linux/sound/soc/codecs/tlv320aic32x4.c
Lars-Peter Clausen f10c0a71e6 ASoC: tlv320aic32x4: Cleanup manual bias level transitions
Set the CODEC driver's suspend_bias_off flag rather than manually going to
SND_SOC_BIAS_OFF in suspend and SND_SOC_BIAS_STANDBY in resume. This makes
the code a bit shorter and cleaner.

Since the ASoC core now takes care of setting the bias level to
SND_SOC_BIAS_OFF when removing the CODEC there is no need to do it manually
anymore either.

The manual transition to SND_SOC_BIAS_STANDBY at the end of CODEC probe()
can also be removed as the core will automatically do this after the CODEC
has been probed.

Signed-off-by: Lars-Peter Clausen <lars@metafoo.de>
Signed-off-by: Mark Brown <broonie@kernel.org>
2014-11-27 11:16:35 +00:00

888 lines
26 KiB
C

/*
* linux/sound/soc/codecs/tlv320aic32x4.c
*
* Copyright 2011 Vista Silicon S.L.
*
* Author: Javier Martin <javier.martin@vista-silicon.com>
*
* Based on sound/soc/codecs/wm8974 and TI driver for kernel 2.6.27.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
* MA 02110-1301, USA.
*/
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/pm.h>
#include <linux/gpio.h>
#include <linux/of_gpio.h>
#include <linux/i2c.h>
#include <linux/cdev.h>
#include <linux/slab.h>
#include <linux/clk.h>
#include <linux/regulator/consumer.h>
#include <sound/tlv320aic32x4.h>
#include <sound/core.h>
#include <sound/pcm.h>
#include <sound/pcm_params.h>
#include <sound/soc.h>
#include <sound/soc-dapm.h>
#include <sound/initval.h>
#include <sound/tlv.h>
#include "tlv320aic32x4.h"
struct aic32x4_rate_divs {
u32 mclk;
u32 rate;
u8 p_val;
u8 pll_j;
u16 pll_d;
u16 dosr;
u8 ndac;
u8 mdac;
u8 aosr;
u8 nadc;
u8 madc;
u8 blck_N;
};
struct aic32x4_priv {
struct regmap *regmap;
u32 sysclk;
u32 power_cfg;
u32 micpga_routing;
bool swapdacs;
int rstn_gpio;
struct clk *mclk;
struct regulator *supply_ldo;
struct regulator *supply_iov;
struct regulator *supply_dv;
struct regulator *supply_av;
};
/* 0dB min, 0.5dB steps */
static DECLARE_TLV_DB_SCALE(tlv_step_0_5, 0, 50, 0);
/* -63.5dB min, 0.5dB steps */
static DECLARE_TLV_DB_SCALE(tlv_pcm, -6350, 50, 0);
/* -6dB min, 1dB steps */
static DECLARE_TLV_DB_SCALE(tlv_driver_gain, -600, 100, 0);
/* -12dB min, 0.5dB steps */
static DECLARE_TLV_DB_SCALE(tlv_adc_vol, -1200, 50, 0);
static const struct snd_kcontrol_new aic32x4_snd_controls[] = {
SOC_DOUBLE_R_S_TLV("PCM Playback Volume", AIC32X4_LDACVOL,
AIC32X4_RDACVOL, 0, -0x7f, 0x30, 7, 0, tlv_pcm),
SOC_DOUBLE_R_S_TLV("HP Driver Gain Volume", AIC32X4_HPLGAIN,
AIC32X4_HPRGAIN, 0, -0x6, 0x1d, 5, 0,
tlv_driver_gain),
SOC_DOUBLE_R_S_TLV("LO Driver Gain Volume", AIC32X4_LOLGAIN,
AIC32X4_LORGAIN, 0, -0x6, 0x1d, 5, 0,
tlv_driver_gain),
SOC_DOUBLE_R("HP DAC Playback Switch", AIC32X4_HPLGAIN,
AIC32X4_HPRGAIN, 6, 0x01, 1),
SOC_DOUBLE_R("LO DAC Playback Switch", AIC32X4_LOLGAIN,
AIC32X4_LORGAIN, 6, 0x01, 1),
SOC_DOUBLE_R("Mic PGA Switch", AIC32X4_LMICPGAVOL,
AIC32X4_RMICPGAVOL, 7, 0x01, 1),
SOC_SINGLE("ADCFGA Left Mute Switch", AIC32X4_ADCFGA, 7, 1, 0),
SOC_SINGLE("ADCFGA Right Mute Switch", AIC32X4_ADCFGA, 3, 1, 0),
