linux/kernel/reboot.c
Joel Granados 11a921909f kernel misc: Remove the now superfluous sentinel elements from ctl_table array
This commit comes at the tail end of a greater effort to remove the
empty elements at the end of the ctl_table arrays (sentinels) which
will reduce the overall build time size of the kernel and run time
memory bloat by ~64 bytes per sentinel (further information Link :
https://lore.kernel.org/all/ZO5Yx5JFogGi%2FcBo@bombadil.infradead.org/)

Remove the sentinel from ctl_table arrays. Reduce by one the values used
to compare the size of the adjusted arrays.

Signed-off-by: Joel Granados <j.granados@samsung.com>
2024-04-24 09:43:53 +02:00

1334 lines
33 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* linux/kernel/reboot.c
*
* Copyright (C) 2013 Linus Torvalds
*/
#define pr_fmt(fmt) "reboot: " fmt
#include <linux/atomic.h>
#include <linux/ctype.h>
#include <linux/export.h>
#include <linux/kexec.h>
#include <linux/kmod.h>
#include <linux/kmsg_dump.h>
#include <linux/reboot.h>
#include <linux/suspend.h>
#include <linux/syscalls.h>
#include <linux/syscore_ops.h>
#include <linux/uaccess.h>
/*
* this indicates whether you can reboot with ctrl-alt-del: the default is yes
*/
static int C_A_D = 1;
struct pid *cad_pid;
EXPORT_SYMBOL(cad_pid);
#if defined(CONFIG_ARM)
#define DEFAULT_REBOOT_MODE = REBOOT_HARD
#else
#define DEFAULT_REBOOT_MODE
#endif
enum reboot_mode reboot_mode DEFAULT_REBOOT_MODE;
EXPORT_SYMBOL_GPL(reboot_mode);
enum reboot_mode panic_reboot_mode = REBOOT_UNDEFINED;
/*
* This variable is used privately to keep track of whether or not
* reboot_type is still set to its default value (i.e., reboot= hasn't
* been set on the command line). This is needed so that we can
* suppress DMI scanning for reboot quirks. Without it, it's
* impossible to override a faulty reboot quirk without recompiling.
*/
int reboot_default = 1;
int reboot_cpu;
enum reboot_type reboot_type = BOOT_ACPI;
int reboot_force;
struct sys_off_handler {
struct notifier_block nb;
int (*sys_off_cb)(struct sys_off_data *data);
void *cb_data;
enum sys_off_mode mode;
bool blocking;
void *list;
struct device *dev;
};
/*
* This variable is used to indicate if a halt was initiated instead of a
* reboot when the reboot call was invoked with LINUX_REBOOT_CMD_POWER_OFF, but
* the system cannot be powered off. This allowes kernel_halt() to notify users
* of that.
*/
static bool poweroff_fallback_to_halt;
/*
* Temporary stub that prevents linkage failure while we're in process
* of removing all uses of legacy pm_power_off() around the kernel.
*/
void __weak (*pm_power_off)(void);
/**
* emergency_restart - reboot the system
*
* Without shutting down any hardware or taking any locks
* reboot the system. This is called when we know we are in
* trouble so this is our best effort to reboot. This is
* safe to call in interrupt context.
*/
void emergency_restart(void)
{
kmsg_dump(KMSG_DUMP_EMERG);
system_state = SYSTEM_RESTART;
machine_emergency_restart();
}
EXPORT_SYMBOL_GPL(emergency_restart);
void kernel_restart_prepare(char *cmd)
{
blocking_notifier_call_chain(&reboot_notifier_list, SYS_RESTART, cmd);
system_state = SYSTEM_RESTART;
usermodehelper_disable();
device_shutdown();
}
/**
* register_reboot_notifier - Register function to be called at reboot time
* @nb: Info about notifier function to be called
*
* Registers a function with the list of functions
* to be called at reboot time.
*
* Currently always returns zero, as blocking_notifier_chain_register()
* always returns zero.
*/
int register_reboot_notifier(struct notifier_block *nb)
{
return blocking_notifier_chain_register(&reboot_notifier_list, nb);
}
EXPORT_SYMBOL(register_reboot_notifier);
/**
* unregister_reboot_notifier - Unregister previously registered reboot notifier
* @nb: Hook to be unregistered
*
* Unregisters a previously registered reboot
* notifier function.
*
* Returns zero on success, or %-ENOENT on failure.
