mirror of
https://github.com/torvalds/linux.git
synced 2024-11-16 17:12:06 +00:00
2618c60b8b
Using dev_to_node(&dev->dev) to get node, and kmalloc_node to dma buffer on corresponding node dma pool Signed-off-by: Yinghai Lu <yinghai.lu@sun.com> Cc: Andi Kleen <ak@suse.de> Cc: Christoph Lameter <clameter@sgi.com> Cc: David Rientjes <rientjes@google.com> Cc: Greg KH <greg@kroah.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
483 lines
12 KiB
C
483 lines
12 KiB
C
|
|
#include <linux/device.h>
|
|
#include <linux/mm.h>
|
|
#include <asm/io.h> /* Needed for i386 to build */
|
|
#include <asm/scatterlist.h> /* Needed for i386 to build */
|
|
#include <linux/dma-mapping.h>
|
|
#include <linux/dmapool.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/module.h>
|
|
#include <linux/poison.h>
|
|
#include <linux/sched.h>
|
|
|
|
/*
|
|
* Pool allocator ... wraps the dma_alloc_coherent page allocator, so
|
|
* small blocks are easily used by drivers for bus mastering controllers.
|
|
* This should probably be sharing the guts of the slab allocator.
|
|
*/
|
|
|
|
struct dma_pool { /* the pool */
|
|
struct list_head page_list;
|
|
spinlock_t lock;
|
|
size_t blocks_per_page;
|
|
size_t size;
|
|
struct device *dev;
|
|
size_t allocation;
|
|
char name [32];
|
|
wait_queue_head_t waitq;
|
|
struct list_head pools;
|
|
};
|
|
|
|
struct dma_page { /* cacheable header for 'allocation' bytes */
|
|
struct list_head page_list;
|
|
void *vaddr;
|
|
dma_addr_t dma;
|
|
unsigned in_use;
|
|
unsigned long bitmap [0];
|
|
};
|
|
|
|
#define POOL_TIMEOUT_JIFFIES ((100 /* msec */ * HZ) / 1000)
|
|
|
|
static DEFINE_MUTEX (pools_lock);
|
|
|
|
static ssize_t
|
|
show_pools (struct device *dev, struct device_attribute *attr, char *buf)
|
|
{
|
|
unsigned temp;
|
|
unsigned size;
|
|
char *next;
|
|
struct dma_page *page;
|
|
struct dma_pool *pool;
|
|
|
|
next = buf;
|
|
size = PAGE_SIZE;
|
|
|
|
temp = scnprintf(next, size, "poolinfo - 0.1\n");
|
|
size -= temp;
|
|
next += temp;
|
|
|
|
mutex_lock(&pools_lock);
|
|
list_for_each_entry(pool, &dev->dma_pools, pools) {
|
|
unsigned pages = 0;
|
|
unsigned blocks = 0;
|
|
|
|
list_for_each_entry(page, &pool->page_list, page_list) {
|
|
pages++;
|
|
blocks += page->in_use;
|
|
}
|
|
|
|
/* per-pool info, no real statistics yet */
|
|
temp = scnprintf(next, size, "%-16s %4u %4Zu %4Zu %2u\n",
|
|
pool->name,
|
|
blocks, pages * pool->blocks_per_page,
|
|
pool->size, pages);
|
|
size -= temp;
|
|
next += temp;
|
|
}
|
|
mutex_unlock(&pools_lock);
|
|
|
|
return PAGE_SIZE - size;
|
|
}
|
|
static DEVICE_ATTR (pools, S_IRUGO, show_pools, NULL);
|
|
|
|
/**
|
|
* dma_pool_create - Creates a pool of consistent memory blocks, for dma.
|
|
* @name: name of pool, for diagnostics
|
|
* @dev: device that will be doing the DMA
|
|
* @size: size of the blocks in this pool.