SOC_DOUBLE_R_S_TLV("ADC Level Volume", AIC32X4_LADCVOL,
AIC32X4_RADCVOL, 0, -0x18, 0x28, 6, 0, tlv_adc_vol),
SOC_DOUBLE_R_TLV("PGA Level Volume", AIC32X4_LMICPGAVOL,
AIC32X4_RMICPGAVOL, 0, 0x5f, 0, tlv_step_0_5),
SOC_SINGLE("Auto-mute Switch", AIC32X4_DACMUTE, 4, 7, 0),
SOC_SINGLE("AGC Left Switch", AIC32X4_LAGC1, 7, 1, 0),
SOC_SINGLE("AGC Right Switch", AIC32X4_RAGC1, 7, 1, 0),
SOC_DOUBLE_R("AGC Target Level", AIC32X4_LAGC1, AIC32X4_RAGC1,
4, 0x07, 0),
SOC_DOUBLE_R("AGC Gain Hysteresis", AIC32X4_LAGC1, AIC32X4_RAGC1,
0, 0x03, 0),
SOC_DOUBLE_R("AGC Hysteresis", AIC32X4_LAGC2, AIC32X4_RAGC2,
6, 0x03, 0),
SOC_DOUBLE_R("AGC Noise Threshold", AIC32X4_LAGC2, AIC32X4_RAGC2,
1, 0x1F, 0),
SOC_DOUBLE_R("AGC Max PGA", AIC32X4_LAGC3, AIC32X4_RAGC3,
0, 0x7F, 0),
SOC_DOUBLE_R("AGC Attack Time", AIC32X4_LAGC4, AIC32X4_RAGC4,
3, 0x1F, 0),
SOC_DOUBLE_R("AGC Decay Time", AIC32X4_LAGC5, AIC32X4_RAGC5,
3, 0x1F, 0),
SOC_DOUBLE_R("AGC Noise Debounce", AIC32X4_LAGC6, AIC32X4_RAGC6,
0, 0x1F, 0),
SOC_DOUBLE_R("AGC Signal Debounce", AIC32X4_LAGC7, AIC32X4_RAGC7,
0, 0x0F, 0),
};
static const struct aic32x4_rate_divs aic32x4_divs[] = {
/* 8k rate */
{AIC32X4_FREQ_12000000, 8000, 1, 7, 6800, 768, 5, 3, 128, 5, 18, 24},
{AIC32X4_FREQ_24000000, 8000, 2, 7, 6800, 768, 15, 1, 64, 45, 4, 24},
{AIC32X4_FREQ_25000000, 8000, 2, 7, 3728, 768, 15, 1, 64, 45, 4, 24},
/* 11.025k rate */
{AIC32X4_FREQ_12000000, 11025, 1, 7, 5264, 512, 8, 2, 128, 8, 8, 16},
{AIC32X4_FREQ_24000000, 11025, 2, 7, 5264, 512, 16, 1, 64, 32, 4, 16},
/* 16k rate */
{AIC32X4_FREQ_12000000, 16000, 1, 7, 6800, 384, 5, 3, 128, 5, 9, 12},
{AIC32X4_FREQ_24000000, 16000, 2, 7, 6800, 384, 15, 1, 64, 18, 5, 12},
{AIC32X4_FREQ_25000000, 16000, 2, 7, 3728, 384, 15, 1, 64, 18, 5, 12},
/* 22.05k rate */
{AIC32X4_FREQ_12000000, 22050, 1, 7, 5264, 256, 4, 4, 128, 4, 8, 8},
{AIC32X4_FREQ_24000000, 22050, 2, 7, 5264, 256, 16, 1, 64, 16, 4, 8},
{AIC32X4_FREQ_25000000, 22050, 2, 7, 2253, 256, 16, 1, 64, 16, 4, 8},
/* 32k rate */
{AIC32X4_FREQ_12000000, 32000, 1, 7, 1680, 192, 2, 7, 64, 2, 21, 6},
{AIC32X4_FREQ_24000000, 32000, 2, 7, 1680, 192, 7, 2, 64, 7, 6, 6},
/* 44.1k rate */
{AIC32X4_FREQ_12000000, 44100, 1, 7, 5264, 128, 2, 8, 128, 2, 8, 4},
{AIC32X4_FREQ_24000000, 44100, 2, 7, 5264, 128, 8, 2, 64, 8, 4, 4},
{AIC32X4_FREQ_25000000, 44100, 2, 7, 2253, 128, 8, 2, 64, 8, 4, 4},
/* 48k rate */
{AIC32X4_FREQ_12000000, 48000, 1, 8, 1920, 128, 2, 8, 128, 2, 8, 4},
{AIC32X4_FREQ_24000000, 48000, 2, 8, 1920, 128, 8, 2, 64, 8, 4, 4},
{AIC32X4_FREQ_25000000, 48000, 2, 7, 8643, 128, 8, 2, 64, 8, 4, 4}
};
static const struct snd_kcontrol_new hpl_output_mixer_controls[] = {
SOC_DAPM_SINGLE("L_DAC Switch", AIC32X4_HPLROUTE, 3, 1, 0),
SOC_DAPM_SINGLE("IN1_L Switch", AIC32X4_HPLROUTE, 2, 1, 0),
};
static const struct snd_kcontrol_new hpr_output_mixer_controls[] = {
SOC_DAPM_SINGLE("R_DAC Switch", AIC32X4_HPRROUTE, 3, 1, 0),
SOC_DAPM_SINGLE("IN1_R Switch", AIC32X4_HPRROUTE, 2, 1, 0),
};
static const struct snd_kcontrol_new lol_output_mixer_controls[] = {
SOC_DAPM_SINGLE("L_DAC Switch", AIC32X4_LOLROUTE, 3, 1, 0),
};