*/
int unregister_reboot_notifier(struct notifier_block *nb)
{
return blocking_notifier_chain_unregister(&reboot_notifier_list, nb);
}
EXPORT_SYMBOL(unregister_reboot_notifier);
static void devm_unregister_reboot_notifier(struct device *dev, void *res)
{
WARN_ON(unregister_reboot_notifier(*(struct notifier_block **)res));
}
int devm_register_reboot_notifier(struct device *dev, struct notifier_block *nb)
{
struct notifier_block **rcnb;
int ret;
rcnb = devres_alloc(devm_unregister_reboot_notifier,
sizeof(*rcnb), GFP_KERNEL);
if (!rcnb)
return -ENOMEM;
ret = register_reboot_notifier(nb);
if (!ret) {
*rcnb = nb;
devres_add(dev, rcnb);
} else {
devres_free(rcnb);
}
return ret;
}
EXPORT_SYMBOL(devm_register_reboot_notifier);
/*
* Notifier list for kernel code which wants to be called
* to restart the system.
*/
static ATOMIC_NOTIFIER_HEAD(restart_handler_list);
/**
* register_restart_handler - Register function to be called to reset
* the system
* @nb: Info about handler function to be called
* @nb->priority: Handler priority. Handlers should follow the
* following guidelines for setting priorities.
* 0: Restart handler of last resort,
* with limited restart capabilities
* 128: Default restart handler; use if no other
* restart handler is expected to be available,
* and/or if restart functionality is
* sufficient to restart the entire system
* 255: Highest priority restart handler, will
* preempt all other restart handlers
*
* Registers a function with code to be called to restart the
* system.
*
* Registered functions will be called from machine_restart as last
* step of the restart sequence (if the architecture specific
* machine_restart function calls do_kernel_restart - see below
* for details).
* Registered functions are expected to restart the system immediately.
* If more than one function is registered, the restart handler priority
* selects which function will be called first.
*
* Restart handlers are expected to be registered from non-architecture
* code, typically from drivers. A typical use case would be a system
* where restart functionality is provided through a watchdog. Multiple
* restart handlers may exist; for example, one restart handler might
* restart the entire system, while another only restarts the CPU.
* In such cases, the restart handler which only restarts part of the
* hardware is expected to register with low priority to ensure that
* it only runs if no other means to restart the system is available.
*
* Currently always returns zero, as atomic_notifier_chain_register()
* always returns zero.
*/
int register_restart_handler(struct notifier_block *nb)
{
return atomic_notifier_chain_register(&restart_handler_list, nb);
}
EXPORT_SYMBOL(register_restart_handler);
/**
* unregister_restart_handler - Unregister previously registered
* restart handler
* @nb: Hook to be unregistered
*
* Unregisters a previously registered restart handler function.
*
* Returns zero on success, or %-ENOENT on failure.
*/
int unregister_restart_handler(struct notifier_block *nb)
{
return atomic_notifier_chain_unregister(&restart_handler_list, nb);
}
EXPORT_SYMBOL(unregister_restart_handler);
/**
* do_kernel_restart - Execute kernel restart handler call chain
*
* Calls functions registered with register_restart_handler.
*
* Expected to be called from machine_restart as last step of the restart
* sequence.
*
* Restarts the system immediately if a restart handler function has been
* registered. Otherwise does nothing.
*/
void do_kernel_restart(char *cmd)
{
atomic_notifier_call_chain(&restart_handler_list, reboot_mode, cmd);
}
void migrate_to_reboot_cpu(void)
{
/* The boot cpu is always logical cpu 0 */
int cpu = reboot_cpu;
cpu_hotplug_disable();
/* Make certain the cpu I'm about to reboot on is online */
if (!cpu_online(cpu))
cpu = cpumask_first(cpu_online_mask);
/* Prevent races with other tasks migrating this task */
current->flags |= PF_NO_SETAFFINITY;
/* Make certain I only run on the appropriate processor */
set_cpus_allowed_ptr(current, cpumask_of(cpu));
}
/*
* Notifier list for kernel code which wants to be called
* to prepare system for restart.
*/
static BLOCKING_NOTIFIER_HEAD(restart_prep_handler_list);
static void do_kernel_restart_prepare(void)
{
blocking_notifier_call_chain(&restart_prep_handler_list, 0, NULL);
}
/**
* kernel_restart - reboot the system
* @cmd: pointer to buffer containing command to execute for restart
* or %NULL
*
* Shutdown everything and perform a clean reboot.
* This is not safe to call in interrupt context.
*/
void kernel_restart(char *cmd)
{
kernel_restart_prepare(cmd);
do_kernel_restart_prepare();
migrate_to_reboot_cpu();
syscore_shutdown();
if (!cmd)
pr_emerg("Restarting system\n");
else
pr_emerg("Restarting system with command '%s'\n", cmd);
kmsg_dump(KMSG_DUMP_SHUTDOWN);
machine_restart(cmd);
}
EXPORT_SYMBOL_GPL(kernel_restart);
static void kernel_shutdown_prepare(enum system_states state)
{
blocking_notifier_call_chain(&reboot_notifier_list,
(state == SYSTEM_HALT) ? SYS_HALT : SYS_POWER_OFF, NULL);
system_state = state;
usermodehelper_disable();
device_shutdown();
}
/**
* kernel_halt - halt the system
*
* Shutdown everything and perform a clean system halt.