|
|
* @align: alignment requirement for blocks; must be a power of two
|
|
* @allocation: returned blocks won't cross this boundary (or zero)
|
|
* Context: !in_interrupt()
|
|
*
|
|
* Returns a dma allocation pool with the requested characteristics, or
|
|
* null if one can't be created. Given one of these pools, dma_pool_alloc()
|
|
* may be used to allocate memory. Such memory will all have "consistent"
|
|
* DMA mappings, accessible by the device and its driver without using
|
|
* cache flushing primitives. The actual size of blocks allocated may be
|
|
* larger than requested because of alignment.
|
|
*
|
|
* If allocation is nonzero, objects returned from dma_pool_alloc() won't
|
|
* cross that size boundary. This is useful for devices which have
|
|
* addressing restrictions on individual DMA transfers, such as not crossing
|
|
* boundaries of 4KBytes.
|
|
*/
|
|
struct dma_pool *
|
|
dma_pool_create (const char *name, struct device *dev,
|
|
size_t size, size_t align, size_t allocation)
|
|
{
|
|
struct dma_pool *retval;
|
|
|
|
if (align == 0)
|
|
align = 1;
|
|
if (size == 0)
|
|
return NULL;
|
|
else if (size < align)
|
|
size = align;
|
|
else if ((size % align) != 0) {
|
|
size += align + 1;
|
|
size &= ~(align - 1);
|
|
}
|
|
|
|
if (allocation == 0) {
|
|
if (PAGE_SIZE < size)
|
|
allocation = size;
|
|
else
|
|
allocation = PAGE_SIZE;
|
|
// FIXME: round up for less fragmentation
|
|
} else if (allocation < size)
|
|
return NULL;
|
|
|
|
if (!(retval = kmalloc_node (sizeof *retval, GFP_KERNEL, dev_to_node(dev))))
|
|
return retval;
|
|
|
|
strlcpy (retval->name, name, sizeof retval->name);
|
|
|
|
retval->dev = dev;
|
|
|
|
INIT_LIST_HEAD (&retval->page_list);
|
|
spin_lock_init (&retval->lock);
|
|
retval->size = size;
|
|
retval->allocation = allocation;
|
|
retval->blocks_per_page = allocation / size;
|
|
init_waitqueue_head (&retval->waitq);
|
|
|
|
if (dev) {
|
|
int ret;
|
|
|
|
mutex_lock(&pools_lock);
|
|
if (list_empty (&dev->dma_pools))
|
|
ret = device_create_file (dev, &dev_attr_pools);
|
|
else
|
|
ret = 0;
|
|
/* note: not currently insisting "name" be unique */
|
|
if (!ret)
|
|
list_add (&retval->pools, &dev->dma_pools);
|
|
else {
|
|
kfree(retval);
|
|
retval = NULL;
|
|
}
|
|
mutex_unlock(&pools_lock);
|
|
} else
|
|
INIT_LIST_HEAD (&retval->pools);
|
|
|
|
return retval;
|
|
}
|
|
|
|
|
|
static struct dma_page *
|
|
pool_alloc_page (struct dma_pool *pool, gfp_t mem_flags)
|
|
{
|
|
struct dma_page *page;
|
|
int mapsize;
|
|
|
|
mapsize = pool->blocks_per_page;
|
|
mapsize = (mapsize + BITS_PER_LONG - 1) / BITS_PER_LONG;
|
|
mapsize *= sizeof (long);
|
|
|
|
page = kmalloc(mapsize + sizeof *page, mem_flags);
|
|
if (!page)
|
|
return NULL;
|
|
page->vaddr = dma_alloc_coherent (pool->dev,
|
|
pool->allocation,
|
|
&page->dma,
|
|
mem_flags);
|
|
if (page->vaddr) {
|
|
memset (page->bitmap, 0xff, mapsize); // bit set == free
|
|
#ifdef CONFIG_DEBUG_SLAB
|
|
memset (page->vaddr, POOL_POISON_FREED, pool->allocation);
|
|
#endif
|
|
list_add (&page->page_list, &pool->page_list);
|
|
page->in_use = 0;
|
|
} else {
|
|
kfree (page);
|
|
page = NULL;
|
|
}
|
|
return page;
|
|
}
|
|
|
|
|
|
static inline int
|
|
is_page_busy (int blocks, unsigned long *bitmap)
|
|
{
|
|
while (blocks > 0) {
|
|
if (*bitmap++ != ~0UL)
|
|
return 1;
|
|
blocks -= BITS_PER_LONG;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
pool_free_page (struct dma_pool *pool, struct dma_page *page)
|
|
{
|
|
dma_addr_t dma = page->dma;
|
|
|
|
#ifdef CONFIG_DEBUG_SLAB
|
|
memset (page->vaddr, POOL_POISON_FREED, pool->allocation);
|
|
#endif
|
|
dma_free_coherent (pool->dev, pool->allocation, page->vaddr, dma);
|
|
list_del (&page->page_list);
|
|
kfree (page);
|
|
}
|
|
|
|
|
|
/**
|
|
* dma_pool_destroy - destroys a pool of dma memory blocks.