static const struct snd_kcontrol_new lor_output_mixer_controls[] = {
SOC_DAPM_SINGLE("R_DAC Switch", AIC32X4_LORROUTE, 3, 1, 0),
};
static const struct snd_kcontrol_new left_input_mixer_controls[] = {
SOC_DAPM_SINGLE("IN1_L P Switch", AIC32X4_LMICPGAPIN, 6, 1, 0),
SOC_DAPM_SINGLE("IN2_L P Switch", AIC32X4_LMICPGAPIN, 4, 1, 0),
SOC_DAPM_SINGLE("IN3_L P Switch", AIC32X4_LMICPGAPIN, 2, 1, 0),
};
static const struct snd_kcontrol_new right_input_mixer_controls[] = {
SOC_DAPM_SINGLE("IN1_R P Switch", AIC32X4_RMICPGAPIN, 6, 1, 0),
SOC_DAPM_SINGLE("IN2_R P Switch", AIC32X4_RMICPGAPIN, 4, 1, 0),
SOC_DAPM_SINGLE("IN3_R P Switch", AIC32X4_RMICPGAPIN, 2, 1, 0),
};
static const struct snd_soc_dapm_widget aic32x4_dapm_widgets[] = {
SND_SOC_DAPM_DAC("Left DAC", "Left Playback", AIC32X4_DACSETUP, 7, 0),
SND_SOC_DAPM_MIXER("HPL Output Mixer", SND_SOC_NOPM, 0, 0,
&hpl_output_mixer_controls[0],
ARRAY_SIZE(hpl_output_mixer_controls)),
SND_SOC_DAPM_PGA("HPL Power", AIC32X4_OUTPWRCTL, 5, 0, NULL, 0),
SND_SOC_DAPM_MIXER("LOL Output Mixer", SND_SOC_NOPM, 0, 0,
&lol_output_mixer_controls[0],
ARRAY_SIZE(lol_output_mixer_controls)),
SND_SOC_DAPM_PGA("LOL Power", AIC32X4_OUTPWRCTL, 3, 0, NULL, 0),
SND_SOC_DAPM_DAC("Right DAC", "Right Playback", AIC32X4_DACSETUP, 6, 0),
SND_SOC_DAPM_MIXER("HPR Output Mixer", SND_SOC_NOPM, 0, 0,
&hpr_output_mixer_controls[0],
ARRAY_SIZE(hpr_output_mixer_controls)),
SND_SOC_DAPM_PGA("HPR Power", AIC32X4_OUTPWRCTL, 4, 0, NULL, 0),
SND_SOC_DAPM_MIXER("LOR Output Mixer", SND_SOC_NOPM, 0, 0,
&lor_output_mixer_controls[0],
ARRAY_SIZE(lor_output_mixer_controls)),
SND_SOC_DAPM_PGA("LOR Power", AIC32X4_OUTPWRCTL, 2, 0, NULL, 0),
SND_SOC_DAPM_MIXER("Left Input Mixer", SND_SOC_NOPM, 0, 0,
&left_input_mixer_controls[0],
ARRAY_SIZE(left_input_mixer_controls)),
SND_SOC_DAPM_MIXER("Right Input Mixer", SND_SOC_NOPM, 0, 0,
&right_input_mixer_controls[0],
ARRAY_SIZE(right_input_mixer_controls)),
SND_SOC_DAPM_ADC("Left ADC", "Left Capture", AIC32X4_ADCSETUP, 7, 0),
SND_SOC_DAPM_ADC("Right ADC", "Right Capture", AIC32X4_ADCSETUP, 6, 0),
SND_SOC_DAPM_MICBIAS("Mic Bias", AIC32X4_MICBIAS, 6, 0),
SND_SOC_DAPM_OUTPUT("HPL"),
SND_SOC_DAPM_OUTPUT("HPR"),
SND_SOC_DAPM_OUTPUT("LOL"),
SND_SOC_DAPM_OUTPUT("LOR"),
SND_SOC_DAPM_INPUT("IN1_L"),
SND_SOC_DAPM_INPUT("IN1_R"),
SND_SOC_DAPM_INPUT("IN2_L"),
SND_SOC_DAPM_INPUT("IN2_R"),
SND_SOC_DAPM_INPUT("IN3_L"),
SND_SOC_DAPM_INPUT("IN3_R"),
};
static const struct snd_soc_dapm_route aic32x4_dapm_routes[] = {
/* Left Output */
{"HPL Output Mixer", "L_DAC Switch", "Left DAC"},
{"HPL Output Mixer", "IN1_L Switch", "IN1_L"},
{"HPL Power", NULL, "HPL Output Mixer"},
{"HPL", NULL, "HPL Power"},
{"LOL Output Mixer", "L_DAC Switch", "Left DAC"},
{"LOL Power", NULL, "LOL Output Mixer"},
{"LOL", NULL, "LOL Power"},
/* Right Output */
{"HPR Output Mixer", "R_DAC Switch", "Right DAC"},
{"HPR Output Mixer", "IN1_R Switch", "IN1_R"},
{"HPR Power", NULL, "HPR Output Mixer"},
{"HPR", NULL, "HPR Power"},
{"LOR Output Mixer", "R_DAC Switch", "Right DAC"},
{"LOR Power", NULL, "LOR Output Mixer"},
{"LOR", NULL, "LOR Power"},
/* Left input */
