mirror of
https://github.com/torvalds/linux.git
synced 2024-11-16 00:52:01 +00:00
33cb524383
First step towards unifying these files. - Checkpatch trailing whitespace fixes - Checkpatch indentation of switch statement fixes - Checkpatch single statement ifs need no braces fixes - Checkpatch consistent spacing after comma fixes - Introduce defines for pagefault error bits from X86_64 and add useful comment from X86_32. Use these defines in X86_32 where obvious. - Unify comments between 32|64 bit - Small ifdef movement for CONFIG_KPROBES in notify_page_fault() - Introduce X86_64 only case statement No Functional Changes. Signed-off-by: Harvey Harrison <harvey.harrison@gmail.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
676 lines
18 KiB
C
676 lines
18 KiB
C
/*
|
|
* Copyright (C) 1995 Linus Torvalds
|
|
*/
|
|
|
|
#include <linux/signal.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/string.h>
|
|
#include <linux/types.h>
|
|
#include <linux/ptrace.h>
|
|
#include <linux/mman.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/smp.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/init.h>
|
|
#include <linux/tty.h>
|
|
#include <linux/vt_kern.h> /* For unblank_screen() */
|
|
#include <linux/highmem.h>
|
|
#include <linux/bootmem.h> /* for max_low_pfn */
|
|
#include <linux/vmalloc.h>
|
|
#include <linux/module.h>
|
|
#include <linux/kprobes.h>
|
|
#include <linux/uaccess.h>
|
|
#include <linux/kdebug.h>
|
|
|
|
#include <asm/system.h>
|
|
#include <asm/desc.h>
|
|
#include <asm/segment.h>
|
|
|
|
/*
|
|
* Page fault error code bits
|
|
* bit 0 == 0 means no page found, 1 means protection fault
|
|
* bit 1 == 0 means read, 1 means write
|
|
* bit 2 == 0 means kernel, 1 means user-mode
|
|
* bit 3 == 1 means use of reserved bit detected
|
|
* bit 4 == 1 means fault was an instruction fetch
|
|
*/
|
|
#define PF_PROT (1<<0)
|
|
#define PF_WRITE (1<<1)
|
|
#define PF_USER (1<<2)
|
|
#define PF_RSVD (1<<3)
|
|
#define PF_INSTR (1<<4)
|
|
|
|
extern void die(const char *, struct pt_regs *, long);
|
|
|
|
static inline int notify_page_fault(struct pt_regs *regs)
|
|
{
|
|
#ifdef CONFIG_KPROBES
|
|
int ret = 0;
|
|
|
|
/* kprobe_running() needs smp_processor_id() */
|
|
if (!user_mode_vm(regs)) {
|
|
preempt_disable();
|
|
if (kprobe_running() && kprobe_fault_handler(regs, 14))
|
|
ret = 1;
|
|
preempt_enable();
|
|
}
|
|
|
|
return ret;
|
|
#else
|
|
return 0;
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Return EIP plus the CS segment base. The segment limit is also
|
|
* adjusted, clamped to the kernel/user address space (whichever is
|
|
* appropriate), and returned in *eip_limit.
|
|
*
|
|
* The segment is checked, because it might have been changed by another
|
|
* task between the original faulting instruction and here.
|
|
*
|
|
* If CS is no longer a valid code segment, or if EIP is beyond the
|
|
* limit, or if it is a kernel address when CS is not a kernel segment,
|
|
* then the returned value will be greater than *eip_limit.
|
|
*
|
|
* This is slow, but is very rarely executed.