*/
void kernel_halt(void)
{
kernel_shutdown_prepare(SYSTEM_HALT);
migrate_to_reboot_cpu();
syscore_shutdown();
if (poweroff_fallback_to_halt)
pr_emerg("Power off not available: System halted instead\n");
else
pr_emerg("System halted\n");
kmsg_dump(KMSG_DUMP_SHUTDOWN);
machine_halt();
}
EXPORT_SYMBOL_GPL(kernel_halt);
/*
* Notifier list for kernel code which wants to be called
* to prepare system for power off.
*/
static BLOCKING_NOTIFIER_HEAD(power_off_prep_handler_list);
/*
* Notifier list for kernel code which wants to be called
* to power off system.
*/
static ATOMIC_NOTIFIER_HEAD(power_off_handler_list);
static int sys_off_notify(struct notifier_block *nb,
unsigned long mode, void *cmd)
{
struct sys_off_handler *handler;
struct sys_off_data data = {};
handler = container_of(nb, struct sys_off_handler, nb);
data.cb_data = handler->cb_data;
data.mode = mode;
data.cmd = cmd;
data.dev = handler->dev;
return handler->sys_off_cb(&data);
}
static struct sys_off_handler platform_sys_off_handler;
static struct sys_off_handler *alloc_sys_off_handler(int priority)
{
struct sys_off_handler *handler;
gfp_t flags;
/*
* Platforms like m68k can't allocate sys_off handler dynamically
* at the early boot time because memory allocator isn't available yet.
*/
if (priority == SYS_OFF_PRIO_PLATFORM) {
handler = &platform_sys_off_handler;
if (handler->cb_data)
return ERR_PTR(-EBUSY);
} else {
if (system_state > SYSTEM_RUNNING)
flags = GFP_ATOMIC;
else
flags = GFP_KERNEL;
handler = kzalloc(sizeof(*handler), flags);
if (!handler)
return ERR_PTR(-ENOMEM);
}
return handler;
}
static void free_sys_off_handler(struct sys_off_handler *handler)
{
if (handler == &platform_sys_off_handler)
memset(handler, 0, sizeof(*handler));
else
kfree(handler);
}
/**
* register_sys_off_handler - Register sys-off handler
* @mode: Sys-off mode
* @priority: Handler priority
* @callback: Callback function
* @cb_data: Callback argument
*
* Registers system power-off or restart handler that will be invoked
* at the step corresponding to the given sys-off mode. Handler's callback
* should return NOTIFY_DONE to permit execution of the next handler in
* the call chain or NOTIFY_STOP to break the chain (in error case for
* example).
*
* Multiple handlers can be registered at the default priority level.
*
* Only one handler can be registered at the non-default priority level,
* otherwise ERR_PTR(-EBUSY) is returned.
*
* Returns a new instance of struct sys_off_handler on success, or
* an ERR_PTR()-encoded error code otherwise.
*/
struct sys_off_handler *
register_sys_off_handler(enum sys_off_mode mode,
int priority,
int (*callback)(struct sys_off_data *data),
void *cb_data)
{
struct sys_off_handler *handler;
int err;
handler = alloc_sys_off_handler(priority);
if (IS_ERR(handler))
return handler;
switch (mode) {
case SYS_OFF_MODE_POWER_OFF_PREPARE:
handler->list = &power_off_prep_handler_list;
handler->blocking = true;
break;
case SYS_OFF_MODE_POWER_OFF:
handler->list = &power_off_handler_list;
break;
case SYS_OFF_MODE_RESTART_PREPARE:
handler->list = &restart_prep_handler_list;
handler->blocking = true;
break;
case SYS_OFF_MODE_RESTART:
handler->list = &restart_handler_list;
break;
default:
free_sys_off_handler(handler);
return ERR_PTR(-EINVAL);
}
handler->nb.notifier_call = sys_off_notify;
handler->nb.priority = priority;
handler->sys_off_cb = callback;
handler->cb_data = cb_data;
handler->mode = mode;
if (handler->blocking) {
if (priority == SYS_OFF_PRIO_DEFAULT)
err = blocking_notifier_chain_register(handler->list,
&handler->nb);
else
err = blocking_notifier_chain_register_unique_prio(handler->list,
&handler->nb);
} else {
if (priority == SYS_OFF_PRIO_DEFAULT)
err = atomic_notifier_chain_register(handler->list,
&handler->nb);
else
err = atomic_notifier_chain_register_unique_prio(handler->list,
&handler->nb);
}
if (err) {
free_sys_off_handler(handler);
return ERR_PTR(err);
}
return handler;
}
EXPORT_SYMBOL_GPL(register_sys_off_handler);
/**
* unregister_sys_off_handler - Unregister sys-off handler
* @handler: Sys-off handler
*
* Unregisters given sys-off handler.