{"Left Input Mixer", "IN1_L P Switch", "IN1_L"},
{"Left Input Mixer", "IN2_L P Switch", "IN2_L"},
{"Left Input Mixer", "IN3_L P Switch", "IN3_L"},
{"Left ADC", NULL, "Left Input Mixer"},
/* Right Input */
{"Right Input Mixer", "IN1_R P Switch", "IN1_R"},
{"Right Input Mixer", "IN2_R P Switch", "IN2_R"},
{"Right Input Mixer", "IN3_R P Switch", "IN3_R"},
{"Right ADC", NULL, "Right Input Mixer"},
};
static const struct regmap_range_cfg aic32x4_regmap_pages[] = {
{
.selector_reg = 0,
.selector_mask = 0xff,
.window_start = 0,
.window_len = 128,
.range_min = 0,
.range_max = AIC32X4_RMICPGAVOL,
},
};
static const struct regmap_config aic32x4_regmap = {
.reg_bits = 8,
.val_bits = 8,
.max_register = AIC32X4_RMICPGAVOL,
.ranges = aic32x4_regmap_pages,
.num_ranges = ARRAY_SIZE(aic32x4_regmap_pages),
};
static inline int aic32x4_get_divs(int mclk, int rate)
{
int i;
for (i = 0; i < ARRAY_SIZE(aic32x4_divs); i++) {
if ((aic32x4_divs[i].rate == rate)
&& (aic32x4_divs[i].mclk == mclk)) {
return i;
}
}
printk(KERN_ERR "aic32x4: master clock and sample rate is not supported\n");
return -EINVAL;
}
static int aic32x4_set_dai_sysclk(struct snd_soc_dai *codec_dai,
int clk_id, unsigned int freq, int dir)
{
struct snd_soc_codec *codec = codec_dai->codec;
struct aic32x4_priv *aic32x4 = snd_soc_codec_get_drvdata(codec);
switch (freq) {
case AIC32X4_FREQ_12000000:
case AIC32X4_FREQ_24000000:
case AIC32X4_FREQ_25000000:
aic32x4->sysclk = freq;
return 0;
}
printk(KERN_ERR "aic32x4: invalid frequency to set DAI system clock\n");
return -EINVAL;
}
static int aic32x4_set_dai_fmt(struct snd_soc_dai *codec_dai, unsigned int fmt)
{
struct snd_soc_codec *codec = codec_dai->codec;
u8 iface_reg_1;
u8 iface_reg_2;
u8 iface_reg_3;
iface_reg_1 = snd_soc_read(codec, AIC32X4_IFACE1);
iface_reg_1 = iface_reg_1 & ~(3 << 6 | 3 << 2);
iface_reg_2 = snd_soc_read(codec, AIC32X4_IFACE2);
iface_reg_2 = 0;
iface_reg_3 = snd_soc_read(codec, AIC32X4_IFACE3);
iface_reg_3 = iface_reg_3 & ~(1 << 3);
/* set master/slave audio interface */
switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) {
case SND_SOC_DAIFMT_CBM_CFM:
iface_reg_1 |= AIC32X4_BCLKMASTER | AIC32X4_WCLKMASTER;
break;
case SND_SOC_DAIFMT_CBS_CFS:
break;
default:
printk(KERN_ERR "aic32x4: invalid DAI master/slave interface\n");
return -EINVAL;
}
switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
case SND_SOC_DAIFMT_I2S:
break;
case SND_SOC_DAIFMT_DSP_A:
iface_reg_1 |= (AIC32X4_DSP_MODE << AIC32X4_PLLJ_SHIFT);
iface_reg_3 |= (1 << 3); /* invert bit clock */
iface_reg_2 = 0x01; /* add offset 1 */
break;
case SND_SOC_DAIFMT_DSP_B:
iface_reg_1 |= (AIC32X4_DSP_MODE << AIC32X4_PLLJ_SHIFT);
iface_reg_3 |= (1 << 3); /* invert bit clock */
break;
case SND_SOC_DAIFMT_RIGHT_J:
iface_reg_1 |=
(AIC32X4_RIGHT_JUSTIFIED_MODE << AIC32X4_PLLJ_SHIFT);
break;
case SND_SOC_DAIFMT_LEFT_J:
iface_reg_1 |=
(AIC32X4_LEFT_JUSTIFIED_MODE << AIC32X4_PLLJ_SHIFT);
break;
default:
printk(KERN_ERR "aic32x4: invalid DAI interface format\n");
return -EINVAL;
}
snd_soc_write(codec, AIC32X4_IFACE1, iface_reg_1);
snd_soc_write(codec, AIC32X4_IFACE2, iface_reg_2);