|
|
*/
|
|
static inline unsigned long get_segment_eip(struct pt_regs *regs,
|
|
unsigned long *eip_limit)
|
|
{
|
|
unsigned long ip = regs->ip;
|
|
unsigned seg = regs->cs & 0xffff;
|
|
u32 seg_ar, seg_limit, base, *desc;
|
|
|
|
/* Unlikely, but must come before segment checks. */
|
|
if (unlikely(regs->flags & VM_MASK)) {
|
|
base = seg << 4;
|
|
*eip_limit = base + 0xffff;
|
|
return base + (ip & 0xffff);
|
|
}
|
|
|
|
/* The standard kernel/user address space limit. */
|
|
*eip_limit = user_mode(regs) ? USER_DS.seg : KERNEL_DS.seg;
|
|
|
|
/* By far the most common cases. */
|
|
if (likely(SEGMENT_IS_FLAT_CODE(seg)))
|
|
return ip;
|
|
|
|
/* Check the segment exists, is within the current LDT/GDT size,
|
|
that kernel/user (ring 0..3) has the appropriate privilege,
|
|
that it's a code segment, and get the limit. */
|
|
__asm__ ("larl %3,%0; lsll %3,%1"
|
|
: "=&r" (seg_ar), "=r" (seg_limit) : "0" (0), "rm" (seg));
|
|
if ((~seg_ar & 0x9800) || ip > seg_limit) {
|
|
*eip_limit = 0;
|
|
return 1; /* So that returned ip > *eip_limit. */
|
|
}
|
|
|
|
/* Get the GDT/LDT descriptor base.
|
|
When you look for races in this code remember that
|
|
LDT and other horrors are only used in user space. */
|
|
if (seg & (1<<2)) {
|
|
/* Must lock the LDT while reading it. */
|
|
mutex_lock(¤t->mm->context.lock);
|
|
desc = current->mm->context.ldt;
|
|
desc = (void *)desc + (seg & ~7);
|
|
} else {
|
|
/* Must disable preemption while reading the GDT. */
|
|
desc = (u32 *)get_cpu_gdt_table(get_cpu());
|
|
desc = (void *)desc + (seg & ~7);
|
|
}
|
|
|
|
/* Decode the code segment base from the descriptor */
|
|
base = get_desc_base((struct desc_struct *)desc);
|
|
|
|
if (seg & (1<<2))
|
|
mutex_unlock(¤t->mm->context.lock);
|
|
else
|
|
put_cpu();
|
|
|
|
/* Adjust EIP and segment limit, and clamp at the kernel limit.
|
|
It's legitimate for segments to wrap at 0xffffffff. */
|
|
seg_limit += base;
|
|
if (seg_limit < *eip_limit && seg_limit >= base)
|
|
*eip_limit = seg_limit;
|
|
return ip + base;
|
|
}
|
|
|
|
/*
|
|
* Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch.
|
|
* Check that here and ignore it.
|
|
*/
|
|
static int __is_prefetch(struct pt_regs *regs, unsigned long addr)
|
|
{
|
|
unsigned long limit;
|
|
unsigned char *instr = (unsigned char *)get_segment_eip(regs, &limit);
|
|
int scan_more = 1;
|
|
int prefetch = 0;
|
|
int i;
|
|
|
|
for (i = 0; scan_more && i < 15; i++) {
|
|
unsigned char opcode;
|
|
unsigned char instr_hi;
|
|
unsigned char instr_lo;
|
|
|
|
if (instr > (unsigned char *)limit)
|
|
break;
|
|
if (probe_kernel_address(instr, opcode))
|
|
break;
|
|
|
|
instr_hi = opcode & 0xf0;
|
|
instr_lo = opcode & 0x0f;
|
|
instr++;
|
|
|
|
switch (instr_hi) {
|
|
case 0x20:
|
|
case 0x30:
|
|
/*
|
|
* Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes.
|
|
* In X86_64 long mode, the CPU will signal invalid
|
|
* opcode if some of these prefixes are present so
|
|
* X86_64 will never get here anyway
|
|
*/
|
|
scan_more = ((instr_lo & 7) == 0x6);
|
|
break;
|
|
#ifdef CONFIG_X86_64
|
|
case 0x40:
|
|
/*
|
|
* In AMD64 long mode 0x40..0x4F are valid REX prefixes
|
|
* Need to figure out under what instruction mode the
|
|
* instruction was issued. Could check the LDT for lm,
|
|
* but for now it's good enough to assume that long
|
|
* mode only uses well known segments or kernel.