*/
void unregister_sys_off_handler(struct sys_off_handler *handler)
{
int err;
if (IS_ERR_OR_NULL(handler))
return;
if (handler->blocking)
err = blocking_notifier_chain_unregister(handler->list,
&handler->nb);
else
err = atomic_notifier_chain_unregister(handler->list,
&handler->nb);
/* sanity check, shall never happen */
WARN_ON(err);
free_sys_off_handler(handler);
}
EXPORT_SYMBOL_GPL(unregister_sys_off_handler);
static void devm_unregister_sys_off_handler(void *data)
{
struct sys_off_handler *handler = data;
unregister_sys_off_handler(handler);
}
/**
* devm_register_sys_off_handler - Register sys-off handler
* @dev: Device that registers handler
* @mode: Sys-off mode
* @priority: Handler priority
* @callback: Callback function
* @cb_data: Callback argument
*
* Registers resource-managed sys-off handler.
*
* Returns zero on success, or error code on failure.
*/
int devm_register_sys_off_handler(struct device *dev,
enum sys_off_mode mode,
int priority,
int (*callback)(struct sys_off_data *data),
void *cb_data)
{
struct sys_off_handler *handler;
handler = register_sys_off_handler(mode, priority, callback, cb_data);
if (IS_ERR(handler))
return PTR_ERR(handler);
handler->dev = dev;
return devm_add_action_or_reset(dev, devm_unregister_sys_off_handler,
handler);
}
EXPORT_SYMBOL_GPL(devm_register_sys_off_handler);
/**
* devm_register_power_off_handler - Register power-off handler
* @dev: Device that registers callback
* @callback: Callback function
* @cb_data: Callback's argument
*
* Registers resource-managed sys-off handler with a default priority
* and using power-off mode.
*
* Returns zero on success, or error code on failure.
*/
int devm_register_power_off_handler(struct device *dev,
int (*callback)(struct sys_off_data *data),
void *cb_data)
{
return devm_register_sys_off_handler(dev,
SYS_OFF_MODE_POWER_OFF,
SYS_OFF_PRIO_DEFAULT,
callback, cb_data);
}
EXPORT_SYMBOL_GPL(devm_register_power_off_handler);
/**
* devm_register_restart_handler - Register restart handler
* @dev: Device that registers callback
* @callback: Callback function
* @cb_data: Callback's argument
*
* Registers resource-managed sys-off handler with a default priority
* and using restart mode.
*
* Returns zero on success, or error code on failure.
*/
int devm_register_restart_handler(struct device *dev,
int (*callback)(struct sys_off_data *data),
void *cb_data)
{
return devm_register_sys_off_handler(dev,
SYS_OFF_MODE_RESTART,
SYS_OFF_PRIO_DEFAULT,
callback, cb_data);
}
EXPORT_SYMBOL_GPL(devm_register_restart_handler);
static struct sys_off_handler *platform_power_off_handler;
static int platform_power_off_notify(struct sys_off_data *data)
{
void (*platform_power_power_off_cb)(void) = data->cb_data;
platform_power_power_off_cb();
return NOTIFY_DONE;
}
/**
* register_platform_power_off - Register platform-level power-off callback
* @power_off: Power-off callback
*
* Registers power-off callback that will be called as last step
* of the power-off sequence. This callback is expected to be invoked
* for the last resort. Only one platform power-off callback is allowed
* to be registered at a time.
*
* Returns zero on success, or error code on failure.
*/
int register_platform_power_off(void (*power_off)(void))
{
struct sys_off_handler *handler;
handler = register_sys_off_handler(SYS_OFF_MODE_POWER_OFF,
SYS_OFF_PRIO_PLATFORM,
platform_power_off_notify,
power_off);
if (IS_ERR(handler))
return PTR_ERR(handler);
platform_power_off_handler = handler;
return 0;
}
EXPORT_SYMBOL_GPL(register_platform_power_off);
/**
* unregister_platform_power_off - Unregister platform-level power-off callback
* @power_off: Power-off callback
*
* Unregisters previously registered platform power-off callback.
*/
void unregister_platform_power_off(void (*power_off)(void))
{
if (platform_power_off_handler &&
platform_power_off_handler->cb_data == power_off) {
unregister_sys_off_handler(platform_power_off_handler);
platform_power_off_handler = NULL;
}
}
EXPORT_SYMBOL_GPL(unregister_platform_power_off);
static int legacy_pm_power_off(struct sys_off_data *data)
{
if (pm_power_off)
pm_power_off();
return NOTIFY_DONE;
}
static void do_kernel_power_off_prepare(void)
{
blocking_notifier_call_chain(&power_off_prep_handler_list, 0, NULL);
}
/**
* do_kernel_power_off - Execute kernel power-off handler call chain
*
* Expected to be called as last step of the power-off sequence.
