mirror of
https://github.com/torvalds/linux.git
synced 2024-11-11 14:42:24 +00:00
bb0a56ecc4
Signed-off-by: Dave Jones <davej@redhat.com>
774 lines
19 KiB
C
774 lines
19 KiB
C
/*
|
|
* acpi-cpufreq.c - ACPI Processor P-States Driver
|
|
*
|
|
* Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
|
|
* Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
|
|
* Copyright (C) 2002 - 2004 Dominik Brodowski <linux@brodo.de>
|
|
* Copyright (C) 2006 Denis Sadykov <denis.m.sadykov@intel.com>
|
|
*
|
|
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or (at
|
|
* your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful, but
|
|
* WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License along
|
|
* with this program; if not, write to the Free Software Foundation, Inc.,
|
|
* 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
|
|
*
|
|
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
*/
|
|
|
|
#include <linux/kernel.h>
|
|
#include <linux/module.h>
|
|
#include <linux/init.h>
|
|
#include <linux/smp.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/cpufreq.h>
|
|
#include <linux/compiler.h>
|
|
#include <linux/dmi.h>
|
|
#include <linux/slab.h>
|
|
|
|
#include <linux/acpi.h>
|
|
#include <linux/io.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/uaccess.h>
|
|
|
|
#include <acpi/processor.h>
|
|
|
|
#include <asm/msr.h>
|
|
#include <asm/processor.h>
|
|
#include <asm/cpufeature.h>
|
|
#include "mperf.h"
|
|
|
|
MODULE_AUTHOR("Paul Diefenbaugh, Dominik Brodowski");
|
|
MODULE_DESCRIPTION("ACPI Processor P-States Driver");
|
|
MODULE_LICENSE("GPL");
|
|
|
|
enum {
|
|
UNDEFINED_CAPABLE = 0,
|
|
SYSTEM_INTEL_MSR_CAPABLE,
|
|
SYSTEM_IO_CAPABLE,
|
|
};
|
|
|
|
#define INTEL_MSR_RANGE (0xffff)
|
|
|
|
struct acpi_cpufreq_data {
|
|
struct acpi_processor_performance *acpi_data;
|
|
struct cpufreq_frequency_table *freq_table;
|
|
unsigned int resume;
|
|
unsigned int cpu_feature;
|
|
};
|
|
|
|
static DEFINE_PER_CPU(struct acpi_cpufreq_data *, acfreq_data);
|
|
|
|
/* acpi_perf_data is a pointer to percpu data. */
|
|
static struct acpi_processor_performance __percpu *acpi_perf_data;
|
|
|
|
static struct cpufreq_driver acpi_cpufreq_driver;
|
|
|
|
static unsigned int acpi_pstate_strict;
|
|
|
|
static int check_est_cpu(unsigned int cpuid)
|
|
{
|
|
struct cpuinfo_x86 *cpu = &cpu_data(cpuid);
|
|
|
|
return cpu_has(cpu, X86_FEATURE_EST);
|
|
}
|
|
|
|
static unsigned extract_io(u32 value, struct acpi_cpufreq_data *data)
|
|
{
|
|
struct acpi_processor_performance *perf;
|
|
int i;
|
|
|
|
perf = data->acpi_data;
|
|
|
|
for (i = 0; i < perf->state_count; i++) {
|
|
if (value == perf->states[i].status)
|
|
return data->freq_table[i].frequency;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static unsigned extract_msr(u32 msr, struct acpi_cpufreq_data *data)
|
|
{
|
|
int i;
|
|
struct acpi_processor_performance *perf;
|
|
|
|
msr &= INTEL_MSR_RANGE;
|
|
perf = data->acpi_data;
|
|
|
|
for (i = 0; data->freq_table[i].frequency != CPUFREQ_TABLE_END; i++) {
|
|
if (msr == perf->states[data->freq_table[i].index].status)
|
|
return data->freq_table[i].frequency;
|
|
}
|
|
return data->freq_table[0].frequency;
|
|
}
|
|
|
|
static unsigned extract_freq(u32 val, struct acpi_cpufreq_data *data)
|
|
{
|
|
switch (data->cpu_feature) {
|
|
case SYSTEM_INTEL_MSR_CAPABLE:
|
|
return extract_msr(val, data);
|
|
case SYSTEM_IO_CAPABLE:
|
|
return extract_io(val, data);
|
|
default:
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
struct msr_addr {
|
|
u32 reg;
|
|
};
|
|
|
|
struct io_addr {
|
|
u16 port;
|
|
u8 bit_width;
|
|
};
|
|
|
|
struct drv_cmd {
|
|
unsigned int type;
|
|
const struct cpumask *mask;
|
|
union {
|
|
struct msr_addr msr;
|
|
struct io_addr io;
|
|
} addr;
|
|
u32 val;
|
|
};
|
|
|
|
/* Called via smp_call_function_single(), on the target CPU */
|
|
static void do_drv_read(void *_cmd)
|
|
{
|
|
struct drv_cmd *cmd = _cmd;
|
|
u32 h;
|
|
|
|
switch (cmd->type) {
|
|
case SYSTEM_INTEL_MSR_CAPABLE:
|
|
rdmsr(cmd->addr.msr.reg, cmd->val, h);
|
|
break;
|
|
case SYSTEM_IO_CAPABLE:
|
|
acpi_os_read_port((acpi_io_address)cmd->addr.io.port,
|
|
&cmd->val,
|
|
(u32)cmd->addr.io.bit_width);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* Called via smp_call_function_many(), on the target CPUs */
|
|
static void do_drv_write(void *_cmd)
|
|
{
|
|
struct drv_cmd *cmd = _cmd;
|
|
u32 lo, hi;
|
|
|
|
switch (cmd->type) {
|
|
case SYSTEM_INTEL_MSR_CAPABLE:
|
|
rdmsr(cmd->addr.msr.reg, lo, hi);
|
|
lo = (lo & ~INTEL_MSR_RANGE) | (cmd->val & INTEL_MSR_RANGE);
|
|
wrmsr(cmd->addr.msr.reg, lo, hi);
|
|
break;
|
|
case SYSTEM_IO_CAPABLE:
|
|
acpi_os_write_port((acpi_io_address)cmd->addr.io.port,
|
|
cmd->val,
|
|
(u32)cmd->addr.io.bit_width);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
static void drv_read(struct drv_cmd *cmd)
|
|
{
|
|
int err;
|
|
cmd->val = 0;
|
|
|
|
err = smp_call_function_any(cmd->mask, do_drv_read, cmd, 1);
|
|
WARN_ON_ONCE(err); /* smp_call_function_any() was buggy? */
|
|
}
|
|
|
|
static void drv_write(struct drv_cmd *cmd)
|
|
{
|
|
int this_cpu;
|
|
|
|
this_cpu = get_cpu();
|
|
if (cpumask_test_cpu(this_cpu, cmd->mask))
|
|
do_drv_write(cmd);
|
|
smp_call_function_many(cmd->mask, do_drv_write, cmd, 1);
|
|
put_cpu();
|
|
}
|
|
|
|
static u32 get_cur_val(const struct cpumask *mask)
|
|
{
|
|
struct acpi_processor_performance *perf;
|
|
struct drv_cmd cmd;
|
|
|
|
if (unlikely(cpumask_empty(mask)))
|
|
return 0;
|
|
|
|
switch (per_cpu(acfreq_data, cpumask_first(mask))->cpu_feature) {
|
|
case SYSTEM_INTEL_MSR_CAPABLE:
|
|
cmd.type = SYSTEM_INTEL_MSR_CAPABLE;
|
|
cmd.addr.msr.reg = MSR_IA32_PERF_STATUS;
|
|
break;
|
|
case SYSTEM_IO_CAPABLE:
|
|
cmd.type = SYSTEM_IO_CAPABLE;
|
|
perf = per_cpu(acfreq_data, cpumask_first(mask))->acpi_data;
|
|
cmd.addr.io.port = perf->control_register.address;
|
|
cmd.addr.io.bit_width = perf->control_register.bit_width;
|
|
break;
|
|
default:
|
|
return 0;
|
|
}
|
|
|
|
cmd.mask = mask;
|
|
drv_read(&cmd);
|
|
|
|
pr_debug("get_cur_val = %u\n", cmd.val);
|
|
|
|
return cmd.val;
|
|
}
|
|
|
|
static unsigned int get_cur_freq_on_cpu(unsigned int cpu)
|
|
{
|
|
struct acpi_cpufreq_data *data = per_cpu(acfreq_data, cpu);
|
|
unsigned int freq;
|
|
unsigned int cached_freq;
|
|
|
|
pr_debug("get_cur_freq_on_cpu (%d)\n", cpu);
|
|
|
|
if (unlikely(data == NULL ||
|
|
data->acpi_data == NULL || data->freq_table == NULL)) {
|
|
return 0;
|
|
}
|
|
|
|
cached_freq = data->freq_table[data->acpi_data->state].frequency;
|
|
freq = extract_freq(get_cur_val(cpumask_of(cpu)), data);
|
|
if (freq != cached_freq) {
|
|
/*
|
|
* The dreaded BIOS frequency change behind our back.
