
}
return rc;
}
static int cc_cipher_encrypt(struct skcipher_request *req)
{
struct cipher_req_ctx *req_ctx = skcipher_request_ctx(req);
memset(req_ctx, 0, sizeof(*req_ctx));
return cc_cipher_process(req, DRV_CRYPTO_DIRECTION_ENCRYPT);
}
static int cc_cipher_decrypt(struct skcipher_request *req)
{
struct cipher_req_ctx *req_ctx = skcipher_request_ctx(req);
memset(req_ctx, 0, sizeof(*req_ctx));
return cc_cipher_process(req, DRV_CRYPTO_DIRECTION_DECRYPT);
}
/* Block cipher alg */
static const struct cc_alg_template skcipher_algs[] = {
{
.name = "xts(paes)",
.driver_name = "xts-paes-ccree",
.blocksize = 1,
.template_skcipher = {
.setkey = cc_cipher_sethkey,
.encrypt = cc_cipher_encrypt,
.decrypt = cc_cipher_decrypt,
.min_keysize = CC_HW_KEY_SIZE,
.max_keysize = CC_HW_KEY_SIZE,
.ivsize = AES_BLOCK_SIZE,
},
.cipher_mode = DRV_CIPHER_XTS,
.flow_mode = S_DIN_to_AES,
.min_hw_rev = CC_HW_REV_630,
.std_body = CC_STD_NIST,
.sec_func = true,
},
{
.name = "essiv(cbc(paes),sha256)",
.driver_name = "essiv-paes-ccree",
.blocksize = AES_BLOCK_SIZE,
.template_skcipher = {
.setkey = cc_cipher_sethkey,
.encrypt = cc_cipher_encrypt,
.decrypt = cc_cipher_decrypt,
.min_keysize = CC_HW_KEY_SIZE,
.max_keysize = CC_HW_KEY_SIZE,
.ivsize = AES_BLOCK_SIZE,
},
.cipher_mode = DRV_CIPHER_ESSIV,
.flow_mode = S_DIN_to_AES,
.min_hw_rev = CC_HW_REV_712,
.std_body = CC_STD_NIST,
.sec_func = true,
},
{
.name = "ecb(paes)",
.driver_name = "ecb-paes-ccree",
.blocksize = AES_BLOCK_SIZE,
.template_skcipher = {
.setkey = cc_cipher_sethkey,
.encrypt = cc_cipher_encrypt,
.decrypt = cc_cipher_decrypt,
.min_keysize = CC_HW_KEY_SIZE,
.max_keysize = CC_HW_KEY_SIZE,
.ivsize = 0,
},
.cipher_mode = DRV_CIPHER_ECB,
.flow_mode = S_DIN_to_AES,
.min_hw_rev = CC_HW_REV_712,
.std_body = CC_STD_NIST,
.sec_func = true,
},
{
.name = "cbc(paes)",
.driver_name = "cbc-paes-ccree",
.blocksize = AES_BLOCK_SIZE,
.template_skcipher = {
.setkey = cc_cipher_sethkey,
.encrypt = cc_cipher_encrypt,
.decrypt = cc_cipher_decrypt,
.min_keysize = CC_HW_KEY_SIZE,
.max_keysize = CC_HW_KEY_SIZE,
.ivsize = AES_BLOCK_SIZE,
},
.cipher_mode = DRV_CIPHER_CBC,
.flow_mode = S_DIN_to_AES,
.min_hw_rev = CC_HW_REV_712,
.std_body = CC_STD_NIST,
.sec_func = true,
},
{
.name = "ofb(paes)",
.driver_name = "ofb-paes-ccree",
.blocksize = AES_BLOCK_SIZE,
.template_skcipher = {
.setkey = cc_cipher_sethkey,
.encrypt = cc_cipher_encrypt,
.decrypt = cc_cipher_decrypt,
.min_keysize = CC_HW_KEY_SIZE,
.max_keysize = CC_HW_KEY_SIZE,
.ivsize = AES_BLOCK_SIZE,