*
* Powers off the system immediately if a power-off handler function has
* been registered. Otherwise does nothing.
*/
void do_kernel_power_off(void)
{
struct sys_off_handler *sys_off = NULL;
/*
* Register sys-off handlers for legacy PM callback. This allows
* legacy PM callbacks temporary co-exist with the new sys-off API.
*
* TODO: Remove legacy handlers once all legacy PM users will be
* switched to the sys-off based APIs.
*/
if (pm_power_off)
sys_off = register_sys_off_handler(SYS_OFF_MODE_POWER_OFF,
SYS_OFF_PRIO_DEFAULT,
legacy_pm_power_off, NULL);
atomic_notifier_call_chain(&power_off_handler_list, 0, NULL);
unregister_sys_off_handler(sys_off);
}
/**
* kernel_can_power_off - check whether system can be powered off
*
* Returns true if power-off handler is registered and system can be
* powered off, false otherwise.
*/
bool kernel_can_power_off(void)
{
return !atomic_notifier_call_chain_is_empty(&power_off_handler_list) ||
pm_power_off;
}
EXPORT_SYMBOL_GPL(kernel_can_power_off);
/**
* kernel_power_off - power_off the system
*
* Shutdown everything and perform a clean system power_off.
*/
void kernel_power_off(void)
{
kernel_shutdown_prepare(SYSTEM_POWER_OFF);
do_kernel_power_off_prepare();
migrate_to_reboot_cpu();
syscore_shutdown();
pr_emerg("Power down\n");
kmsg_dump(KMSG_DUMP_SHUTDOWN);
machine_power_off();
}
EXPORT_SYMBOL_GPL(kernel_power_off);
DEFINE_MUTEX(system_transition_mutex);
/*
* Reboot system call: for obvious reasons only root may call it,
* and even root needs to set up some magic numbers in the registers
* so that some mistake won't make this reboot the whole machine.
* You can also set the meaning of the ctrl-alt-del-key here.
*
* reboot doesn't sync: do that yourself before calling this.
*/
SYSCALL_DEFINE4(reboot, int, magic1, int, magic2, unsigned int, cmd,
void __user *, arg)
{
struct pid_namespace *pid_ns = task_active_pid_ns(current);
char buffer[256];
int ret = 0;
/* We only trust the superuser with rebooting the system. */
if (!ns_capable(pid_ns->user_ns, CAP_SYS_BOOT))
return -EPERM;
/* For safety, we require "magic" arguments. */
if (magic1 != LINUX_REBOOT_MAGIC1 ||
(magic2 != LINUX_REBOOT_MAGIC2 &&
magic2 != LINUX_REBOOT_MAGIC2A &&
magic2 != LINUX_REBOOT_MAGIC2B &&
magic2 != LINUX_REBOOT_MAGIC2C))
return -EINVAL;
/*
* If pid namespaces are enabled and the current task is in a child
* pid_namespace, the command is handled by reboot_pid_ns() which will
* call do_exit().
*/
ret = reboot_pid_ns(pid_ns, cmd);
if (ret)
return ret;
/* Instead of trying to make the power_off code look like
* halt when pm_power_off is not set do it the easy way.
*/
if ((cmd == LINUX_REBOOT_CMD_POWER_OFF) && !kernel_can_power_off()) {
poweroff_fallback_to_halt = true;
cmd = LINUX_REBOOT_CMD_HALT;
}
mutex_lock(&system_transition_mutex);
switch (cmd) {
case LINUX_REBOOT_CMD_RESTART:
kernel_restart(NULL);
break;
case LINUX_REBOOT_CMD_CAD_ON:
C_A_D = 1;
break;
case LINUX_REBOOT_CMD_CAD_OFF:
C_A_D = 0;
break;
case LINUX_REBOOT_CMD_HALT:
kernel_halt();
do_exit(0);
case LINUX_REBOOT_CMD_POWER_OFF:
kernel_power_off();
do_exit(0);
break;
case LINUX_REBOOT_CMD_RESTART2:
ret = strncpy_from_user(&buffer[0], arg, sizeof(buffer) - 1);
if (ret < 0) {
ret = -EFAULT;
break;
}
buffer[sizeof(buffer) - 1] = '\0';
kernel_restart(buffer);
break;
#ifdef CONFIG_KEXEC_CORE
case LINUX_REBOOT_CMD_KEXEC:
ret = kernel_kexec();
break;
#endif
#ifdef CONFIG_HIBERNATION
case LINUX_REBOOT_CMD_SW_SUSPEND:
ret = hibernate();
break;
#endif
default:
ret = -EINVAL;
break;
}
mutex_unlock(&system_transition_mutex);
return ret;
}
static void deferred_cad(struct work_struct *dummy)
{
kernel_restart(NULL);
}
/*
* This function gets called by ctrl-alt-del - ie the keyboard interrupt.
