mirror of
https://github.com/torvalds/linux.git
synced 2024-11-18 10:01:43 +00:00
79e3dab90d
schedule_timeout() != schedule_timeout_uninterruptible() Signed-off-by: Kent Overstreet <kmo@daterainc.com> Cc: linux-stable <stable@vger.kernel.org> # >= v3.10 Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
520 lines
12 KiB
C
520 lines
12 KiB
C
/*
|
|
* background writeback - scan btree for dirty data and write it to the backing
|
|
* device
|
|
*
|
|
* Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
|
|
* Copyright 2012 Google, Inc.
|
|
*/
|
|
|
|
#include "bcache.h"
|
|
#include "btree.h"
|
|
#include "debug.h"
|
|
#include "writeback.h"
|
|
|
|
#include <trace/events/bcache.h>
|
|
|
|
static struct workqueue_struct *dirty_wq;
|
|
|
|
static void read_dirty(struct closure *);
|
|
|
|
struct dirty_io {
|
|
struct closure cl;
|
|
struct cached_dev *dc;
|
|
struct bio bio;
|
|
};
|
|
|
|
/* Rate limiting */
|
|
|
|
static void __update_writeback_rate(struct cached_dev *dc)
|
|
{
|
|
struct cache_set *c = dc->disk.c;
|
|
uint64_t cache_sectors = c->nbuckets * c->sb.bucket_size;
|
|
uint64_t cache_dirty_target =
|
|
div_u64(cache_sectors * dc->writeback_percent, 100);
|
|
|
|
int64_t target = div64_u64(cache_dirty_target * bdev_sectors(dc->bdev),
|
|
c->cached_dev_sectors);
|
|
|
|
/* PD controller */
|
|
|
|
int change = 0;
|
|
int64_t error;
|
|
int64_t dirty = bcache_dev_sectors_dirty(&dc->disk);
|
|
int64_t derivative = dirty - dc->disk.sectors_dirty_last;
|
|
|
|
dc->disk.sectors_dirty_last = dirty;
|
|
|
|
derivative *= dc->writeback_rate_d_term;
|
|
derivative = clamp(derivative, -dirty, dirty);
|
|
|
|
derivative = ewma_add(dc->disk.sectors_dirty_derivative, derivative,
|
|
dc->writeback_rate_d_smooth, 0);
|
|
|
|
/* Avoid divide by zero */
|
|
if (!target)
|
|
goto out;
|
|
|
|
error = div64_s64((dirty + derivative - target) << 8, target);
|
|
|
|
change = div_s64((dc->writeback_rate.rate * error) >> 8,
|
|
dc->writeback_rate_p_term_inverse);
|
|
|
|
/* Don't increase writeback rate if the device isn't keeping up */
|
|
if (change > 0 &&
|
|
time_after64(local_clock(),
|
|
dc->writeback_rate.next + 10 * NSEC_PER_MSEC))
|
|
change = 0;
|
|
|
|
dc->writeback_rate.rate =
|
|
clamp_t(int64_t, dc->writeback_rate.rate + change,
|
|
1, NSEC_PER_MSEC);
|
|
out:
|
|
dc->writeback_rate_derivative = derivative;
|
|
dc->writeback_rate_change = change;
|
|
dc->writeback_rate_target = target;
|
|
|
|
schedule_delayed_work(&dc->writeback_rate_update,
|
|
dc->writeback_rate_update_seconds * HZ);
|
|
}
|
|
|
|
static void update_writeback_rate(struct work_struct *work)
|
|
{
|
|
struct cached_dev *dc = container_of(to_delayed_work(work),