|
|
* Force set the frequency on next target call.
|
|
*/
|
|
data->resume = 1;
|
|
}
|
|
|
|
pr_debug("cur freq = %u\n", freq);
|
|
|
|
return freq;
|
|
}
|
|
|
|
static unsigned int check_freqs(const struct cpumask *mask, unsigned int freq,
|
|
struct acpi_cpufreq_data *data)
|
|
{
|
|
unsigned int cur_freq;
|
|
unsigned int i;
|
|
|
|
for (i = 0; i < 100; i++) {
|
|
cur_freq = extract_freq(get_cur_val(mask), data);
|
|
if (cur_freq == freq)
|
|
return 1;
|
|
udelay(10);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int acpi_cpufreq_target(struct cpufreq_policy *policy,
|
|
unsigned int target_freq, unsigned int relation)
|
|
{
|
|
struct acpi_cpufreq_data *data = per_cpu(acfreq_data, policy->cpu);
|
|
struct acpi_processor_performance *perf;
|
|
struct cpufreq_freqs freqs;
|
|
struct drv_cmd cmd;
|
|
unsigned int next_state = 0; /* Index into freq_table */
|
|
unsigned int next_perf_state = 0; /* Index into perf table */
|
|
unsigned int i;
|
|
int result = 0;
|
|
|
|
pr_debug("acpi_cpufreq_target %d (%d)\n", target_freq, policy->cpu);
|
|
|
|
if (unlikely(data == NULL ||
|
|
data->acpi_data == NULL || data->freq_table == NULL)) {
|
|
return -ENODEV;
|
|
}
|
|
|
|
perf = data->acpi_data;
|
|
result = cpufreq_frequency_table_target(policy,
|
|
data->freq_table,
|
|
target_freq,
|
|
relation, &next_state);
|
|
if (unlikely(result)) {
|
|
result = -ENODEV;
|
|
goto out;
|
|
}
|
|
|
|
next_perf_state = data->freq_table[next_state].index;
|
|
if (perf->state == next_perf_state) {
|
|
if (unlikely(data->resume)) {
|
|
pr_debug("Called after resume, resetting to P%d\n",
|
|
next_perf_state);
|
|
data->resume = 0;
|
|
} else {
|
|
pr_debug("Already at target state (P%d)\n",
|
|
next_perf_state);
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
switch (data->cpu_feature) {
|
|
case SYSTEM_INTEL_MSR_CAPABLE:
|
|
cmd.type = SYSTEM_INTEL_MSR_CAPABLE;
|
|
cmd.addr.msr.reg = MSR_IA32_PERF_CTL;
|
|
cmd.val = (u32) perf->states[next_perf_state].control;
|
|
break;
|
|
case SYSTEM_IO_CAPABLE:
|
|
cmd.type = SYSTEM_IO_CAPABLE;
|
|
cmd.addr.io.port = perf->control_register.address;
|
|
cmd.addr.io.bit_width = perf->control_register.bit_width;
|
|
cmd.val = (u32) perf->states[next_perf_state].control;
|
|
break;
|
|
default:
|
|
result = -ENODEV;
|
|
goto out;
|
|
}
|
|
|
|
/* cpufreq holds the hotplug lock, so we are safe from here on */
|
|
if (policy->shared_type != CPUFREQ_SHARED_TYPE_ANY)
|
|
cmd.mask = policy->cpus;
|
|
else
|
|
cmd.mask = cpumask_of(policy->cpu);
|
|
|
|
freqs.old = perf->states[perf->state].core_frequency * 1000;
|
|
freqs.new = data->freq_table[next_state].frequency;
|
|
for_each_cpu(i, policy->cpus) {
|
|
freqs.cpu = i;
|
|
cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
|
|
}
|
|
|
|
drv_write(&cmd);
|
|
|
|
if (acpi_pstate_strict) {
|
|
if (!check_freqs(cmd.mask, freqs.new, data)) {
|
|
pr_debug("acpi_cpufreq_target failed (%d)\n",
|
|
policy->cpu);
|
|
result = -EAGAIN;