* As it's called within an interrupt, it may NOT sync: the only choice
* is whether to reboot at once, or just ignore the ctrl-alt-del.
*/
void ctrl_alt_del(void)
{
static DECLARE_WORK(cad_work, deferred_cad);
if (C_A_D)
schedule_work(&cad_work);
else
kill_cad_pid(SIGINT, 1);
}
#define POWEROFF_CMD_PATH_LEN 256
static char poweroff_cmd[POWEROFF_CMD_PATH_LEN] = "/sbin/poweroff";
static const char reboot_cmd[] = "/sbin/reboot";
static int run_cmd(const char *cmd)
{
char **argv;
static char *envp[] = {
"HOME=/",
"PATH=/sbin:/bin:/usr/sbin:/usr/bin",
NULL
};
int ret;
argv = argv_split(GFP_KERNEL, cmd, NULL);
if (argv) {
ret = call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
argv_free(argv);
} else {
ret = -ENOMEM;
}
return ret;
}
static int __orderly_reboot(void)
{
int ret;
ret = run_cmd(reboot_cmd);
if (ret) {
pr_warn("Failed to start orderly reboot: forcing the issue\n");
emergency_sync();
kernel_restart(NULL);
}
return ret;
}
static int __orderly_poweroff(bool force)
{
int ret;
ret = run_cmd(poweroff_cmd);
if (ret && force) {
pr_warn("Failed to start orderly shutdown: forcing the issue\n");
/*
* I guess this should try to kick off some daemon to sync and
* poweroff asap. Or not even bother syncing if we're doing an
* emergency shutdown?
*/
emergency_sync();
kernel_power_off();
}
return ret;
}
static bool poweroff_force;
static void poweroff_work_func(struct work_struct *work)
{
__orderly_poweroff(poweroff_force);
}
static DECLARE_WORK(poweroff_work, poweroff_work_func);
/**
* orderly_poweroff - Trigger an orderly system poweroff
* @force: force poweroff if command execution fails
*
* This may be called from any context to trigger a system shutdown.
* If the orderly shutdown fails, it will force an immediate shutdown.
*/
void orderly_poweroff(bool force)
{
if (force) /* do not override the pending "true" */
poweroff_force = true;
schedule_work(&poweroff_work);
}
EXPORT_SYMBOL_GPL(orderly_poweroff);
static void reboot_work_func(struct work_struct *work)
{
__orderly_reboot();
}
static DECLARE_WORK(reboot_work, reboot_work_func);
/**
* orderly_reboot - Trigger an orderly system reboot
*
* This may be called from any context to trigger a system reboot.
* If the orderly reboot fails, it will force an immediate reboot.
*/
void orderly_reboot(void)
{
schedule_work(&reboot_work);
}
EXPORT_SYMBOL_GPL(orderly_reboot);
/**
* hw_failure_emergency_poweroff_func - emergency poweroff work after a known delay
* @work: work_struct associated with the emergency poweroff function
*
* This function is called in very critical situations to force
* a kernel poweroff after a configurable timeout value.
*/
static void hw_failure_emergency_poweroff_func(struct work_struct *work)
{
/*
* We have reached here after the emergency shutdown waiting period has
* expired. This means orderly_poweroff has not been able to shut off
* the system for some reason.
*
* Try to shut down the system immediately using kernel_power_off
* if populated
*/
pr_emerg("Hardware protection timed-out. Trying forced poweroff\n");
kernel_power_off();
/*
* Worst of the worst case trigger emergency restart
*/
pr_emerg("Hardware protection shutdown failed. Trying emergency restart\n");
emergency_restart();
}
static DECLARE_DELAYED_WORK(hw_failure_emergency_poweroff_work,
hw_failure_emergency_poweroff_func);
/**
* hw_failure_emergency_poweroff - Trigger an emergency system poweroff
*
* This may be called from any critical situation to trigger a system shutdown
* after a given period of time. If time is negative this is not scheduled.
*/
static void hw_failure_emergency_poweroff(int poweroff_delay_ms)
{
if (poweroff_delay_ms <= 0)
return;
schedule_delayed_work(&hw_failure_emergency_poweroff_work,
msecs_to_jiffies(poweroff_delay_ms));
}
/**
* __hw_protection_shutdown - Trigger an emergency system shutdown or reboot
*
* @reason: Reason of emergency shutdown or reboot to be printed.
* @ms_until_forced: Time to wait for orderly shutdown or reboot before
* triggering it. Negative value disables the forced
* shutdown or reboot.
* @shutdown: If true, indicates that a shutdown will happen
* after the critical tempeature is reached.
* If false, indicates that a reboot will happen
* after the critical tempeature is reached.