|
|
* @pool: dma pool that will be destroyed
|
|
* Context: !in_interrupt()
|
|
*
|
|
* Caller guarantees that no more memory from the pool is in use,
|
|
* and that nothing will try to use the pool after this call.
|
|
*/
|
|
void
|
|
dma_pool_destroy (struct dma_pool *pool)
|
|
{
|
|
mutex_lock(&pools_lock);
|
|
list_del (&pool->pools);
|
|
if (pool->dev && list_empty (&pool->dev->dma_pools))
|
|
device_remove_file (pool->dev, &dev_attr_pools);
|
|
mutex_unlock(&pools_lock);
|
|
|
|
while (!list_empty (&pool->page_list)) {
|
|
struct dma_page *page;
|
|
page = list_entry (pool->page_list.next,
|
|
struct dma_page, page_list);
|
|
if (is_page_busy (pool->blocks_per_page, page->bitmap)) {
|
|
if (pool->dev)
|
|
dev_err(pool->dev, "dma_pool_destroy %s, %p busy\n",
|
|
pool->name, page->vaddr);
|
|
else
|
|
printk (KERN_ERR "dma_pool_destroy %s, %p busy\n",
|
|
pool->name, page->vaddr);
|
|
/* leak the still-in-use consistent memory */
|
|
list_del (&page->page_list);
|
|
kfree (page);
|
|
} else
|
|
pool_free_page (pool, page);
|
|
}
|
|
|
|
kfree (pool);
|
|
}
|
|
|
|
|
|
/**
|
|
* dma_pool_alloc - get a block of consistent memory
|
|
* @pool: dma pool that will produce the block
|
|
* @mem_flags: GFP_* bitmask
|
|
* @handle: pointer to dma address of block
|
|
*
|
|
* This returns the kernel virtual address of a currently unused block,
|
|
* and reports its dma address through the handle.
|
|
* If such a memory block can't be allocated, null is returned.