snd_soc_write(codec, AIC32X4_IFACE3, iface_reg_3);
return 0;
}
static int aic32x4_hw_params(struct snd_pcm_substream *substream,
struct snd_pcm_hw_params *params,
struct snd_soc_dai *dai)
{
struct snd_soc_codec *codec = dai->codec;
struct aic32x4_priv *aic32x4 = snd_soc_codec_get_drvdata(codec);
u8 data;
int i;
i = aic32x4_get_divs(aic32x4->sysclk, params_rate(params));
if (i < 0) {
printk(KERN_ERR "aic32x4: sampling rate not supported\n");
return i;
}
/* Use PLL as CODEC_CLKIN and DAC_MOD_CLK as BDIV_CLKIN */
snd_soc_write(codec, AIC32X4_CLKMUX, AIC32X4_PLLCLKIN);
snd_soc_write(codec, AIC32X4_IFACE3, AIC32X4_DACMOD2BCLK);
/* We will fix R value to 1 and will make P & J=K.D as varialble */
data = snd_soc_read(codec, AIC32X4_PLLPR);
data &= ~(7 << 4);
snd_soc_write(codec, AIC32X4_PLLPR,
(data | (aic32x4_divs[i].p_val << 4) | 0x01));
snd_soc_write(codec, AIC32X4_PLLJ, aic32x4_divs[i].pll_j);
snd_soc_write(codec, AIC32X4_PLLDMSB, (aic32x4_divs[i].pll_d >> 8));
snd_soc_write(codec, AIC32X4_PLLDLSB,
(aic32x4_divs[i].pll_d & 0xff));
/* NDAC divider value */
data = snd_soc_read(codec, AIC32X4_NDAC);
data &= ~(0x7f);
snd_soc_write(codec, AIC32X4_NDAC, data | aic32x4_divs[i].ndac);
/* MDAC divider value */
data = snd_soc_read(codec, AIC32X4_MDAC);
data &= ~(0x7f);
snd_soc_write(codec, AIC32X4_MDAC, data | aic32x4_divs[i].mdac);
/* DOSR MSB & LSB values */
snd_soc_write(codec, AIC32X4_DOSRMSB, aic32x4_divs[i].dosr >> 8);
snd_soc_write(codec, AIC32X4_DOSRLSB,
(aic32x4_divs[i].dosr & 0xff));
/* NADC divider value */
data = snd_soc_read(codec, AIC32X4_NADC);
data &= ~(0x7f);
snd_soc_write(codec, AIC32X4_NADC, data | aic32x4_divs[i].nadc);
/* MADC divider value */
data = snd_soc_read(codec, AIC32X4_MADC);
data &= ~(0x7f);
snd_soc_write(codec, AIC32X4_MADC, data | aic32x4_divs[i].madc);
/* AOSR value */
snd_soc_write(codec, AIC32X4_AOSR, aic32x4_divs[i].aosr);
/* BCLK N divider */
data = snd_soc_read(codec, AIC32X4_BCLKN);
data &= ~(0x7f);
snd_soc_write(codec, AIC32X4_BCLKN, data | aic32x4_divs[i].blck_N);
data = snd_soc_read(codec, AIC32X4_IFACE1);
data = data & ~(3 << 4);
switch (params_width(params)) {
case 16:
break;
case 20:
data |= (AIC32X4_WORD_LEN_20BITS << AIC32X4_DOSRMSB_SHIFT);
break;
case 24:
data |= (AIC32X4_WORD_LEN_24BITS << AIC32X4_DOSRMSB_SHIFT);
break;
case 32:
data |= (AIC32X4_WORD_LEN_32BITS << AIC32X4_DOSRMSB_SHIFT);
break;
}
snd_soc_write(codec, AIC32X4_IFACE1, data);
if (params_channels(params) == 1) {
data = AIC32X4_RDAC2LCHN | AIC32X4_LDAC2LCHN;
} else {
if (aic32x4->swapdacs)
data = AIC32X4_RDAC2LCHN | AIC32X4_LDAC2RCHN;
else
data = AIC32X4_LDAC2LCHN | AIC32X4_RDAC2RCHN;
}
snd_soc_update_bits(codec, AIC32X4_DACSETUP, AIC32X4_DAC_CHAN_MASK,
data);
return 0;
}
static int aic32x4_mute(struct snd_soc_dai *dai, int mute)
{
struct snd_soc_codec *codec = dai->codec;
u8 dac_reg;
dac_reg = snd_soc_read(codec, AIC32X4_DACMUTE) & ~AIC32X4_MUTEON;
if (mute)
snd_soc_write(codec, AIC32X4_DACMUTE, dac_reg | AIC32X4_MUTEON);
else
snd_soc_write(codec, AIC32X4_DACMUTE, dac_reg);
return 0;
}
static int aic32x4_set_bias_level(struct snd_soc_codec *codec,