},
.cipher_mode = DRV_CIPHER_OFB,
.flow_mode = S_DIN_to_AES,
.min_hw_rev = CC_HW_REV_712,
.std_body = CC_STD_NIST,
.sec_func = true,
},
{
.name = "cts(cbc(paes))",
.driver_name = "cts-cbc-paes-ccree",
.blocksize = AES_BLOCK_SIZE,
.template_skcipher = {
.setkey = cc_cipher_sethkey,
.encrypt = cc_cipher_encrypt,
.decrypt = cc_cipher_decrypt,
.min_keysize = CC_HW_KEY_SIZE,
.max_keysize = CC_HW_KEY_SIZE,
.ivsize = AES_BLOCK_SIZE,
},
.cipher_mode = DRV_CIPHER_CBC_CTS,
.flow_mode = S_DIN_to_AES,
.min_hw_rev = CC_HW_REV_712,
.std_body = CC_STD_NIST,
.sec_func = true,
},
{
.name = "ctr(paes)",
.driver_name = "ctr-paes-ccree",
.blocksize = 1,
.template_skcipher = {
.setkey = cc_cipher_sethkey,
.encrypt = cc_cipher_encrypt,
.decrypt = cc_cipher_decrypt,
.min_keysize = CC_HW_KEY_SIZE,
.max_keysize = CC_HW_KEY_SIZE,
.ivsize = AES_BLOCK_SIZE,
},
.cipher_mode = DRV_CIPHER_CTR,
.flow_mode = S_DIN_to_AES,
.min_hw_rev = CC_HW_REV_712,
.std_body = CC_STD_NIST,
.sec_func = true,
},
{
/* See https://www.mail-archive.com/linux-crypto@vger.kernel.org/msg40576.html
* for the reason why this differs from the generic
* implementation.
*/
.name = "xts(aes)",
.driver_name = "xts-aes-ccree",
.blocksize = 1,
.template_skcipher = {
.setkey = cc_cipher_setkey,
.encrypt = cc_cipher_encrypt,
.decrypt = cc_cipher_decrypt,
.min_keysize = AES_MIN_KEY_SIZE * 2,
.max_keysize = AES_MAX_KEY_SIZE * 2,
.ivsize = AES_BLOCK_SIZE,
},
.cipher_mode = DRV_CIPHER_XTS,
.flow_mode = S_DIN_to_AES,
.min_hw_rev = CC_HW_REV_630,
.std_body = CC_STD_NIST,
},
{
.name = "essiv(cbc(aes),sha256)",
.driver_name = "essiv-aes-ccree",
.blocksize = AES_BLOCK_SIZE,
.template_skcipher = {
.setkey = cc_cipher_setkey,
.encrypt = cc_cipher_encrypt,
.decrypt = cc_cipher_decrypt,
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.ivsize = AES_BLOCK_SIZE,
},
.cipher_mode = DRV_CIPHER_ESSIV,
.flow_mode = S_DIN_to_AES,
.min_hw_rev = CC_HW_REV_712,
.std_body = CC_STD_NIST,
},
{
.name = "ecb(aes)",
.driver_name = "ecb-aes-ccree",
.blocksize = AES_BLOCK_SIZE,
.template_skcipher = {
.setkey = cc_cipher_setkey,
.encrypt = cc_cipher_encrypt,
.decrypt = cc_cipher_decrypt,
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.ivsize = 0,
},
.cipher_mode = DRV_CIPHER_ECB,
.flow_mode = S_DIN_to_AES,
.min_hw_rev = CC_HW_REV_630,
.std_body = CC_STD_NIST,
},
{
.name = "cbc(aes)",
.driver_name = "cbc-aes-ccree",
.blocksize = AES_BLOCK_SIZE,
.template_skcipher = {
.setkey = cc_cipher_setkey,
.encrypt = cc_cipher_encrypt,