|
|
*/
|
|
void *
|
|
dma_pool_alloc (struct dma_pool *pool, gfp_t mem_flags, dma_addr_t *handle)
|
|
{
|
|
unsigned long flags;
|
|
struct dma_page *page;
|
|
int map, block;
|
|
size_t offset;
|
|
void *retval;
|
|
|
|
restart:
|
|
spin_lock_irqsave (&pool->lock, flags);
|
|
list_for_each_entry(page, &pool->page_list, page_list) {
|
|
int i;
|
|
/* only cachable accesses here ... */
|
|
for (map = 0, i = 0;
|
|
i < pool->blocks_per_page;
|
|
i += BITS_PER_LONG, map++) {
|
|
if (page->bitmap [map] == 0)
|
|
continue;
|
|
block = ffz (~ page->bitmap [map]);
|
|
if ((i + block) < pool->blocks_per_page) {
|
|
clear_bit (block, &page->bitmap [map]);
|
|
offset = (BITS_PER_LONG * map) + block;
|
|
offset *= pool->size;
|
|
goto ready;
|
|
}
|
|
}
|
|
}
|
|
if (!(page = pool_alloc_page (pool, GFP_ATOMIC))) {
|
|
if (mem_flags & __GFP_WAIT) {
|
|
DECLARE_WAITQUEUE (wait, current);
|
|
|
|
current->state = TASK_INTERRUPTIBLE;
|
|
add_wait_queue (&pool->waitq, &wait);
|
|
spin_unlock_irqrestore (&pool->lock, flags);
|
|
|
|
schedule_timeout (POOL_TIMEOUT_JIFFIES);
|
|
|
|
remove_wait_queue (&pool->waitq, &wait);
|
|
goto restart;
|
|
}
|
|
retval = NULL;
|
|
goto done;
|
|
}
|
|
|
|
clear_bit (0, &page->bitmap [0]);
|
|
offset = 0;
|
|
ready:
|
|
page->in_use++;
|
|
retval = offset + page->vaddr;
|
|
*handle = offset + page->dma;
|
|
#ifdef CONFIG_DEBUG_SLAB
|
|
memset (retval, POOL_POISON_ALLOCATED, pool->size);
|
|
#endif
|
|
done:
|
|
spin_unlock_irqrestore (&pool->lock, flags);
|
|
return retval;
|
|
}
|
|
|
|
|
|
static struct dma_page *
|
|
pool_find_page (struct dma_pool *pool, dma_addr_t dma)
|
|
{
|
|
unsigned long flags;
|
|
struct dma_page *page;
|
|
|
|
spin_lock_irqsave (&pool->lock, flags);
|
|
list_for_each_entry(page, &pool->page_list, page_list) {
|
|
if (dma < page->dma)
|
|
continue;
|
|
if (dma < (page->dma + pool->allocation))
|
|
goto done;
|
|
}
|
|
page = NULL;
|
|
done:
|
|
spin_unlock_irqrestore (&pool->lock, flags);
|
|
return page;
|
|
}
|
|
|
|
|
|
/**
|
|
* dma_pool_free - put block back into dma pool
|
|
* @pool: the dma pool holding the block
|
|
* @vaddr: virtual address of block
|
|
* @dma: dma address of block
|
|
*
|
|
* Caller promises neither device nor driver will again touch this block
|
|
* unless it is first re-allocated.
|
|
*/
|
|
void
|
|
dma_pool_free (struct dma_pool *pool, void *vaddr, dma_addr_t dma)
|
|
{
|
|
struct dma_page *page;
|
|
unsigned long flags;
|
|
int map, block;
|
|
|
|
if ((page = pool_find_page (pool, dma)) == 0) {
|
|
if (pool->dev)
|
|
dev_err(pool->dev, "dma_pool_free %s, %p/%lx (bad dma)\n",
|
|
pool->name, vaddr, (unsigned long) dma);
|
|
else
|
|
printk (KERN_ERR "dma_pool_free %s, %p/%lx (bad dma)\n",
|
|
pool->name, vaddr, (unsigned long) dma);
|
|
return;
|
|
}
|
|
|
|
block = dma - page->dma;
|
|
block /= pool->size;
|
|
map = block / BITS_PER_LONG;
|
|
block %= BITS_PER_LONG;
|
|
|
|
#ifdef CONFIG_DEBUG_SLAB
|
|
if (((dma - page->dma) + (void *)page->vaddr) != vaddr) {
|
|
if (pool->dev)
|
|
dev_err(pool->dev, "dma_pool_free %s, %p (bad vaddr)/%Lx\n",
|
|
pool->name, vaddr, (unsigned long long) dma);
|
|
else
|
|
printk (KERN_ERR "dma_pool_free %s, %p (bad vaddr)/%Lx\n",
|
|
pool->name, vaddr, (unsigned long long) dma);
|
|
return;
|
|
}
|
|
if (page->bitmap [map] & (1UL << block)) {
|
|
if (pool->dev)
|
|
dev_err(pool->dev, "dma_pool_free %s, dma %Lx already free\n",
|
|
pool->name, (unsigned long long)dma);
|
|
else
|
|
printk (KERN_ERR "dma_pool_free %s, dma %Lx already free\n",
|
|
pool->name, (unsigned long long)dma);
|
|
return;
|
|
}
|
|
memset (vaddr, POOL_POISON_FREED, pool->size);
|
|
#endif
|
|
|
|
spin_lock_irqsave (&pool->lock, flags);
|
|
page->in_use--;
|
|
set_bit (block, &page->bitmap [map]);
|
|
if (waitqueue_active (&pool->waitq))
|
|
wake_up (&pool->waitq);
|
|
/*
|
|
* Resist a temptation to do
|
|
* if (!is_page_busy(bpp, page->bitmap)) pool_free_page(pool, page);
|
|
* Better have a few empty pages hang around.