|
|
struct cached_dev,
|
|
writeback_rate_update);
|
|
|
|
down_read(&dc->writeback_lock);
|
|
|
|
if (atomic_read(&dc->has_dirty) &&
|
|
dc->writeback_percent)
|
|
__update_writeback_rate(dc);
|
|
|
|
up_read(&dc->writeback_lock);
|
|
}
|
|
|
|
static unsigned writeback_delay(struct cached_dev *dc, unsigned sectors)
|
|
{
|
|
uint64_t ret;
|
|
|
|
if (atomic_read(&dc->disk.detaching) ||
|
|
!dc->writeback_percent)
|
|
return 0;
|
|
|
|
ret = bch_next_delay(&dc->writeback_rate, sectors * 10000000ULL);
|
|
|
|
return min_t(uint64_t, ret, HZ);
|
|
}
|
|
|
|
/* Background writeback */
|
|
|
|
static bool dirty_pred(struct keybuf *buf, struct bkey *k)
|
|
{
|
|
return KEY_DIRTY(k);
|
|
}
|
|
|
|
static bool dirty_full_stripe_pred(struct keybuf *buf, struct bkey *k)
|
|
{
|
|
uint64_t stripe;
|
|
unsigned nr_sectors = KEY_SIZE(k);
|
|
struct cached_dev *dc = container_of(buf, struct cached_dev,
|
|
writeback_keys);
|
|
unsigned stripe_size = 1 << dc->disk.stripe_size_bits;
|
|
|
|
if (!KEY_DIRTY(k))
|
|
return false;
|
|
|
|
stripe = KEY_START(k) >> dc->disk.stripe_size_bits;
|
|
while (1) {
|
|
if (atomic_read(dc->disk.stripe_sectors_dirty + stripe) !=
|
|
stripe_size)
|
|
return false;
|
|
|
|
if (nr_sectors <= stripe_size)
|
|
return true;
|
|
|
|
nr_sectors -= stripe_size;
|
|
stripe++;
|
|
}
|
|
}
|
|
|
|
static void dirty_init(struct keybuf_key *w)
|
|
{
|
|
struct dirty_io *io = w->private;
|
|
struct bio *bio = &io->bio;
|
|
|
|
bio_init(bio);
|
|
if (!io->dc->writeback_percent)
|
|
bio_set_prio(bio, IOPRIO_PRIO_VALUE(IOPRIO_CLASS_IDLE, 0));
|
|
|
|
bio->bi_size = KEY_SIZE(&w->key) << 9;
|
|
bio->bi_max_vecs = DIV_ROUND_UP(KEY_SIZE(&w->key), PAGE_SECTORS);
|
|
bio->bi_private = w;
|
|
bio->bi_io_vec = bio->bi_inline_vecs;
|
|
bch_bio_map(bio, NULL);
|
|
}
|
|
|
|
static void refill_dirty(struct closure *cl)
|
|
{
|
|
struct cached_dev *dc = container_of(cl, struct cached_dev,
|
|
writeback.cl);
|
|
struct keybuf *buf = &dc->writeback_keys;
|
|
bool searched_from_start = false;
|
|
struct bkey end = MAX_KEY;
|
|
SET_KEY_INODE(&end, dc->disk.id);
|
|
|
|
if (!atomic_read(&dc->disk.detaching) &&
|
|
!dc->writeback_running)
|
|
closure_return(cl);
|
|
|
|
down_write(&dc->writeback_lock);
|
|
|
|
if (!atomic_read(&dc->has_dirty)) {
|
|
SET_BDEV_STATE(&dc->sb, BDEV_STATE_CLEAN);
|
|
bch_write_bdev_super(dc, NULL);
|
|
|
|
up_write(&dc->writeback_lock);
|
|
closure_return(cl);
|
|
}
|
|
|
|
if (bkey_cmp(&buf->last_scanned, &end) >= 0) {
|
|
buf->last_scanned = KEY(dc->disk.id, 0, 0);
|
|
searched_from_start = true;
|
|
}
|
|
|
|
if (dc->partial_stripes_expensive) {
|
|
uint64_t i;
|
|
|
|
for (i = 0; i < dc->disk.nr_stripes; i++)