enum snd_soc_bias_level level)
{
struct aic32x4_priv *aic32x4 = snd_soc_codec_get_drvdata(codec);
int ret;
switch (level) {
case SND_SOC_BIAS_ON:
/* Switch on master clock */
ret = clk_prepare_enable(aic32x4->mclk);
if (ret) {
dev_err(codec->dev, "Failed to enable master clock\n");
return ret;
}
/* Switch on PLL */
snd_soc_update_bits(codec, AIC32X4_PLLPR,
AIC32X4_PLLEN, AIC32X4_PLLEN);
/* Switch on NDAC Divider */
snd_soc_update_bits(codec, AIC32X4_NDAC,
AIC32X4_NDACEN, AIC32X4_NDACEN);
/* Switch on MDAC Divider */
snd_soc_update_bits(codec, AIC32X4_MDAC,
AIC32X4_MDACEN, AIC32X4_MDACEN);
/* Switch on NADC Divider */
snd_soc_update_bits(codec, AIC32X4_NADC,
AIC32X4_NADCEN, AIC32X4_NADCEN);
/* Switch on MADC Divider */
snd_soc_update_bits(codec, AIC32X4_MADC,
AIC32X4_MADCEN, AIC32X4_MADCEN);
/* Switch on BCLK_N Divider */
snd_soc_update_bits(codec, AIC32X4_BCLKN,
AIC32X4_BCLKEN, AIC32X4_BCLKEN);
break;
case SND_SOC_BIAS_PREPARE:
break;
case SND_SOC_BIAS_STANDBY:
/* Switch off BCLK_N Divider */
snd_soc_update_bits(codec, AIC32X4_BCLKN,
AIC32X4_BCLKEN, 0);
/* Switch off MADC Divider */
snd_soc_update_bits(codec, AIC32X4_MADC,
AIC32X4_MADCEN, 0);
/* Switch off NADC Divider */
snd_soc_update_bits(codec, AIC32X4_NADC,
AIC32X4_NADCEN, 0);
/* Switch off MDAC Divider */
snd_soc_update_bits(codec, AIC32X4_MDAC,
AIC32X4_MDACEN, 0);
/* Switch off NDAC Divider */
snd_soc_update_bits(codec, AIC32X4_NDAC,
AIC32X4_NDACEN, 0);
/* Switch off PLL */
snd_soc_update_bits(codec, AIC32X4_PLLPR,
AIC32X4_PLLEN, 0);
/* Switch off master clock */
clk_disable_unprepare(aic32x4->mclk);
break;
case SND_SOC_BIAS_OFF:
break;
}
codec->dapm.bias_level = level;
return 0;
}
#define AIC32X4_RATES SNDRV_PCM_RATE_8000_48000
#define AIC32X4_FORMATS (SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S20_3LE \
| SNDRV_PCM_FMTBIT_S24_3LE | SNDRV_PCM_FMTBIT_S32_LE)
static const struct snd_soc_dai_ops aic32x4_ops = {
.hw_params = aic32x4_hw_params,
.digital_mute = aic32x4_mute,
.set_fmt = aic32x4_set_dai_fmt,
.set_sysclk = aic32x4_set_dai_sysclk,
};
static struct snd_soc_dai_driver aic32x4_dai = {
.name = "tlv320aic32x4-hifi",
.playback = {
.stream_name = "Playback",
.channels_min = 1,
.channels_max = 2,
.rates = AIC32X4_RATES,
.formats = AIC32X4_FORMATS,},
.capture = {
.stream_name = "Capture",
.channels_min = 1,
.channels_max = 2,
.rates = AIC32X4_RATES,
.formats = AIC32X4_FORMATS,},
.ops = &aic32x4_ops,
.symmetric_rates = 1,
};
static int aic32x4_probe(struct snd_soc_codec *codec)
{
struct aic32x4_priv *aic32x4 = snd_soc_codec_get_drvdata(codec);
u32 tmp_reg;
if (gpio_is_valid(aic32x4->rstn_gpio)) {
ndelay(10);
gpio_set_value(aic32x4->rstn_gpio, 1);
}
snd_soc_write(codec, AIC32X4_RESET, 0x01);
/* Power platform configuration */
if (aic32x4->power_cfg & AIC32X4_PWR_MICBIAS_2075_LDOIN) {
snd_soc_write(codec, AIC32X4_MICBIAS, AIC32X4_MICBIAS_LDOIN |
AIC32X4_MICBIAS_2075V);
}
if (aic32x4->power_cfg & AIC32X4_PWR_AVDD_DVDD_WEAK_DISABLE)
snd_soc_write(codec, AIC32X4_PWRCFG, AIC32X4_AVDDWEAKDISABLE);
tmp_reg = (aic32x4->power_cfg & AIC32X4_PWR_AIC32X4_LDO_ENABLE) ?