|
|
*/
|
|
scan_more = (!user_mode(regs)) || (regs->cs == __USER_CS);
|
|
break;
|
|
#endif
|
|
case 0x60:
|
|
/* 0x64 thru 0x67 are valid prefixes in all modes. */
|
|
scan_more = (instr_lo & 0xC) == 0x4;
|
|
break;
|
|
case 0xF0:
|
|
/* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */
|
|
scan_more = !instr_lo || (instr_lo>>1) == 1;
|
|
break;
|
|
case 0x00:
|
|
/* Prefetch instruction is 0x0F0D or 0x0F18 */
|
|
scan_more = 0;
|
|
if (instr > (unsigned char *)limit)
|
|
break;
|
|
if (probe_kernel_address(instr, opcode))
|
|
break;
|
|
prefetch = (instr_lo == 0xF) &&
|
|
(opcode == 0x0D || opcode == 0x18);
|
|
break;
|
|
default:
|
|
scan_more = 0;
|
|
break;
|
|
}
|
|
}
|
|
return prefetch;
|
|
}
|
|
|
|
static inline int is_prefetch(struct pt_regs *regs, unsigned long addr,
|
|
unsigned long error_code)
|
|
{
|
|
if (unlikely(boot_cpu_data.x86_vendor == X86_VENDOR_AMD &&
|
|
boot_cpu_data.x86 >= 6)) {
|
|
/* Catch an obscure case of prefetch inside an NX page. */
|
|
if (nx_enabled && (error_code & 16))
|
|
return 0;
|
|
return __is_prefetch(regs, addr);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static noinline void force_sig_info_fault(int si_signo, int si_code,
|
|
unsigned long address, struct task_struct *tsk)
|
|
{
|
|
siginfo_t info;
|
|
|
|
info.si_signo = si_signo;
|
|
info.si_errno = 0;
|
|
info.si_code = si_code;
|
|
info.si_addr = (void __user *)address;
|
|
force_sig_info(si_signo, &info, tsk);
|
|
}
|
|
|
|
void do_invalid_op(struct pt_regs *, unsigned long);
|
|
|
|
static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
|
|
{
|
|
unsigned index = pgd_index(address);
|
|
pgd_t *pgd_k;
|
|
pud_t *pud, *pud_k;
|
|
pmd_t *pmd, *pmd_k;
|
|
|
|
pgd += index;
|
|
pgd_k = init_mm.pgd + index;
|
|
|
|
if (!pgd_present(*pgd_k))
|
|
return NULL;
|
|
|
|
/*
|
|
* set_pgd(pgd, *pgd_k); here would be useless on PAE
|
|
* and redundant with the set_pmd() on non-PAE. As would
|
|
* set_pud.
|
|
*/
|
|
|
|
pud = pud_offset(pgd, address);
|
|
pud_k = pud_offset(pgd_k, address);
|
|
if (!pud_present(*pud_k))
|
|
return NULL;
|
|
|
|
pmd = pmd_offset(pud, address);
|
|
pmd_k = pmd_offset(pud_k, address);
|
|
if (!pmd_present(*pmd_k))
|
|
return NULL;
|
|
if (!pmd_present(*pmd)) {
|
|
set_pmd(pmd, *pmd_k);
|
|
arch_flush_lazy_mmu_mode();
|
|
} else
|
|
BUG_ON(pmd_page(*pmd) != pmd_page(*pmd_k));
|
|
return pmd_k;
|
|
}
|
|
|
|
/*
|
|
* Handle a fault on the vmalloc or module mapping area
|
|
*
|
|
* This assumes no large pages in there.