.decrypt = cc_cipher_decrypt,
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.ivsize = AES_BLOCK_SIZE,
},
.cipher_mode = DRV_CIPHER_CBC,
.flow_mode = S_DIN_to_AES,
.min_hw_rev = CC_HW_REV_630,
.std_body = CC_STD_NIST,
},
{
.name = "ofb(aes)",
.driver_name = "ofb-aes-ccree",
.blocksize = 1,
.template_skcipher = {
.setkey = cc_cipher_setkey,
.encrypt = cc_cipher_encrypt,
.decrypt = cc_cipher_decrypt,
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.ivsize = AES_BLOCK_SIZE,
},
.cipher_mode = DRV_CIPHER_OFB,
.flow_mode = S_DIN_to_AES,
.min_hw_rev = CC_HW_REV_630,
.std_body = CC_STD_NIST,
},
{
.name = "cts(cbc(aes))",
.driver_name = "cts-cbc-aes-ccree",
.blocksize = AES_BLOCK_SIZE,
.template_skcipher = {
.setkey = cc_cipher_setkey,
.encrypt = cc_cipher_encrypt,
.decrypt = cc_cipher_decrypt,
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.ivsize = AES_BLOCK_SIZE,
},
.cipher_mode = DRV_CIPHER_CBC_CTS,
.flow_mode = S_DIN_to_AES,
.min_hw_rev = CC_HW_REV_630,
.std_body = CC_STD_NIST,
},
{
.name = "ctr(aes)",
.driver_name = "ctr-aes-ccree",
.blocksize = 1,
.template_skcipher = {
.setkey = cc_cipher_setkey,
.encrypt = cc_cipher_encrypt,
.decrypt = cc_cipher_decrypt,
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.ivsize = AES_BLOCK_SIZE,
},
.cipher_mode = DRV_CIPHER_CTR,
.flow_mode = S_DIN_to_AES,
.min_hw_rev = CC_HW_REV_630,
.std_body = CC_STD_NIST,
},
{
.name = "cbc(des3_ede)",
.driver_name = "cbc-3des-ccree",
.blocksize = DES3_EDE_BLOCK_SIZE,
.template_skcipher = {
.setkey = cc_cipher_setkey,
.encrypt = cc_cipher_encrypt,
.decrypt = cc_cipher_decrypt,
.min_keysize = DES3_EDE_KEY_SIZE,
.max_keysize = DES3_EDE_KEY_SIZE,
.ivsize = DES3_EDE_BLOCK_SIZE,
},
.cipher_mode = DRV_CIPHER_CBC,
.flow_mode = S_DIN_to_DES,
.min_hw_rev = CC_HW_REV_630,
.std_body = CC_STD_NIST,
},
{
.name = "ecb(des3_ede)",
.driver_name = "ecb-3des-ccree",
.blocksize = DES3_EDE_BLOCK_SIZE,
.template_skcipher = {
.setkey = cc_cipher_setkey,
.encrypt = cc_cipher_encrypt,
.decrypt = cc_cipher_decrypt,
.min_keysize = DES3_EDE_KEY_SIZE,
.max_keysize = DES3_EDE_KEY_SIZE,
.ivsize = 0,
},
.cipher_mode = DRV_CIPHER_ECB,
.flow_mode = S_DIN_to_DES,
.min_hw_rev = CC_HW_REV_630,
.std_body = CC_STD_NIST,
},
{
.name = "cbc(des)",
.driver_name = "cbc-des-ccree",
.blocksize = DES_BLOCK_SIZE,
.template_skcipher = {
.setkey = cc_cipher_setkey,
.encrypt = cc_cipher_encrypt,
.decrypt = cc_cipher_decrypt,
.min_keysize = DES_KEY_SIZE,
.max_keysize = DES_KEY_SIZE,
.ivsize = DES_BLOCK_SIZE,
},