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
for_each_cpu(i, policy->cpus) {
|
|
freqs.cpu = i;
|
|
cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
|
|
}
|
|
perf->state = next_perf_state;
|
|
|
|
out:
|
|
return result;
|
|
}
|
|
|
|
static int acpi_cpufreq_verify(struct cpufreq_policy *policy)
|
|
{
|
|
struct acpi_cpufreq_data *data = per_cpu(acfreq_data, policy->cpu);
|
|
|
|
pr_debug("acpi_cpufreq_verify\n");
|
|
|
|
return cpufreq_frequency_table_verify(policy, data->freq_table);
|
|
}
|
|
|
|
static unsigned long
|
|
acpi_cpufreq_guess_freq(struct acpi_cpufreq_data *data, unsigned int cpu)
|
|
{
|
|
struct acpi_processor_performance *perf = data->acpi_data;
|
|
|
|
if (cpu_khz) {
|
|
/* search the closest match to cpu_khz */
|
|
unsigned int i;
|
|
unsigned long freq;
|
|
unsigned long freqn = perf->states[0].core_frequency * 1000;
|
|
|
|
for (i = 0; i < (perf->state_count-1); i++) {
|
|
freq = freqn;
|
|
freqn = perf->states[i+1].core_frequency * 1000;
|
|
if ((2 * cpu_khz) > (freqn + freq)) {
|
|
perf->state = i;
|
|
return freq;
|
|
}
|
|
}
|
|
perf->state = perf->state_count-1;
|
|
return freqn;
|
|
} else {
|
|
/* assume CPU is at P0... */
|
|
perf->state = 0;
|
|
return perf->states[0].core_frequency * 1000;
|
|
}
|
|
}
|
|
|
|
static void free_acpi_perf_data(void)
|
|
{
|
|
unsigned int i;
|
|
|
|
/* Freeing a NULL pointer is OK, and alloc_percpu zeroes. */
|
|
for_each_possible_cpu(i)
|
|
free_cpumask_var(per_cpu_ptr(acpi_perf_data, i)
|
|
->shared_cpu_map);
|
|
free_percpu(acpi_perf_data);
|
|
}
|
|
|
|
/*
|
|
* acpi_cpufreq_early_init - initialize ACPI P-States library
|
|
*
|
|
* Initialize the ACPI P-States library (drivers/acpi/processor_perflib.c)
|
|
* in order to determine correct frequency and voltage pairings. We can
|
|
* do _PDC and _PSD and find out the processor dependency for the
|
|
* actual init that will happen later...
|
|
*/
|
|
static int __init acpi_cpufreq_early_init(void)
|
|
{
|
|
unsigned int i;
|
|
pr_debug("acpi_cpufreq_early_init\n");
|
|
|
|
acpi_perf_data = alloc_percpu(struct acpi_processor_performance);
|
|
if (!acpi_perf_data) {
|
|
pr_debug("Memory allocation error for acpi_perf_data.\n");
|
|
return -ENOMEM;
|
|
}
|
|
for_each_possible_cpu(i) {
|
|
if (!zalloc_cpumask_var_node(
|
|
&per_cpu_ptr(acpi_perf_data, i)->shared_cpu_map,
|
|
GFP_KERNEL, cpu_to_node(i))) {
|
|
|
|
/* Freeing a NULL pointer is OK: alloc_percpu zeroes. */
|
|
free_acpi_perf_data();
|
|
return -ENOMEM;
|
|
}
|
|
}
|
|
|
|
/* Do initialization in ACPI core */
|
|
acpi_processor_preregister_performance(acpi_perf_data);
|
|
return 0;
|
|
}
|
|
|
|
#ifdef CONFIG_SMP
|
|
/*
|
|
* Some BIOSes do SW_ANY coordination internally, either set it up in hw
|
|
* or do it in BIOS firmware and won't inform about it to OS. If not
|
|
* detected, this has a side effect of making CPU run at a different speed
|
|
* than OS intended it to run at. Detect it and handle it cleanly.