|
|
*/
|
|
static inline int vmalloc_fault(unsigned long address)
|
|
{
|
|
unsigned long pgd_paddr;
|
|
pmd_t *pmd_k;
|
|
pte_t *pte_k;
|
|
/*
|
|
* Synchronize this task's top level page-table
|
|
* with the 'reference' page table.
|
|
*
|
|
* Do _not_ use "current" here. We might be inside
|
|
* an interrupt in the middle of a task switch..
|
|
*/
|
|
pgd_paddr = read_cr3();
|
|
pmd_k = vmalloc_sync_one(__va(pgd_paddr), address);
|
|
if (!pmd_k)
|
|
return -1;
|
|
pte_k = pte_offset_kernel(pmd_k, address);
|
|
if (!pte_present(*pte_k))
|
|
return -1;
|
|
return 0;
|
|
}
|
|
|
|
int show_unhandled_signals = 1;
|
|
|
|
/*
|
|
* This routine handles page faults. It determines the address,
|
|
* and the problem, and then passes it off to one of the appropriate
|
|
* routines.
|
|
*/
|
|
void __kprobes do_page_fault(struct pt_regs *regs, unsigned long error_code)
|
|
{
|
|
struct task_struct *tsk;
|
|
struct mm_struct *mm;
|
|
struct vm_area_struct *vma;
|
|
unsigned long address;
|
|
int write, si_code;
|
|
int fault;
|
|
|
|
/*
|
|
* We can fault from pretty much anywhere, with unknown IRQ state.
|
|
*/
|
|
trace_hardirqs_fixup();
|
|
|
|
/* get the address */
|
|
address = read_cr2();
|
|
|
|
tsk = current;
|
|
|
|
si_code = SEGV_MAPERR;
|
|
|
|
/*
|
|
* We fault-in kernel-space virtual memory on-demand. The
|
|
* 'reference' page table is init_mm.pgd.
|
|
*
|
|
* NOTE! We MUST NOT take any locks for this case. We may
|
|
* be in an interrupt or a critical region, and should
|
|
* only copy the information from the master page table,
|
|
* nothing more.
|
|
*
|
|
* This verifies that the fault happens in kernel space
|
|
* (error_code & 4) == 0, and that the fault was not a
|
|
* protection error (error_code & 9) == 0.
|
|
*/
|
|
if (unlikely(address >= TASK_SIZE)) {
|
|
if (!(error_code & 0x0000000d) && vmalloc_fault(address) >= 0)
|
|
return;
|
|
if (notify_page_fault(regs))
|
|
return;
|
|
/*
|
|
* Don't take the mm semaphore here. If we fixup a prefetch
|
|
* fault we could otherwise deadlock.
|
|
*/
|
|
goto bad_area_nosemaphore;
|
|
}
|
|
|
|
if (notify_page_fault(regs))
|
|
return;
|
|
|
|
/* It's safe to allow irq's after cr2 has been saved and the vmalloc
|
|
fault has been handled. */
|
|
if (regs->flags & (X86_EFLAGS_IF|VM_MASK))
|
|
local_irq_enable();
|
|
|
|
mm = tsk->mm;
|
|
|
|
/*
|
|
* If we're in an interrupt, have no user context or are running in an
|
|
* atomic region then we must not take the fault.
|
|
*/
|
|
if (in_atomic() || !mm)
|
|
goto bad_area_nosemaphore;
|
|
|
|
/* When running in the kernel we expect faults to occur only to
|
|
* addresses in user space. All other faults represent errors in the
|
|
* kernel and should generate an OOPS. Unfortunately, in the case of an
|
|
* erroneous fault occurring in a code path which already holds mmap_sem
|
|
* we will deadlock attempting to validate the fault against the
|
|
* address space. Luckily the kernel only validly references user
|
|
* space from well defined areas of code, which are listed in the
|
|
* exceptions table.
