mirror of
https://github.com/torvalds/linux.git
synced 2024-11-10 14:11:52 +00:00
46b3ff73af
The SM2 algorithm has a single user in the kernel. However, it's never been integrated properly with that user: asymmetric_keys. The crux of the issue is that the way it computes its digest with sm3 does not fit into the architecture of asymmetric_keys. As no solution has been proposed, remove this algorithm. It can be resubmitted when it is integrated properly into the asymmetric_keys subsystem. Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
482 lines
12 KiB
C
482 lines
12 KiB
C
// SPDX-License-Identifier: GPL-2.0-or-later
|
|
/* In-software asymmetric public-key crypto subtype
|
|
*
|
|
* See Documentation/crypto/asymmetric-keys.rst
|
|
*
|
|
* Copyright (C) 2012 Red Hat, Inc. All Rights Reserved.
|
|
* Written by David Howells (dhowells@redhat.com)
|
|
*/
|
|
|
|
#define pr_fmt(fmt) "PKEY: "fmt
|
|
#include <crypto/akcipher.h>
|
|
#include <crypto/public_key.h>
|
|
#include <crypto/sig.h>
|
|
#include <keys/asymmetric-subtype.h>
|
|
#include <linux/asn1.h>
|
|
#include <linux/err.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/module.h>
|
|
#include <linux/seq_file.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/string.h>
|
|
|
|
MODULE_DESCRIPTION("In-software asymmetric public-key subtype");
|
|
MODULE_AUTHOR("Red Hat, Inc.");
|
|
MODULE_LICENSE("GPL");
|
|
|
|
/*
|
|
* Provide a part of a description of the key for /proc/keys.
|
|
*/
|
|
static void public_key_describe(const struct key *asymmetric_key,
|
|
struct seq_file *m)
|
|
{
|
|
struct public_key *key = asymmetric_key->payload.data[asym_crypto];
|
|
|
|
if (key)
|
|
seq_printf(m, "%s.%s", key->id_type, key->pkey_algo);
|
|
}
|
|
|
|
/*
|
|
* Destroy a public key algorithm key.
|
|
*/
|
|
void public_key_free(struct public_key *key)
|
|
{
|
|
if (key) {
|
|
kfree_sensitive(key->key);
|
|
kfree(key->params);
|
|
kfree(key);
|
|
}
|
|
}
|
|
EXPORT_SYMBOL_GPL(public_key_free);
|
|
|
|
/*
|
|
* Destroy a public key algorithm key.
|
|
*/
|
|
static void public_key_destroy(void *payload0, void *payload3)
|
|
{
|
|
public_key_free(payload0);
|
|
public_key_signature_free(payload3);
|
|
}
|
|
|
|
/*
|
|
* Given a public_key, and an encoding and hash_algo to be used for signing
|
|
* and/or verification with that key, determine the name of the corresponding
|
|
* akcipher algorithm. Also check that encoding and hash_algo are allowed.
|
|
*/
|
|
static int
|
|
software_key_determine_akcipher(const struct public_key *pkey,
|
|
const char *encoding, const char *hash_algo,
|
|
char alg_name[CRYPTO_MAX_ALG_NAME], bool *sig,
|
|
enum kernel_pkey_operation op)
|
|
{
|
|
int n;
|
|
|
|
*sig = true;
|
|
|
|
if (!encoding)
|
|
return -EINVAL;
|
|
|
|
if (strcmp(pkey->pkey_algo, "rsa") == 0) {
|
|
/*
|
|
* RSA signatures usually use EMSA-PKCS1-1_5 [RFC3447 sec 8.2].