.cipher_mode = DRV_CIPHER_CBC,
.flow_mode = S_DIN_to_DES,
.min_hw_rev = CC_HW_REV_630,
.std_body = CC_STD_NIST,
},
{
.name = "ecb(des)",
.driver_name = "ecb-des-ccree",
.blocksize = DES_BLOCK_SIZE,
.template_skcipher = {
.setkey = cc_cipher_setkey,
.encrypt = cc_cipher_encrypt,
.decrypt = cc_cipher_decrypt,
.min_keysize = DES_KEY_SIZE,
.max_keysize = DES_KEY_SIZE,
.ivsize = 0,
},
.cipher_mode = DRV_CIPHER_ECB,
.flow_mode = S_DIN_to_DES,
.min_hw_rev = CC_HW_REV_630,
.std_body = CC_STD_NIST,
},
{
.name = "cbc(sm4)",
.driver_name = "cbc-sm4-ccree",
.blocksize = SM4_BLOCK_SIZE,
.template_skcipher = {
.setkey = cc_cipher_setkey,
.encrypt = cc_cipher_encrypt,
.decrypt = cc_cipher_decrypt,
.min_keysize = SM4_KEY_SIZE,
.max_keysize = SM4_KEY_SIZE,
.ivsize = SM4_BLOCK_SIZE,
},
.cipher_mode = DRV_CIPHER_CBC,
.flow_mode = S_DIN_to_SM4,
.min_hw_rev = CC_HW_REV_713,
.std_body = CC_STD_OSCCA,
},
{
.name = "ecb(sm4)",
.driver_name = "ecb-sm4-ccree",
.blocksize = SM4_BLOCK_SIZE,
.template_skcipher = {
.setkey = cc_cipher_setkey,
.encrypt = cc_cipher_encrypt,
.decrypt = cc_cipher_decrypt,
.min_keysize = SM4_KEY_SIZE,
.max_keysize = SM4_KEY_SIZE,
.ivsize = 0,
},
.cipher_mode = DRV_CIPHER_ECB,
.flow_mode = S_DIN_to_SM4,
.min_hw_rev = CC_HW_REV_713,
.std_body = CC_STD_OSCCA,
},
{
.name = "ctr(sm4)",
.driver_name = "ctr-sm4-ccree",
.blocksize = 1,
.template_skcipher = {
.setkey = cc_cipher_setkey,
.encrypt = cc_cipher_encrypt,
.decrypt = cc_cipher_decrypt,
.min_keysize = SM4_KEY_SIZE,
.max_keysize = SM4_KEY_SIZE,
.ivsize = SM4_BLOCK_SIZE,
},
.cipher_mode = DRV_CIPHER_CTR,
.flow_mode = S_DIN_to_SM4,
.min_hw_rev = CC_HW_REV_713,
.std_body = CC_STD_OSCCA,
},
{
.name = "cbc(psm4)",
.driver_name = "cbc-psm4-ccree",
.blocksize = SM4_BLOCK_SIZE,
.template_skcipher = {
.setkey = cc_cipher_sethkey,
.encrypt = cc_cipher_encrypt,
.decrypt = cc_cipher_decrypt,
.min_keysize = CC_HW_KEY_SIZE,
.max_keysize = CC_HW_KEY_SIZE,
.ivsize = SM4_BLOCK_SIZE,
},
.cipher_mode = DRV_CIPHER_CBC,
.flow_mode = S_DIN_to_SM4,
.min_hw_rev = CC_HW_REV_713,
.std_body = CC_STD_OSCCA,
.sec_func = true,
},
{
.name = "ctr(psm4)",
.driver_name = "ctr-psm4-ccree",
.blocksize = SM4_BLOCK_SIZE,
.template_skcipher = {
.setkey = cc_cipher_sethkey,
.encrypt = cc_cipher_encrypt,
.decrypt = cc_cipher_decrypt,
.min_keysize = CC_HW_KEY_SIZE,
.max_keysize = CC_HW_KEY_SIZE,
.ivsize = SM4_BLOCK_SIZE,
},
.cipher_mode = DRV_CIPHER_CTR,
.flow_mode = S_DIN_to_SM4,
.min_hw_rev = CC_HW_REV_713,
.std_body = CC_STD_OSCCA,
.sec_func = true,