|
|
*
|
|
* As the vast majority of faults will be valid we will only perform
|
|
* the source reference check when there is a possibility of a deadlock.
|
|
* Attempt to lock the address space, if we cannot we then validate the
|
|
* source. If this is invalid we can skip the address space check,
|
|
* thus avoiding the deadlock.
|
|
*/
|
|
if (!down_read_trylock(&mm->mmap_sem)) {
|
|
if ((error_code & PF_USER) == 0 &&
|
|
!search_exception_tables(regs->ip))
|
|
goto bad_area_nosemaphore;
|
|
down_read(&mm->mmap_sem);
|
|
}
|
|
|
|
vma = find_vma(mm, address);
|
|
if (!vma)
|
|
goto bad_area;
|
|
if (vma->vm_start <= address)
|
|
goto good_area;
|
|
if (!(vma->vm_flags & VM_GROWSDOWN))
|
|
goto bad_area;
|
|
if (error_code & PF_USER) {
|
|
/*
|
|
* Accessing the stack below %sp is always a bug.
|
|
* The large cushion allows instructions like enter
|
|
* and pusha to work. ("enter $65535,$31" pushes
|
|
* 32 pointers and then decrements %sp by 65535.)
|
|
*/
|
|
if (address + 65536 + 32 * sizeof(unsigned long) < regs->sp)
|
|
goto bad_area;
|
|
}
|
|
if (expand_stack(vma, address))
|
|
goto bad_area;
|
|
/*
|
|
* Ok, we have a good vm_area for this memory access, so
|
|
* we can handle it..
|
|
*/
|
|
good_area:
|
|
si_code = SEGV_ACCERR;
|
|
write = 0;
|
|
switch (error_code & (PF_PROT|PF_WRITE)) {
|
|
default: /* 3: write, present */
|
|
/* fall through */
|
|
case PF_WRITE: /* write, not present */
|
|
if (!(vma->vm_flags & VM_WRITE))
|
|
goto bad_area;
|
|
write++;
|
|
break;
|
|
case PF_PROT: /* read, present */
|
|
goto bad_area;
|
|
case 0: /* read, not present */
|
|
if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
|
|
goto bad_area;
|
|
}
|
|
|
|
survive:
|
|
/*
|
|
* If for any reason at all we couldn't handle the fault,
|
|
* make sure we exit gracefully rather than endlessly redo
|
|
* the fault.
|
|
*/
|
|
fault = handle_mm_fault(mm, vma, address, write);
|
|
if (unlikely(fault & VM_FAULT_ERROR)) {
|
|
if (fault & VM_FAULT_OOM)
|
|
goto out_of_memory;
|
|
else if (fault & VM_FAULT_SIGBUS)
|
|
goto do_sigbus;
|
|
BUG();
|
|
}
|
|
if (fault & VM_FAULT_MAJOR)
|
|
tsk->maj_flt++;
|
|
else
|
|
tsk->min_flt++;
|
|
|
|
/*
|
|
* Did it hit the DOS screen memory VA from vm86 mode?
|
|
*/
|
|
if (regs->flags & VM_MASK) {
|
|
unsigned long bit = (address - 0xA0000) >> PAGE_SHIFT;
|
|
if (bit < 32)
|
|
tsk->thread.screen_bitmap |= 1 << bit;
|
|
}
|
|
up_read(&mm->mmap_sem);
|
|
return;
|
|
|
|
/*
|
|
* Something tried to access memory that isn't in our memory map..
|
|
* Fix it, but check if it's kernel or user first..
|
|
*/
|
|
bad_area:
|
|
up_read(&mm->mmap_sem);
|
|
|
|
bad_area_nosemaphore:
|
|
/* User mode accesses just cause a SIGSEGV */
|
|
if (error_code & PF_USER) {
|
|
/*
|
|
* It's possible to have interrupts off here.