*
* Initiate an emergency system shutdown or reboot in order to protect
* hardware from further damage. Usage examples include a thermal protection.
* NOTE: The request is ignored if protection shutdown or reboot is already
* pending even if the previous request has given a large timeout for forced
* shutdown/reboot.
*/
void __hw_protection_shutdown(const char *reason, int ms_until_forced, bool shutdown)
{
static atomic_t allow_proceed = ATOMIC_INIT(1);
pr_emerg("HARDWARE PROTECTION shutdown (%s)\n", reason);
/* Shutdown should be initiated only once. */
if (!atomic_dec_and_test(&allow_proceed))
return;
/*
* Queue a backup emergency shutdown in the event of
* orderly_poweroff failure
*/
hw_failure_emergency_poweroff(ms_until_forced);
if (shutdown)
orderly_poweroff(true);
else
orderly_reboot();
}
EXPORT_SYMBOL_GPL(__hw_protection_shutdown);
static int __init reboot_setup(char *str)
{
for (;;) {
enum reboot_mode *mode;
/*
* Having anything passed on the command line via
* reboot= will cause us to disable DMI checking
* below.
*/
reboot_default = 0;
if (!strncmp(str, "panic_", 6)) {
mode = &panic_reboot_mode;
str += 6;
} else {
mode = &reboot_mode;
}
switch (*str) {
case 'w':
*mode = REBOOT_WARM;
break;
case 'c':
*mode = REBOOT_COLD;
break;
case 'h':
*mode = REBOOT_HARD;
break;
case 's':
/*
* reboot_cpu is s[mp]#### with #### being the processor
* to be used for rebooting. Skip 's' or 'smp' prefix.
*/
str += str[1] == 'm' && str[2] == 'p' ? 3 : 1;
if (isdigit(str[0])) {
int cpu = simple_strtoul(str, NULL, 0);
if (cpu >= num_possible_cpus()) {
pr_err("Ignoring the CPU number in reboot= option. "
"CPU %d exceeds possible cpu number %d\n",
cpu, num_possible_cpus());
break;
}
reboot_cpu = cpu;
} else
*mode = REBOOT_SOFT;
break;
case 'g':
*mode = REBOOT_GPIO;
break;
case 'b':
case 'a':
case 'k':
case 't':
case 'e':
case 'p':
reboot_type = *str;
break;
case 'f':
reboot_force = 1;
break;
}
str = strchr(str, ',');
if (str)
str++;
else
break;
}
return 1;
}
__setup("reboot=", reboot_setup);
#ifdef CONFIG_SYSFS
#define REBOOT_COLD_STR "cold"
#define REBOOT_WARM_STR "warm"
#define REBOOT_HARD_STR "hard"
#define REBOOT_SOFT_STR "soft"
#define REBOOT_GPIO_STR "gpio"
#define REBOOT_UNDEFINED_STR "undefined"
#define BOOT_TRIPLE_STR "triple"
#define BOOT_KBD_STR "kbd"
#define BOOT_BIOS_STR "bios"
#define BOOT_ACPI_STR "acpi"
#define BOOT_EFI_STR "efi"
#define BOOT_PCI_STR "pci"
static ssize_t mode_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
{
const char *val;
switch (reboot_mode) {
case REBOOT_COLD:
val = REBOOT_COLD_STR;
break;
case REBOOT_WARM:
val = REBOOT_WARM_STR;
break;
case REBOOT_HARD:
val = REBOOT_HARD_STR;
break;
case REBOOT_SOFT:
val = REBOOT_SOFT_STR;
break;
case REBOOT_GPIO:
val = REBOOT_GPIO_STR;
break;
default:
val = REBOOT_UNDEFINED_STR;
}
return sprintf(buf, "%s\n", val);
}
static ssize_t mode_store(struct kobject *kobj, struct kobj_attribute *attr,
const char *buf, size_t count)
{
if (!capable(CAP_SYS_BOOT))
return -EPERM;
if (!strncmp(buf, REBOOT_COLD_STR, strlen(REBOOT_COLD_STR)))
reboot_mode = REBOOT_COLD;
else if (!strncmp(buf, REBOOT_WARM_STR, strlen(REBOOT_WARM_STR)))
reboot_mode = REBOOT_WARM;
else if (!strncmp(buf, REBOOT_HARD_STR, strlen(REBOOT_HARD_STR)))
reboot_mode = REBOOT_HARD;
else if (!strncmp(buf, REBOOT_SOFT_STR, strlen(REBOOT_SOFT_STR)))
reboot_mode = REBOOT_SOFT;
else if (!strncmp(buf, REBOOT_GPIO_STR, strlen(REBOOT_GPIO_STR)))
reboot_mode = REBOOT_GPIO;
else
return -EINVAL;
reboot_default = 0;
return count;
}