|
|
if (atomic_read(dc->disk.stripe_sectors_dirty + i) ==
|
|
1 << dc->disk.stripe_size_bits)
|
|
goto full_stripes;
|
|
|
|
goto normal_refill;
|
|
full_stripes:
|
|
bch_refill_keybuf(dc->disk.c, buf, &end,
|
|
dirty_full_stripe_pred);
|
|
} else {
|
|
normal_refill:
|
|
bch_refill_keybuf(dc->disk.c, buf, &end, dirty_pred);
|
|
}
|
|
|
|
if (bkey_cmp(&buf->last_scanned, &end) >= 0 && searched_from_start) {
|
|
/* Searched the entire btree - delay awhile */
|
|
|
|
if (RB_EMPTY_ROOT(&buf->keys)) {
|
|
atomic_set(&dc->has_dirty, 0);
|
|
cached_dev_put(dc);
|
|
}
|
|
|
|
if (!atomic_read(&dc->disk.detaching))
|
|
closure_delay(&dc->writeback, dc->writeback_delay * HZ);
|
|
}
|
|
|
|
up_write(&dc->writeback_lock);
|
|
|
|
bch_ratelimit_reset(&dc->writeback_rate);
|
|
|
|
/* Punt to workqueue only so we don't recurse and blow the stack */
|
|
continue_at(cl, read_dirty, dirty_wq);
|
|
}
|
|
|
|
void bch_writeback_queue(struct cached_dev *dc)
|
|
{
|
|
if (closure_trylock(&dc->writeback.cl, &dc->disk.cl)) {
|
|
if (!atomic_read(&dc->disk.detaching))
|
|
closure_delay(&dc->writeback, dc->writeback_delay * HZ);
|
|
|
|
continue_at(&dc->writeback.cl, refill_dirty, dirty_wq);
|
|
}
|
|
}
|
|
|
|
void bch_writeback_add(struct cached_dev *dc)
|
|
{
|
|
if (!atomic_read(&dc->has_dirty) &&
|
|
!atomic_xchg(&dc->has_dirty, 1)) {
|
|
atomic_inc(&dc->count);
|
|
|
|
if (BDEV_STATE(&dc->sb) != BDEV_STATE_DIRTY) {
|
|
SET_BDEV_STATE(&dc->sb, BDEV_STATE_DIRTY);
|
|
/* XXX: should do this synchronously */
|
|
bch_write_bdev_super(dc, NULL);
|
|
}
|
|
|
|
bch_writeback_queue(dc);
|
|
|
|
if (dc->writeback_percent)
|
|
schedule_delayed_work(&dc->writeback_rate_update,
|
|
dc->writeback_rate_update_seconds * HZ);
|
|
}
|
|
}
|
|
|
|
void bcache_dev_sectors_dirty_add(struct cache_set *c, unsigned inode,
|
|
uint64_t offset, int nr_sectors)
|
|
{
|
|
struct bcache_device *d = c->devices[inode];
|
|
unsigned stripe_size, stripe_offset;
|
|
uint64_t stripe;
|
|
|
|
if (!d)
|
|
return;
|
|
|
|
stripe_size = 1 << d->stripe_size_bits;
|
|
stripe = offset >> d->stripe_size_bits;
|
|
stripe_offset = offset & (stripe_size - 1);
|
|
|
|
while (nr_sectors) {
|
|
int s = min_t(unsigned, abs(nr_sectors),
|
|
stripe_size - stripe_offset);
|
|
|
|
if (nr_sectors < 0)
|
|
s = -s;
|
|
|
|
atomic_add(s, d->stripe_sectors_dirty + stripe);
|
|
nr_sectors -= s;
|
|
stripe_offset = 0;
|
|
stripe++;
|
|
}
|
|
}
|
|
|
|
/* Background writeback - IO loop */
|
|
|
|
static void dirty_io_destructor(struct closure *cl)
|
|
{
|
|
struct dirty_io *io = container_of(cl, struct dirty_io, cl);
|
|
kfree(io);
|
|
}
|
|
|
|
static void write_dirty_finish(struct closure *cl)
|
|
{
|
|