|
|
*/
|
|
local_irq_enable();
|
|
|
|
/*
|
|
* Valid to do another page fault here because this one came
|
|
* from user space.
|
|
*/
|
|
if (is_prefetch(regs, address, error_code))
|
|
return;
|
|
|
|
if (show_unhandled_signals && unhandled_signal(tsk, SIGSEGV) &&
|
|
printk_ratelimit()) {
|
|
printk("%s%s[%d]: segfault at %08lx ip %08lx "
|
|
"sp %08lx error %lx\n",
|
|
task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG,
|
|
tsk->comm, task_pid_nr(tsk), address, regs->ip,
|
|
regs->sp, error_code);
|
|
}
|
|
tsk->thread.cr2 = address;
|
|
/* Kernel addresses are always protection faults */
|
|
tsk->thread.error_code = error_code | (address >= TASK_SIZE);
|
|
tsk->thread.trap_no = 14;
|
|
force_sig_info_fault(SIGSEGV, si_code, address, tsk);
|
|
return;
|
|
}
|
|
|
|
#ifdef CONFIG_X86_F00F_BUG
|
|
/*
|
|
* Pentium F0 0F C7 C8 bug workaround.
|
|
*/
|
|
if (boot_cpu_data.f00f_bug) {
|
|
unsigned long nr;
|
|
|
|
nr = (address - idt_descr.address) >> 3;
|
|
|
|
if (nr == 6) {
|
|
do_invalid_op(regs, 0);
|
|
return;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
no_context:
|
|
/* Are we prepared to handle this kernel fault? */
|
|
if (fixup_exception(regs))
|
|
return;
|
|
|
|
/*
|
|
* Valid to do another page fault here, because if this fault
|
|
* had been triggered by is_prefetch fixup_exception would have
|
|
* handled it.
|
|
*/
|
|
if (is_prefetch(regs, address, error_code))
|
|
return;
|
|
|
|
/*
|
|
* Oops. The kernel tried to access some bad page. We'll have to
|
|
* terminate things with extreme prejudice.
|
|
*/
|
|
|
|
bust_spinlocks(1);
|
|
|
|
if (oops_may_print()) {
|
|
__typeof__(pte_val(__pte(0))) page;
|
|
|
|
#ifdef CONFIG_X86_PAE
|
|
if (error_code & 16) {
|
|
pte_t *pte = lookup_address(address);
|
|
|
|
if (pte && pte_present(*pte) && !pte_exec_kernel(*pte))
|
|
printk(KERN_CRIT "kernel tried to execute "
|
|
"NX-protected page - exploit attempt? "
|
|
"(uid: %d)\n", current->uid);
|
|
}
|
|
#endif
|
|
if (address < PAGE_SIZE)
|
|
printk(KERN_ALERT "BUG: unable to handle kernel NULL "
|
|
"pointer dereference");
|
|
else
|
|
printk(KERN_ALERT "BUG: unable to handle kernel paging"
|
|
" request");
|
|
printk(" at virtual address %08lx\n", address);
|
|
printk(KERN_ALERT "printing ip: %08lx ", regs->ip);
|
|
|
|
page = read_cr3();
|
|
page = ((__typeof__(page) *) __va(page))[address >> PGDIR_SHIFT];
|
|
#ifdef CONFIG_X86_PAE
|
|
printk("*pdpt = %016Lx ", page);
|
|
if ((page >> PAGE_SHIFT) < max_low_pfn
|
|
&& page & _PAGE_PRESENT) {
|
|
page &= PAGE_MASK;
|
|
page = ((__typeof__(page) *) __va(page))[(address >> PMD_SHIFT)
|
|
& (PTRS_PER_PMD - 1)];
|
|
printk(KERN_CONT "*pde = %016Lx ", page);
|
|
page &= ~_PAGE_NX;
|
|
}
|
|
#else
|
|
printk("*pde = %08lx ", page);
|
|
#endif
|
|
|
|
/*
|
|
* We must not directly access the pte in the highpte
|
|
* case if the page table is located in highmem.