|
|
*/
|
|
spin_unlock_irqrestore (&pool->lock, flags);
|
|
}
|
|
|
|
/*
|
|
* Managed DMA pool
|
|
*/
|
|
static void dmam_pool_release(struct device *dev, void *res)
|
|
{
|
|
struct dma_pool *pool = *(struct dma_pool **)res;
|
|
|
|
dma_pool_destroy(pool);
|
|
}
|
|
|
|
static int dmam_pool_match(struct device *dev, void *res, void *match_data)
|
|
{
|
|
return *(struct dma_pool **)res == match_data;
|
|
}
|
|
|
|
/**
|
|
* dmam_pool_create - Managed dma_pool_create()
|
|
* @name: name of pool, for diagnostics
|
|
* @dev: device that will be doing the DMA
|
|
* @size: size of the blocks in this pool.
|
|
* @align: alignment requirement for blocks; must be a power of two
|
|
* @allocation: returned blocks won't cross this boundary (or zero)
|
|
*
|
|
* Managed dma_pool_create(). DMA pool created with this function is
|
|
* automatically destroyed on driver detach.
|
|
*/
|
|
struct dma_pool *dmam_pool_create(const char *name, struct device *dev,
|
|
size_t size, size_t align, size_t allocation)
|
|
{
|
|
struct dma_pool **ptr, *pool;
|
|
|
|
ptr = devres_alloc(dmam_pool_release, sizeof(*ptr), GFP_KERNEL);
|
|
if (!ptr)
|
|
return NULL;
|
|
|
|
pool = *ptr = dma_pool_create(name, dev, size, align, allocation);
|
|
if (pool)
|
|
devres_add(dev, ptr);
|
|
else
|
|
devres_free(ptr);
|
|
|
|
return pool;
|
|
}
|
|
|
|
/**
|
|
* dmam_pool_destroy - Managed dma_pool_destroy()
|
|
* @pool: dma pool that will be destroyed
|
|
*
|
|
* Managed dma_pool_destroy().
|
|
*/
|
|
void dmam_pool_destroy(struct dma_pool *pool)
|
|
{
|
|
struct device *dev = pool->dev;
|
|
|
|
dma_pool_destroy(pool);
|
|
WARN_ON(devres_destroy(dev, dmam_pool_release, dmam_pool_match, pool));
|
|
}
|
|
|
|
EXPORT_SYMBOL (dma_pool_create);
|
|
EXPORT_SYMBOL (dma_pool_destroy);
|
|
EXPORT_SYMBOL (dma_pool_alloc);
|
|
EXPORT_SYMBOL (dma_pool_free);
|
|
EXPORT_SYMBOL (dmam_pool_create);
|
|
EXPORT_SYMBOL (dmam_pool_destroy);
|