|
|
*/
|
|
if (strcmp(encoding, "pkcs1") == 0) {
|
|
*sig = op == kernel_pkey_sign ||
|
|
op == kernel_pkey_verify;
|
|
if (!hash_algo) {
|
|
n = snprintf(alg_name, CRYPTO_MAX_ALG_NAME,
|
|
"pkcs1pad(%s)",
|
|
pkey->pkey_algo);
|
|
} else {
|
|
n = snprintf(alg_name, CRYPTO_MAX_ALG_NAME,
|
|
"pkcs1pad(%s,%s)",
|
|
pkey->pkey_algo, hash_algo);
|
|
}
|
|
return n >= CRYPTO_MAX_ALG_NAME ? -EINVAL : 0;
|
|
}
|
|
if (strcmp(encoding, "raw") != 0)
|
|
return -EINVAL;
|
|
/*
|
|
* Raw RSA cannot differentiate between different hash
|
|
* algorithms.
|
|
*/
|
|
if (hash_algo)
|
|
return -EINVAL;
|
|
*sig = false;
|
|
} else if (strncmp(pkey->pkey_algo, "ecdsa", 5) == 0) {
|
|
if (strcmp(encoding, "x962") != 0)
|
|
return -EINVAL;
|
|
/*
|
|
* ECDSA signatures are taken over a raw hash, so they don't
|
|
* differentiate between different hash algorithms. That means
|
|
* that the verifier should hard-code a specific hash algorithm.
|
|
* Unfortunately, in practice ECDSA is used with multiple SHAs,
|
|
* so we have to allow all of them and not just one.
|
|
*/
|
|
if (!hash_algo)
|
|
return -EINVAL;
|
|
if (strcmp(hash_algo, "sha1") != 0 &&
|
|
strcmp(hash_algo, "sha224") != 0 &&
|
|
strcmp(hash_algo, "sha256") != 0 &&
|
|
strcmp(hash_algo, "sha384") != 0 &&
|
|
strcmp(hash_algo, "sha512") != 0 &&
|
|
strcmp(hash_algo, "sha3-256") != 0 &&
|
|
strcmp(hash_algo, "sha3-384") != 0 &&
|
|
strcmp(hash_algo, "sha3-512") != 0)
|
|
return -EINVAL;
|
|
} else if (strcmp(pkey->pkey_algo, "ecrdsa") == 0) {
|
|
if (strcmp(encoding, "raw") != 0)
|
|
return -EINVAL;
|
|
if (!hash_algo)
|
|
return -EINVAL;
|
|
if (strcmp(hash_algo, "streebog256") != 0 &&
|
|
strcmp(hash_algo, "streebog512") != 0)
|
|
return -EINVAL;
|
|
} else {
|
|
/* Unknown public key algorithm */
|
|
return -ENOPKG;
|
|
}
|
|
if (strscpy(alg_name, pkey->pkey_algo, CRYPTO_MAX_ALG_NAME) < 0)
|
|
return -EINVAL;
|
|
return 0;
|
|
}
|
|
|
|
static u8 *pkey_pack_u32(u8 *dst, u32 val)
|
|
{
|
|
memcpy(dst, &val, sizeof(val));
|
|
return dst + sizeof(val);
|
|
}
|
|
|
|
/*
|
|
* Query information about a key.