|
|
* And let's rather not kmap-atomic the pte, just in case
|
|
* it's allocated already.
|
|
*/
|
|
if ((page >> PAGE_SHIFT) < max_low_pfn
|
|
&& (page & _PAGE_PRESENT)
|
|
&& !(page & _PAGE_PSE)) {
|
|
page &= PAGE_MASK;
|
|
page = ((__typeof__(page) *) __va(page))[(address >> PAGE_SHIFT)
|
|
& (PTRS_PER_PTE - 1)];
|
|
printk("*pte = %0*Lx ", sizeof(page)*2, (u64)page);
|
|
}
|
|
|
|
printk("\n");
|
|
}
|
|
|
|
tsk->thread.cr2 = address;
|
|
tsk->thread.trap_no = 14;
|
|
tsk->thread.error_code = error_code;
|
|
die("Oops", regs, error_code);
|
|
bust_spinlocks(0);
|
|
do_exit(SIGKILL);
|
|
|
|
/*
|
|
* We ran out of memory, or some other thing happened to us that made
|
|
* us unable to handle the page fault gracefully.
|
|
*/
|
|
out_of_memory:
|
|
up_read(&mm->mmap_sem);
|
|
if (is_global_init(tsk)) {
|
|
yield();
|
|
down_read(&mm->mmap_sem);
|
|
goto survive;
|
|
}
|
|
printk("VM: killing process %s\n", tsk->comm);
|
|
if (error_code & 4)
|
|
do_group_exit(SIGKILL);
|
|
goto no_context;
|
|
|
|
do_sigbus:
|
|
up_read(&mm->mmap_sem);
|
|
|
|
/* Kernel mode? Handle exceptions or die */
|
|
if (!(error_code & PF_USER))
|
|
goto no_context;
|
|
|
|
/* User space => ok to do another page fault */
|
|
if (is_prefetch(regs, address, error_code))
|
|
return;
|
|
|
|
tsk->thread.cr2 = address;
|
|
tsk->thread.error_code = error_code;
|
|
tsk->thread.trap_no = 14;
|
|
force_sig_info_fault(SIGBUS, BUS_ADRERR, address, tsk);
|
|
}
|
|
|
|
void vmalloc_sync_all(void)
|
|
{
|
|
/*
|
|
* Note that races in the updates of insync and start aren't
|
|
* problematic: insync can only get set bits added, and updates to
|
|
* start are only improving performance (without affecting correctness
|
|
* if undone).
|
|
*/
|
|
static DECLARE_BITMAP(insync, PTRS_PER_PGD);
|
|
static unsigned long start = TASK_SIZE;
|
|
unsigned long address;
|
|
|
|
if (SHARED_KERNEL_PMD)
|
|
return;
|
|
|
|
BUILD_BUG_ON(TASK_SIZE & ~PGDIR_MASK);
|
|
for (address = start; address >= TASK_SIZE; address += PGDIR_SIZE) {
|
|
if (!test_bit(pgd_index(address), insync)) {
|
|
unsigned long flags;
|
|
struct page *page;
|
|
|
|
spin_lock_irqsave(&pgd_lock, flags);
|
|
for (page = pgd_list; page; page =
|
|
(struct page *)page->index)
|
|
if (!vmalloc_sync_one(page_address(page),
|
|
address)) {
|
|
BUG_ON(page != pgd_list);
|
|
break;
|
|
}
|
|
spin_unlock_irqrestore(&pgd_lock, flags);
|
|
if (!page)
|
|
set_bit(pgd_index(address), insync);
|
|
}
|
|
if (address == start && test_bit(pgd_index(address), insync))
|
|
start = address + PGDIR_SIZE;
|
|
}
|
|
}
|