struct dirty_io *io = container_of(cl, struct dirty_io, cl);
|
|
struct keybuf_key *w = io->bio.bi_private;
|
|
struct cached_dev *dc = io->dc;
|
|
struct bio_vec *bv;
|
|
int i;
|
|
|
|
bio_for_each_segment_all(bv, &io->bio, i)
|
|
__free_page(bv->bv_page);
|
|
|
|
/* This is kind of a dumb way of signalling errors. */
|
|
if (KEY_DIRTY(&w->key)) {
|
|
unsigned i;
|
|
struct btree_op op;
|
|
bch_btree_op_init_stack(&op);
|
|
|
|
op.type = BTREE_REPLACE;
|
|
bkey_copy(&op.replace, &w->key);
|
|
|
|
SET_KEY_DIRTY(&w->key, false);
|
|
bch_keylist_add(&op.keys, &w->key);
|
|
|
|
for (i = 0; i < KEY_PTRS(&w->key); i++)
|
|
atomic_inc(&PTR_BUCKET(dc->disk.c, &w->key, i)->pin);
|
|
|
|
bch_btree_insert(&op, dc->disk.c);
|
|
closure_sync(&op.cl);
|
|
|
|
if (op.insert_collision)
|
|
trace_bcache_writeback_collision(&w->key);
|
|
|
|
atomic_long_inc(op.insert_collision
|
|
? &dc->disk.c->writeback_keys_failed
|
|
: &dc->disk.c->writeback_keys_done);
|
|
}
|
|
|
|
bch_keybuf_del(&dc->writeback_keys, w);
|
|
up(&dc->in_flight);
|
|
|
|
closure_return_with_destructor(cl, dirty_io_destructor);
|
|
}
|
|
|
|
static void dirty_endio(struct bio *bio, int error)
|
|
{
|
|
struct keybuf_key *w = bio->bi_private;
|
|
struct dirty_io *io = w->private;
|
|
|
|
if (error)
|
|
SET_KEY_DIRTY(&w->key, false);
|
|
|
|
closure_put(&io->cl);
|
|
}
|
|
|
|
static void write_dirty(struct closure *cl)
|
|
{
|
|
struct dirty_io *io = container_of(cl, struct dirty_io, cl);
|
|
struct keybuf_key *w = io->bio.bi_private;
|
|
|
|
dirty_init(w);
|
|
io->bio.bi_rw = WRITE;
|
|
io->bio.bi_sector = KEY_START(&w->key);
|
|
io->bio.bi_bdev = io->dc->bdev;
|
|
io->bio.bi_end_io = dirty_endio;
|
|
|
|
closure_bio_submit(&io->bio, cl, &io->dc->disk);
|
|
|
|
continue_at(cl, write_dirty_finish, system_wq);
|
|
}
|
|
|
|
static void read_dirty_endio(struct bio *bio, int error)
|
|
{
|
|
struct keybuf_key *w = bio->bi_private;
|
|
struct dirty_io *io = w->private;
|
|
|
|
bch_count_io_errors(PTR_CACHE(io->dc->disk.c, &w->key, 0),
|
|
error, "reading dirty data from cache");
|
|
|
|
dirty_endio(bio, error);
|
|
}
|
|
|
|
static void read_dirty_submit(struct closure *cl)
|
|
{
|
|
struct dirty_io *io = container_of(cl, struct dirty_io, cl);
|
|
|
|
closure_bio_submit(&io->bio, cl, &io->dc->disk);
|
|
|
|
continue_at(cl, write_dirty, system_wq);
|
|
}
|
|
|
|
static void read_dirty(struct closure *cl)
|
|
{
|
|
struct cached_dev *dc = container_of(cl, struct cached_dev,
|
|
writeback.cl);
|
|
unsigned delay = writeback_delay(dc, 0);
|
|
struct keybuf_key *w;
|
|
struct dirty_io *io;
|
|
|
|
/*
|
|
* XXX: if we error, background writeback just spins. Should use some
|
|
* mempools.