static struct kobj_attribute reboot_mode_attr = __ATTR_RW(mode);
#ifdef CONFIG_X86
static ssize_t force_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
{
return sprintf(buf, "%d\n", reboot_force);
}
static ssize_t force_store(struct kobject *kobj, struct kobj_attribute *attr,
const char *buf, size_t count)
{
bool res;
if (!capable(CAP_SYS_BOOT))
return -EPERM;
if (kstrtobool(buf, &res))
return -EINVAL;
reboot_default = 0;
reboot_force = res;
return count;
}
static struct kobj_attribute reboot_force_attr = __ATTR_RW(force);
static ssize_t type_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
{
const char *val;
switch (reboot_type) {
case BOOT_TRIPLE:
val = BOOT_TRIPLE_STR;
break;
case BOOT_KBD:
val = BOOT_KBD_STR;
break;
case BOOT_BIOS:
val = BOOT_BIOS_STR;
break;
case BOOT_ACPI:
val = BOOT_ACPI_STR;
break;
case BOOT_EFI:
val = BOOT_EFI_STR;
break;
case BOOT_CF9_FORCE:
val = BOOT_PCI_STR;
break;
default:
val = REBOOT_UNDEFINED_STR;
}
return sprintf(buf, "%s\n", val);
}
static ssize_t type_store(struct kobject *kobj, struct kobj_attribute *attr,
const char *buf, size_t count)
{
if (!capable(CAP_SYS_BOOT))
return -EPERM;
if (!strncmp(buf, BOOT_TRIPLE_STR, strlen(BOOT_TRIPLE_STR)))
reboot_type = BOOT_TRIPLE;
else if (!strncmp(buf, BOOT_KBD_STR, strlen(BOOT_KBD_STR)))
reboot_type = BOOT_KBD;
else if (!strncmp(buf, BOOT_BIOS_STR, strlen(BOOT_BIOS_STR)))
reboot_type = BOOT_BIOS;
else if (!strncmp(buf, BOOT_ACPI_STR, strlen(BOOT_ACPI_STR)))
reboot_type = BOOT_ACPI;
else if (!strncmp(buf, BOOT_EFI_STR, strlen(BOOT_EFI_STR)))
reboot_type = BOOT_EFI;
else if (!strncmp(buf, BOOT_PCI_STR, strlen(BOOT_PCI_STR)))
reboot_type = BOOT_CF9_FORCE;
else
return -EINVAL;
reboot_default = 0;
return count;
}
static struct kobj_attribute reboot_type_attr = __ATTR_RW(type);
#endif
#ifdef CONFIG_SMP
static ssize_t cpu_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
{
return sprintf(buf, "%d\n", reboot_cpu);
}
static ssize_t cpu_store(struct kobject *kobj, struct kobj_attribute *attr,
const char *buf, size_t count)
{
unsigned int cpunum;
int rc;
if (!capable(CAP_SYS_BOOT))
return -EPERM;
rc = kstrtouint(buf, 0, &cpunum);
if (rc)
return rc;
if (cpunum >= num_possible_cpus())
return -ERANGE;
reboot_default = 0;
reboot_cpu = cpunum;
return count;
}
static struct kobj_attribute reboot_cpu_attr = __ATTR_RW(cpu);
#endif
static struct attribute *reboot_attrs[] = {
&reboot_mode_attr.attr,
#ifdef CONFIG_X86
&reboot_force_attr.attr,
&reboot_type_attr.attr,
#endif
#ifdef CONFIG_SMP
&reboot_cpu_attr.attr,
#endif
NULL,
};
#ifdef CONFIG_SYSCTL
static struct ctl_table kern_reboot_table[] = {
{
.procname = "poweroff_cmd",
.data = &poweroff_cmd,
.maxlen = POWEROFF_CMD_PATH_LEN,
.mode = 0644,
.proc_handler = proc_dostring,
},
{
.procname = "ctrl-alt-del",
.data = &C_A_D,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = proc_dointvec,
},
};
static void __init kernel_reboot_sysctls_init(void)
{
register_sysctl_init("kernel", kern_reboot_table);
}
#else
#define kernel_reboot_sysctls_init() do { } while (0)
#endif /* CONFIG_SYSCTL */
static const struct attribute_group reboot_attr_group = {
.attrs = reboot_attrs,
};
static int __init reboot_ksysfs_init(void)
{
struct kobject *reboot_kobj;
int ret;
reboot_kobj = kobject_create_and_add("reboot", kernel_kobj);
if (!reboot_kobj)
return -ENOMEM;
ret = sysfs_create_group(reboot_kobj, &reboot_attr_group);
if (ret) {
kobject_put(reboot_kobj);
return ret;
}
kernel_reboot_sysctls_init();
return 0;
}
late_initcall(reboot_ksysfs_init);
#endif