AIC32X4_LDOCTLEN : 0;
snd_soc_write(codec, AIC32X4_LDOCTL, tmp_reg);
tmp_reg = snd_soc_read(codec, AIC32X4_CMMODE);
if (aic32x4->power_cfg & AIC32X4_PWR_CMMODE_LDOIN_RANGE_18_36)
tmp_reg |= AIC32X4_LDOIN_18_36;
if (aic32x4->power_cfg & AIC32X4_PWR_CMMODE_HP_LDOIN_POWERED)
tmp_reg |= AIC32X4_LDOIN2HP;
snd_soc_write(codec, AIC32X4_CMMODE, tmp_reg);
/* Mic PGA routing */
if (aic32x4->micpga_routing & AIC32X4_MICPGA_ROUTE_LMIC_IN2R_10K)
snd_soc_write(codec, AIC32X4_LMICPGANIN,
AIC32X4_LMICPGANIN_IN2R_10K);
else
snd_soc_write(codec, AIC32X4_LMICPGANIN,
AIC32X4_LMICPGANIN_CM1L_10K);
if (aic32x4->micpga_routing & AIC32X4_MICPGA_ROUTE_RMIC_IN1L_10K)
snd_soc_write(codec, AIC32X4_RMICPGANIN,
AIC32X4_RMICPGANIN_IN1L_10K);
else
snd_soc_write(codec, AIC32X4_RMICPGANIN,
AIC32X4_RMICPGANIN_CM1R_10K);
/*
* Workaround: for an unknown reason, the ADC needs to be powered up
* and down for the first capture to work properly. It seems related to
* a HW BUG or some kind of behavior not documented in the datasheet.
*/
tmp_reg = snd_soc_read(codec, AIC32X4_ADCSETUP);
snd_soc_write(codec, AIC32X4_ADCSETUP, tmp_reg |
AIC32X4_LADC_EN | AIC32X4_RADC_EN);
snd_soc_write(codec, AIC32X4_ADCSETUP, tmp_reg);
return 0;
}
static struct snd_soc_codec_driver soc_codec_dev_aic32x4 = {
.probe = aic32x4_probe,
.set_bias_level = aic32x4_set_bias_level,
.suspend_bias_off = true,
.controls = aic32x4_snd_controls,
.num_controls = ARRAY_SIZE(aic32x4_snd_controls),
.dapm_widgets = aic32x4_dapm_widgets,
.num_dapm_widgets = ARRAY_SIZE(aic32x4_dapm_widgets),
.dapm_routes = aic32x4_dapm_routes,
.num_dapm_routes = ARRAY_SIZE(aic32x4_dapm_routes),
};
static int aic32x4_parse_dt(struct aic32x4_priv *aic32x4,
struct device_node *np)
{
aic32x4->swapdacs = false;
aic32x4->micpga_routing = 0;
aic32x4->rstn_gpio = of_get_named_gpio(np, "reset-gpios", 0);
return 0;
}
static void aic32x4_disable_regulators(struct aic32x4_priv *aic32x4)
{
regulator_disable(aic32x4->supply_iov);
if (!IS_ERR(aic32x4->supply_ldo))
regulator_disable(aic32x4->supply_ldo);
if (!IS_ERR(aic32x4->supply_dv))
regulator_disable(aic32x4->supply_dv);
if (!IS_ERR(aic32x4->supply_av))
regulator_disable(aic32x4->supply_av);
}
static int aic32x4_setup_regulators(struct device *dev,
struct aic32x4_priv *aic32x4)
{
int ret = 0;
aic32x4->supply_ldo = devm_regulator_get_optional(dev, "ldoin");
aic32x4->supply_iov = devm_regulator_get(dev, "iov");
aic32x4->supply_dv = devm_regulator_get_optional(dev, "dv");
aic32x4->supply_av = devm_regulator_get_optional(dev, "av");
/* Check if the regulator requirements are fulfilled */
if (IS_ERR(aic32x4->supply_iov)) {
dev_err(dev, "Missing supply 'iov'\n");
return PTR_ERR(aic32x4->supply_iov);
}
if (IS_ERR(aic32x4->supply_ldo)) {
if (PTR_ERR(aic32x4->supply_ldo) == -EPROBE_DEFER)
return -EPROBE_DEFER;
if (IS_ERR(aic32x4->supply_dv)) {
dev_err(dev, "Missing supply 'dv' or 'ldoin'\n");
return PTR_ERR(aic32x4->supply_dv);
}
if (IS_ERR(aic32x4->supply_av)) {
dev_err(dev, "Missing supply 'av' or 'ldoin'\n");
return PTR_ERR(aic32x4->supply_av);
}
} else {
if (IS_ERR(aic32x4->supply_dv) &&
PTR_ERR(aic32x4->supply_dv) == -EPROBE_DEFER)
return -EPROBE_DEFER;
if (IS_ERR(aic32x4->supply_av) &&
PTR_ERR(aic32x4->supply_av) == -EPROBE_DEFER)
return -EPROBE_DEFER;
}
ret = regulator_enable(aic32x4->supply_iov);
if (ret) {
dev_err(dev, "Failed to enable regulator iov\n");
return ret;
}
if (!IS_ERR(aic32x4->supply_ldo)) {