|
|
*/
|
|
static int software_key_query(const struct kernel_pkey_params *params,
|
|
struct kernel_pkey_query *info)
|
|
{
|
|
struct crypto_akcipher *tfm;
|
|
struct public_key *pkey = params->key->payload.data[asym_crypto];
|
|
char alg_name[CRYPTO_MAX_ALG_NAME];
|
|
struct crypto_sig *sig;
|
|
u8 *key, *ptr;
|
|
int ret, len;
|
|
bool issig;
|
|
|
|
ret = software_key_determine_akcipher(pkey, params->encoding,
|
|
params->hash_algo, alg_name,
|
|
&issig, kernel_pkey_sign);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
key = kmalloc(pkey->keylen + sizeof(u32) * 2 + pkey->paramlen,
|
|
GFP_KERNEL);
|
|
if (!key)
|
|
return -ENOMEM;
|
|
|
|
memcpy(key, pkey->key, pkey->keylen);
|
|
ptr = key + pkey->keylen;
|
|
ptr = pkey_pack_u32(ptr, pkey->algo);
|
|
ptr = pkey_pack_u32(ptr, pkey->paramlen);
|
|
memcpy(ptr, pkey->params, pkey->paramlen);
|
|
|
|
if (issig) {
|
|
sig = crypto_alloc_sig(alg_name, 0, 0);
|
|
if (IS_ERR(sig)) {
|
|
ret = PTR_ERR(sig);
|
|
goto error_free_key;
|
|
}
|
|
|
|
if (pkey->key_is_private)
|
|
ret = crypto_sig_set_privkey(sig, key, pkey->keylen);
|
|
else
|
|
ret = crypto_sig_set_pubkey(sig, key, pkey->keylen);
|
|
if (ret < 0)
|
|
goto error_free_tfm;
|
|
|
|
len = crypto_sig_maxsize(sig);
|
|
|
|
info->supported_ops = KEYCTL_SUPPORTS_VERIFY;
|
|
if (pkey->key_is_private)
|
|
info->supported_ops |= KEYCTL_SUPPORTS_SIGN;
|
|
|
|
if (strcmp(params->encoding, "pkcs1") == 0) {
|
|
info->supported_ops |= KEYCTL_SUPPORTS_ENCRYPT;
|
|
if (pkey->key_is_private)
|
|
info->supported_ops |= KEYCTL_SUPPORTS_DECRYPT;
|
|
}
|
|
} else {
|
|
tfm = crypto_alloc_akcipher(alg_name, 0, 0);
|
|
if (IS_ERR(tfm)) {
|
|
ret = PTR_ERR(tfm);
|
|
goto error_free_key;
|
|
}
|
|
|
|
if (pkey->key_is_private)
|
|
ret = crypto_akcipher_set_priv_key(tfm, key, pkey->keylen);
|
|
else
|
|
ret = crypto_akcipher_set_pub_key(tfm, key, pkey->keylen);
|
|
if (ret < 0)
|
|
goto error_free_tfm;
|
|
|
|
len = crypto_akcipher_maxsize(tfm);
|
|
|
|
info->supported_ops = KEYCTL_SUPPORTS_ENCRYPT;
|
|
if (pkey->key_is_private)
|
|
info->supported_ops |= KEYCTL_SUPPORTS_DECRYPT;
|
|
}
|
|
|
|
info->key_size = len * 8;
|
|
|
|
if (strncmp(pkey->pkey_algo, "ecdsa", 5) == 0) {
|
|
int slen = len;
|
|
/*
|
|
* ECDSA key sizes are much smaller than RSA, and thus could
|
|
* operate on (hashed) inputs that are larger than key size.
|
|
* For example SHA384-hashed input used with secp256r1
|
|
* based keys. Set max_data_size to be at least as large as
|
|
* the largest supported hash size (SHA512)
|
|
*/
|
|
info->max_data_size = 64;
|
|
|
|
/*
|
|
* Verify takes ECDSA-Sig (described in RFC 5480) as input,
|
|
* which is actually 2 'key_size'-bit integers encoded in
|
|
* ASN.1. Account for the ASN.1 encoding overhead here.
|
|
*
|
|
* NIST P192/256/384 may prepend a '0' to a coordinate to
|
|
* indicate a positive integer. NIST P521 never needs it.
|
|
*/
|
|
if (strcmp(pkey->pkey_algo, "ecdsa-nist-p521") != 0)
|
|
slen += 1;
|
|
/* Length of encoding the x & y coordinates */
|
|
slen = 2 * (slen + 2);
|
|
/*
|
|
* If coordinate encoding takes at least 128 bytes then an
|
|
* additional byte for length encoding is needed.
|
|
*/
|
|
info->max_sig_size = 1 + (slen >= 128) + 1 + slen;
|
|
} else {
|
|
info->max_data_size = len;
|
|
info->max_sig_size = len;
|
|
}
|
|
|
|
info->max_enc_size = len;
|
|
info->max_dec_size = len;
|
|
|
|
ret = 0;
|
|
|
|
error_free_tfm:
|
|
if (issig)
|
|
crypto_free_sig(sig);
|
|
else
|
|
crypto_free_akcipher(tfm);
|
|
error_free_key:
|
|
kfree_sensitive(key);
|
|
pr_devel("<==%s() = %d\n", __func__, ret);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Do encryption, decryption and signing ops.