|
|
*/
|
|
static int bios_with_sw_any_bug;
|
|
|
|
static int sw_any_bug_found(const struct dmi_system_id *d)
|
|
{
|
|
bios_with_sw_any_bug = 1;
|
|
return 0;
|
|
}
|
|
|
|
static const struct dmi_system_id sw_any_bug_dmi_table[] = {
|
|
{
|
|
.callback = sw_any_bug_found,
|
|
.ident = "Supermicro Server X6DLP",
|
|
.matches = {
|
|
DMI_MATCH(DMI_SYS_VENDOR, "Supermicro"),
|
|
DMI_MATCH(DMI_BIOS_VERSION, "080010"),
|
|
DMI_MATCH(DMI_PRODUCT_NAME, "X6DLP"),
|
|
},
|
|
},
|
|
{ }
|
|
};
|
|
|
|
static int acpi_cpufreq_blacklist(struct cpuinfo_x86 *c)
|
|
{
|
|
/* Intel Xeon Processor 7100 Series Specification Update
|
|
* http://www.intel.com/Assets/PDF/specupdate/314554.pdf
|
|
* AL30: A Machine Check Exception (MCE) Occurring during an
|
|
* Enhanced Intel SpeedStep Technology Ratio Change May Cause
|
|
* Both Processor Cores to Lock Up. */
|
|
if (c->x86_vendor == X86_VENDOR_INTEL) {
|
|
if ((c->x86 == 15) &&
|
|
(c->x86_model == 6) &&
|
|
(c->x86_mask == 8)) {
|
|
printk(KERN_INFO "acpi-cpufreq: Intel(R) "
|
|
"Xeon(R) 7100 Errata AL30, processors may "
|
|
"lock up on frequency changes: disabling "
|
|
"acpi-cpufreq.\n");
|
|
return -ENODEV;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
static int acpi_cpufreq_cpu_init(struct cpufreq_policy *policy)
|
|
{
|
|
unsigned int i;
|
|
unsigned int valid_states = 0;
|
|
unsigned int cpu = policy->cpu;
|
|
struct acpi_cpufreq_data *data;
|
|
unsigned int result = 0;
|
|
struct cpuinfo_x86 *c = &cpu_data(policy->cpu);
|
|
struct acpi_processor_performance *perf;
|
|
#ifdef CONFIG_SMP
|
|
static int blacklisted;
|
|
#endif
|
|
|
|
pr_debug("acpi_cpufreq_cpu_init\n");
|
|
|
|
#ifdef CONFIG_SMP
|
|
if (blacklisted)
|
|
return blacklisted;
|
|
blacklisted = acpi_cpufreq_blacklist(c);
|
|
if (blacklisted)
|
|
return blacklisted;
|
|
#endif
|
|
|
|
data = kzalloc(sizeof(struct acpi_cpufreq_data), GFP_KERNEL);
|
|
if (!data)
|
|
return -ENOMEM;
|
|
|
|
data->acpi_data = per_cpu_ptr(acpi_perf_data, cpu);
|
|
per_cpu(acfreq_data, cpu) = data;
|
|
|
|
if (cpu_has(c, X86_FEATURE_CONSTANT_TSC))
|
|
acpi_cpufreq_driver.flags |= CPUFREQ_CONST_LOOPS;
|
|
|
|
result = acpi_processor_register_performance(data->acpi_data, cpu);
|
|
if (result)
|
|
goto err_free;
|
|
|
|
perf = data->acpi_data;
|
|
policy->shared_type = perf->shared_type;
|
|
|
|
/*
|
|
* Will let policy->cpus know about dependency only when software
|
|
* coordination is required.