|
|
*/
|
|
|
|
while (1) {
|
|
w = bch_keybuf_next(&dc->writeback_keys);
|
|
if (!w)
|
|
break;
|
|
|
|
BUG_ON(ptr_stale(dc->disk.c, &w->key, 0));
|
|
|
|
if (delay > 0 &&
|
|
(KEY_START(&w->key) != dc->last_read ||
|
|
jiffies_to_msecs(delay) > 50))
|
|
delay = schedule_timeout_uninterruptible(delay);
|
|
|
|
dc->last_read = KEY_OFFSET(&w->key);
|
|
|
|
io = kzalloc(sizeof(struct dirty_io) + sizeof(struct bio_vec)
|
|
* DIV_ROUND_UP(KEY_SIZE(&w->key), PAGE_SECTORS),
|
|
GFP_KERNEL);
|
|
if (!io)
|
|
goto err;
|
|
|
|
w->private = io;
|
|
io->dc = dc;
|
|
|
|
dirty_init(w);
|
|
io->bio.bi_sector = PTR_OFFSET(&w->key, 0);
|
|
io->bio.bi_bdev = PTR_CACHE(dc->disk.c,
|
|
&w->key, 0)->bdev;
|
|
io->bio.bi_rw = READ;
|
|
io->bio.bi_end_io = read_dirty_endio;
|
|
|
|
if (bio_alloc_pages(&io->bio, GFP_KERNEL))
|
|
goto err_free;
|
|
|
|
trace_bcache_writeback(&w->key);
|
|
|
|
down(&dc->in_flight);
|
|
closure_call(&io->cl, read_dirty_submit, NULL, cl);
|
|
|
|
delay = writeback_delay(dc, KEY_SIZE(&w->key));
|
|
}
|
|
|
|
if (0) {
|
|
err_free:
|
|
kfree(w->private);
|
|
err:
|
|
bch_keybuf_del(&dc->writeback_keys, w);
|
|
}
|
|
|
|
/*
|
|
* Wait for outstanding writeback IOs to finish (and keybuf slots to be
|
|
* freed) before refilling again
|
|
*/
|
|
continue_at(cl, refill_dirty, dirty_wq);
|
|
}
|
|
|
|
/* Init */
|
|
|
|
static int bch_btree_sectors_dirty_init(struct btree *b, struct btree_op *op,
|
|
struct cached_dev *dc)
|
|
{
|
|
struct bkey *k;
|
|
struct btree_iter iter;
|
|
|
|
bch_btree_iter_init(b, &iter, &KEY(dc->disk.id, 0, 0));
|
|
while ((k = bch_btree_iter_next_filter(&iter, b, bch_ptr_bad)))
|
|
if (!b->level) {
|
|
if (KEY_INODE(k) > dc->disk.id)
|
|
break;
|
|
|
|
if (KEY_DIRTY(k))
|
|
bcache_dev_sectors_dirty_add(b->c, dc->disk.id,
|
|
KEY_START(k),
|
|
KEY_SIZE(k));
|
|
} else {
|
|
btree(sectors_dirty_init, k, b, op, dc);
|
|
if (KEY_INODE(k) > dc->disk.id)
|
|
break;
|
|
|
|
cond_resched();
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
void bch_sectors_dirty_init(struct cached_dev *dc)
|
|
{
|
|
struct btree_op op;
|
|
|
|
bch_btree_op_init_stack(&op);
|
|
btree_root(sectors_dirty_init, dc->disk.c, &op, dc);
|
|
}
|
|
|
|
void bch_cached_dev_writeback_init(struct cached_dev *dc)
|
|
{
|
|
sema_init(&dc->in_flight, 64);
|
|
closure_init_unlocked(&dc->writeback);
|
|
init_rwsem(&dc->writeback_lock);
|
|
|
|
bch_keybuf_init(&dc->writeback_keys);
|
|
|
|
dc->writeback_metadata = true;
|
|
dc->writeback_running = true;
|
|
dc->writeback_percent = 10;
|
|
dc->writeback_delay = 30;
|
|
dc->writeback_rate.rate = 1024;
|
|
|
|
dc->writeback_rate_update_seconds = 30;
|
|
dc->writeback_rate_d_term = 16;
|
|
dc->writeback_rate_p_term_inverse = 64;
|
|
dc->writeback_rate_d_smooth = 8;
|
|
|
|
INIT_DELAYED_WORK(&dc->writeback_rate_update, update_writeback_rate);
|
|
schedule_delayed_work(&dc->writeback_rate_update,
|
|
dc->writeback_rate_update_seconds * HZ);
|
|
}
|
|
|
|
void bch_writeback_exit(void)
|
|
{
|
|
if (dirty_wq)
|
|
destroy_workqueue(dirty_wq);
|
|
}
|
|
|
|
int __init bch_writeback_init(void)
|
|
{
|
|
dirty_wq = create_workqueue("bcache_writeback");
|
|
if (!dirty_wq)
|
|
return -ENOMEM;
|
|
|
|
return 0;
|
|
}
|