},
};
static struct cc_crypto_alg *cc_create_alg(const struct cc_alg_template *tmpl,
struct device *dev)
{
struct cc_crypto_alg *t_alg;
struct skcipher_alg *alg;
t_alg = devm_kzalloc(dev, sizeof(*t_alg), GFP_KERNEL);
if (!t_alg)
return ERR_PTR(-ENOMEM);
alg = &t_alg->skcipher_alg;
memcpy(alg, &tmpl->template_skcipher, sizeof(*alg));
snprintf(alg->base.cra_name, CRYPTO_MAX_ALG_NAME, "%s", tmpl->name);
snprintf(alg->base.cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s",
tmpl->driver_name);
alg->base.cra_module = THIS_MODULE;
alg->base.cra_priority = CC_CRA_PRIO;
alg->base.cra_blocksize = tmpl->blocksize;
alg->base.cra_alignmask = 0;
alg->base.cra_ctxsize = sizeof(struct cc_cipher_ctx);
alg->base.cra_init = cc_cipher_init;
alg->base.cra_exit = cc_cipher_exit;
alg->base.cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY;
t_alg->cipher_mode = tmpl->cipher_mode;
t_alg->flow_mode = tmpl->flow_mode;
return t_alg;
}
int cc_cipher_free(struct cc_drvdata *drvdata)
{
struct cc_crypto_alg *t_alg, *n;
/* Remove registered algs */
list_for_each_entry_safe(t_alg, n, &drvdata->alg_list, entry) {
crypto_unregister_skcipher(&t_alg->skcipher_alg);
list_del(&t_alg->entry);
}
return 0;
}
int cc_cipher_alloc(struct cc_drvdata *drvdata)
{
struct cc_crypto_alg *t_alg;
struct device *dev = drvdata_to_dev(drvdata);
int rc = -ENOMEM;
int alg;
INIT_LIST_HEAD(&drvdata->alg_list);
/* Linux crypto */
dev_dbg(dev, "Number of algorithms = %zu\n",
ARRAY_SIZE(skcipher_algs));
for (alg = 0; alg < ARRAY_SIZE(skcipher_algs); alg++) {
if ((skcipher_algs[alg].min_hw_rev > drvdata->hw_rev) ||
!(drvdata->std_bodies & skcipher_algs[alg].std_body) ||
(drvdata->sec_disabled && skcipher_algs[alg].sec_func))
continue;
dev_dbg(dev, "creating %s\n", skcipher_algs[alg].driver_name);
t_alg = cc_create_alg(&skcipher_algs[alg], dev);
if (IS_ERR(t_alg)) {
rc = PTR_ERR(t_alg);
dev_err(dev, "%s alg allocation failed\n",
skcipher_algs[alg].driver_name);
goto fail0;
}
t_alg->drvdata = drvdata;
dev_dbg(dev, "registering %s\n",
skcipher_algs[alg].driver_name);
rc = crypto_register_skcipher(&t_alg->skcipher_alg);
dev_dbg(dev, "%s alg registration rc = %x\n",
t_alg->skcipher_alg.base.cra_driver_name, rc);
if (rc) {
dev_err(dev, "%s alg registration failed\n",
t_alg->skcipher_alg.base.cra_driver_name);
goto fail0;
}
list_add_tail(&t_alg->entry, &drvdata->alg_list);
dev_dbg(dev, "Registered %s\n",
t_alg->skcipher_alg.base.cra_driver_name);
}
return 0;
fail0:
cc_cipher_free(drvdata);
return rc;
}