ret = regulator_enable(aic32x4->supply_ldo);
if (ret) {
dev_err(dev, "Failed to enable regulator ldo\n");
goto error_ldo;
}
}
if (!IS_ERR(aic32x4->supply_dv)) {
ret = regulator_enable(aic32x4->supply_dv);
if (ret) {
dev_err(dev, "Failed to enable regulator dv\n");
goto error_dv;
}
}
if (!IS_ERR(aic32x4->supply_av)) {
ret = regulator_enable(aic32x4->supply_av);
if (ret) {
dev_err(dev, "Failed to enable regulator av\n");
goto error_av;
}
}
if (!IS_ERR(aic32x4->supply_ldo) && IS_ERR(aic32x4->supply_av))
aic32x4->power_cfg |= AIC32X4_PWR_AIC32X4_LDO_ENABLE;
return 0;
error_av:
if (!IS_ERR(aic32x4->supply_dv))
regulator_disable(aic32x4->supply_dv);
error_dv:
if (!IS_ERR(aic32x4->supply_ldo))
regulator_disable(aic32x4->supply_ldo);
error_ldo:
regulator_disable(aic32x4->supply_iov);
return ret;
}
static int aic32x4_i2c_probe(struct i2c_client *i2c,
const struct i2c_device_id *id)
{
struct aic32x4_pdata *pdata = i2c->dev.platform_data;
struct aic32x4_priv *aic32x4;
struct device_node *np = i2c->dev.of_node;
int ret;
aic32x4 = devm_kzalloc(&i2c->dev, sizeof(struct aic32x4_priv),
GFP_KERNEL);
if (aic32x4 == NULL)
return -ENOMEM;
aic32x4->regmap = devm_regmap_init_i2c(i2c, &aic32x4_regmap);
if (IS_ERR(aic32x4->regmap))
return PTR_ERR(aic32x4->regmap);
i2c_set_clientdata(i2c, aic32x4);
if (pdata) {
aic32x4->power_cfg = pdata->power_cfg;
aic32x4->swapdacs = pdata->swapdacs;
aic32x4->micpga_routing = pdata->micpga_routing;
aic32x4->rstn_gpio = pdata->rstn_gpio;
} else if (np) {
ret = aic32x4_parse_dt(aic32x4, np);
if (ret) {
dev_err(&i2c->dev, "Failed to parse DT node\n");
return ret;
}
} else {
aic32x4->power_cfg = 0;
aic32x4->swapdacs = false;
aic32x4->micpga_routing = 0;
aic32x4->rstn_gpio = -1;
}
aic32x4->mclk = devm_clk_get(&i2c->dev, "mclk");
if (IS_ERR(aic32x4->mclk)) {
dev_err(&i2c->dev, "Failed getting the mclk. The current implementation does not support the usage of this codec without mclk\n");
return PTR_ERR(aic32x4->mclk);
}
if (gpio_is_valid(aic32x4->rstn_gpio)) {
ret = devm_gpio_request_one(&i2c->dev, aic32x4->rstn_gpio,
GPIOF_OUT_INIT_LOW, "tlv320aic32x4 rstn");
if (ret != 0)
return ret;
}
ret = aic32x4_setup_regulators(&i2c->dev, aic32x4);
if (ret) {
dev_err(&i2c->dev, "Failed to setup regulators\n");
return ret;
}
ret = snd_soc_register_codec(&i2c->dev,
&soc_codec_dev_aic32x4, &aic32x4_dai, 1);
if (ret) {
dev_err(&i2c->dev, "Failed to register codec\n");
aic32x4_disable_regulators(aic32x4);
return ret;
}
i2c_set_clientdata(i2c, aic32x4);
return 0;
}
static int aic32x4_i2c_remove(struct i2c_client *client)
{
struct aic32x4_priv *aic32x4 = i2c_get_clientdata(client);
aic32x4_disable_regulators(aic32x4);
snd_soc_unregister_codec(&client->dev);
return 0;
}
static const struct i2c_device_id aic32x4_i2c_id[] = {
{ "tlv320aic32x4", 0 },
{ }
};
MODULE_DEVICE_TABLE(i2c, aic32x4_i2c_id);
static const struct of_device_id aic32x4_of_id[] = {
{ .compatible = "ti,tlv320aic32x4", },
{ /* senitel */ }
};
MODULE_DEVICE_TABLE(of, aic32x4_of_id);
static struct i2c_driver aic32x4_i2c_driver = {
.driver = {
.name = "tlv320aic32x4",
.owner = THIS_MODULE,
.of_match_table = aic32x4_of_id,
},
.probe = aic32x4_i2c_probe,
.remove = aic32x4_i2c_remove,
.id_table = aic32x4_i2c_id,
};
module_i2c_driver(aic32x4_i2c_driver);
MODULE_DESCRIPTION("ASoC tlv320aic32x4 codec driver");
MODULE_AUTHOR("Javier Martin <javier.martin@vista-silicon.com>");
MODULE_LICENSE("GPL");