|
|
*/
|
|
static int software_key_eds_op(struct kernel_pkey_params *params,
|
|
const void *in, void *out)
|
|
{
|
|
const struct public_key *pkey = params->key->payload.data[asym_crypto];
|
|
char alg_name[CRYPTO_MAX_ALG_NAME];
|
|
struct crypto_akcipher *tfm;
|
|
struct crypto_sig *sig;
|
|
char *key, *ptr;
|
|
bool issig;
|
|
int ksz;
|
|
int ret;
|
|
|
|
pr_devel("==>%s()\n", __func__);
|
|
|
|
ret = software_key_determine_akcipher(pkey, params->encoding,
|
|
params->hash_algo, alg_name,
|
|
&issig, params->op);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
key = kmalloc(pkey->keylen + sizeof(u32) * 2 + pkey->paramlen,
|
|
GFP_KERNEL);
|
|
if (!key)
|
|
return -ENOMEM;
|
|
|
|
memcpy(key, pkey->key, pkey->keylen);
|
|
ptr = key + pkey->keylen;
|
|
ptr = pkey_pack_u32(ptr, pkey->algo);
|
|
ptr = pkey_pack_u32(ptr, pkey->paramlen);
|
|
memcpy(ptr, pkey->params, pkey->paramlen);
|
|
|
|
if (issig) {
|
|
sig = crypto_alloc_sig(alg_name, 0, 0);
|
|
if (IS_ERR(sig)) {
|
|
ret = PTR_ERR(sig);
|
|
goto error_free_key;
|
|
}
|
|
|
|
if (pkey->key_is_private)
|
|
ret = crypto_sig_set_privkey(sig, key, pkey->keylen);
|
|
else
|
|
ret = crypto_sig_set_pubkey(sig, key, pkey->keylen);
|
|
if (ret)
|
|
goto error_free_tfm;
|
|
|
|
ksz = crypto_sig_maxsize(sig);
|
|
} else {
|
|
tfm = crypto_alloc_akcipher(alg_name, 0, 0);
|
|
if (IS_ERR(tfm)) {
|
|
ret = PTR_ERR(tfm);
|
|
goto error_free_key;
|
|
}
|
|
|
|
if (pkey->key_is_private)
|
|
ret = crypto_akcipher_set_priv_key(tfm, key, pkey->keylen);
|
|
else
|
|
ret = crypto_akcipher_set_pub_key(tfm, key, pkey->keylen);
|
|
if (ret)
|
|
goto error_free_tfm;
|
|
|
|
ksz = crypto_akcipher_maxsize(tfm);
|
|
}
|
|
|
|
ret = -EINVAL;
|
|
|
|
/* Perform the encryption calculation. */
|
|
switch (params->op) {
|
|
case kernel_pkey_encrypt:
|
|
if (issig)
|
|
break;
|
|
ret = crypto_akcipher_sync_encrypt(tfm, in, params->in_len,
|
|
out, params->out_len);
|
|
break;
|
|
case kernel_pkey_decrypt:
|
|
if (issig)
|
|
break;
|
|
ret = crypto_akcipher_sync_decrypt(tfm, in, params->in_len,
|
|
out, params->out_len);
|
|
break;
|
|
case kernel_pkey_sign:
|
|
if (!issig)
|
|
break;
|
|
ret = crypto_sig_sign(sig, in, params->in_len,
|
|
out, params->out_len);
|
|
break;
|
|
default:
|
|
BUG();
|
|
}
|
|
|
|
if (ret == 0)
|
|
ret = ksz;
|
|
|
|
error_free_tfm:
|
|
if (issig)
|
|
crypto_free_sig(sig);
|
|
else
|
|
crypto_free_akcipher(tfm);
|
|
error_free_key:
|
|
kfree_sensitive(key);
|
|
pr_devel("<==%s() = %d\n", __func__, ret);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Verify a signature using a public key.
|
|
*/
|
|
int public_key_verify_signature(const struct public_key *pkey,
|
|
const struct public_key_signature *sig)
|
|
{
|
|
char alg_name[CRYPTO_MAX_ALG_NAME];
|
|
struct crypto_sig *tfm;
|
|
char *key, *ptr;
|
|
bool issig;
|
|
int ret;
|
|
|
|
pr_devel("==>%s()\n", __func__);
|
|
|
|
BUG_ON(!pkey);
|
|
BUG_ON(!sig);
|
|
BUG_ON(!sig->s);
|
|
|
|
/*
|
|
* If the signature specifies a public key algorithm, it *must* match
|
|
* the key's actual public key algorithm.
|
|
*
|
|
* Small exception: ECDSA signatures don't specify the curve, but ECDSA
|
|
* keys do. So the strings can mismatch slightly in that case:
|
|
* "ecdsa-nist-*" for the key, but "ecdsa" for the signature.
|
|
*/
|
|
if (sig->pkey_algo) {
|
|
if (strcmp(pkey->pkey_algo, sig->pkey_algo) != 0 &&
|
|
(strncmp(pkey->pkey_algo, "ecdsa-", 6) != 0 ||
|
|
strcmp(sig->pkey_algo, "ecdsa") != 0))
|
|
return -EKEYREJECTED;
|
|
}
|
|
|
|
ret = software_key_determine_akcipher(pkey, sig->encoding,
|
|
sig->hash_algo, alg_name,
|
|
&issig, kernel_pkey_verify);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
tfm = crypto_alloc_sig(alg_name, 0, 0);
|
|
if (IS_ERR(tfm))
|
|
return PTR_ERR(tfm);
|
|
|
|
key = kmalloc(pkey->keylen + sizeof(u32) * 2 + pkey->paramlen,
|
|
GFP_KERNEL);
|
|
if (!key) {
|
|
ret = -ENOMEM;
|
|
goto error_free_tfm;
|
|
}
|
|
|
|
memcpy(key, pkey->key, pkey->keylen);
|
|
ptr = key + pkey->keylen;
|
|
ptr = pkey_pack_u32(ptr, pkey->algo);
|
|
ptr = pkey_pack_u32(ptr, pkey->paramlen);
|
|
memcpy(ptr, pkey->params, pkey->paramlen);
|
|
|
|
if (pkey->key_is_private)
|
|
ret = crypto_sig_set_privkey(tfm, key, pkey->keylen);
|
|
else
|
|
ret = crypto_sig_set_pubkey(tfm, key, pkey->keylen);
|
|
if (ret)
|
|
goto error_free_key;
|
|
|
|
ret = crypto_sig_verify(tfm, sig->s, sig->s_size,
|
|
sig->digest, sig->digest_size);
|
|
|
|
error_free_key:
|
|
kfree_sensitive(key);
|
|
error_free_tfm:
|
|
crypto_free_sig(tfm);
|
|
pr_devel("<==%s() = %d\n", __func__, ret);
|
|
if (WARN_ON_ONCE(ret > 0))
|
|
ret = -EINVAL;
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(public_key_verify_signature);
|
|
|
|
static int public_key_verify_signature_2(const struct key *key,
|
|
const struct public_key_signature *sig)
|
|
{
|
|
const struct public_key *pk = key->payload.data[asym_crypto];
|
|
return public_key_verify_signature(pk, sig);
|
|
}
|
|
|
|
/*
|
|
* Public key algorithm asymmetric key subtype
|
|
*/
|
|
struct asymmetric_key_subtype public_key_subtype = {
|
|
.owner = THIS_MODULE,
|
|
.name = "public_key",
|
|
.name_len = sizeof("public_key") - 1,
|
|
.describe = public_key_describe,
|
|
.destroy = public_key_destroy,
|
|
.query = software_key_query,
|
|
.eds_op = software_key_eds_op,
|
|
.verify_signature = public_key_verify_signature_2,
|
|
};
|
|
EXPORT_SYMBOL_GPL(public_key_subtype);
|