|
|
*/
|
|
if (policy->shared_type == CPUFREQ_SHARED_TYPE_ALL ||
|
|
policy->shared_type == CPUFREQ_SHARED_TYPE_ANY) {
|
|
cpumask_copy(policy->cpus, perf->shared_cpu_map);
|
|
}
|
|
cpumask_copy(policy->related_cpus, perf->shared_cpu_map);
|
|
|
|
#ifdef CONFIG_SMP
|
|
dmi_check_system(sw_any_bug_dmi_table);
|
|
if (bios_with_sw_any_bug && cpumask_weight(policy->cpus) == 1) {
|
|
policy->shared_type = CPUFREQ_SHARED_TYPE_ALL;
|
|
cpumask_copy(policy->cpus, cpu_core_mask(cpu));
|
|
}
|
|
#endif
|
|
|
|
/* capability check */
|
|
if (perf->state_count <= 1) {
|
|
pr_debug("No P-States\n");
|
|
result = -ENODEV;
|
|
goto err_unreg;
|
|
}
|
|
|
|
if (perf->control_register.space_id != perf->status_register.space_id) {
|
|
result = -ENODEV;
|
|
goto err_unreg;
|
|
}
|
|
|
|
switch (perf->control_register.space_id) {
|
|
case ACPI_ADR_SPACE_SYSTEM_IO:
|
|
pr_debug("SYSTEM IO addr space\n");
|
|
data->cpu_feature = SYSTEM_IO_CAPABLE;
|
|
break;
|
|
case ACPI_ADR_SPACE_FIXED_HARDWARE:
|
|
pr_debug("HARDWARE addr space\n");
|
|
if (!check_est_cpu(cpu)) {
|
|
result = -ENODEV;
|
|
goto err_unreg;
|
|
}
|
|
data->cpu_feature = SYSTEM_INTEL_MSR_CAPABLE;
|
|
break;
|
|
default:
|
|
pr_debug("Unknown addr space %d\n",
|
|
(u32) (perf->control_register.space_id));
|
|
result = -ENODEV;
|
|
goto err_unreg;
|
|
}
|
|
|
|
data->freq_table = kmalloc(sizeof(struct cpufreq_frequency_table) *
|
|
(perf->state_count+1), GFP_KERNEL);
|
|
if (!data->freq_table) {
|
|
result = -ENOMEM;
|
|
goto err_unreg;
|
|
}
|
|
|
|
/* detect transition latency */
|
|
policy->cpuinfo.transition_latency = 0;
|
|
for (i = 0; i < perf->state_count; i++) {
|
|
if ((perf->states[i].transition_latency * 1000) >
|
|
policy->cpuinfo.transition_latency)
|
|
policy->cpuinfo.transition_latency =
|
|
perf->states[i].transition_latency * 1000;
|
|
}
|
|
|
|
/* Check for high latency (>20uS) from buggy BIOSes, like on T42 */
|
|
if (perf->control_register.space_id == ACPI_ADR_SPACE_FIXED_HARDWARE &&
|
|
policy->cpuinfo.transition_latency > 20 * 1000) {
|
|
policy->cpuinfo.transition_latency = 20 * 1000;
|
|
printk_once(KERN_INFO
|
|
"P-state transition latency capped at 20 uS\n");
|
|
}
|
|
|
|
/* table init */
|
|
for (i = 0; i < perf->state_count; i++) {
|
|
if (i > 0 && perf->states[i].core_frequency >=
|
|
data->freq_table[valid_states-1].frequency / 1000)
|
|
continue;
|
|
|
|
data->freq_table[valid_states].index = i;
|
|
data->freq_table[valid_states].frequency =
|
|
perf->states[i].core_frequency * 1000;
|
|
valid_states++;
|
|
}
|
|
data->freq_table[valid_states].frequency = CPUFREQ_TABLE_END;
|
|
perf->state = 0;
|
|
|
|
result = cpufreq_frequency_table_cpuinfo(policy, data->freq_table);
|
|
if (result)
|
|
goto err_freqfree;
|
|
|
|
if (perf->states[0].core_frequency * 1000 != policy->cpuinfo.max_freq)
|
|
printk(KERN_WARNING FW_WARN "P-state 0 is not max freq\n");
|
|
|
|
switch (perf->control_register.space_id) {
|
|
case ACPI_ADR_SPACE_SYSTEM_IO:
|
|
/* Current speed is unknown and not detectable by IO port */
|
|
policy->cur = acpi_cpufreq_guess_freq(data, policy->cpu);
|
|
break;
|
|
case ACPI_ADR_SPACE_FIXED_HARDWARE:
|
|
acpi_cpufreq_driver.get = get_cur_freq_on_cpu;
|
|
policy->cur = get_cur_freq_on_cpu(cpu);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
/* notify BIOS that we exist */
|
|
acpi_processor_notify_smm(THIS_MODULE);
|
|
|
|
/* Check for APERF/MPERF support in hardware */
|
|
if (cpu_has(c, X86_FEATURE_APERFMPERF))
|
|
acpi_cpufreq_driver.getavg = cpufreq_get_measured_perf;
|
|
|
|
pr_debug("CPU%u - ACPI performance management activated.\n", cpu);
|
|
for (i = 0; i < perf->state_count; i++)
|
|
pr_debug(" %cP%d: %d MHz, %d mW, %d uS\n",
|
|
(i == perf->state ? '*' : ' '), i,
|
|
(u32) perf->states[i].core_frequency,
|
|
(u32) perf->states[i].power,
|
|
(u32) perf->states[i].transition_latency);
|
|
|
|
cpufreq_frequency_table_get_attr(data->freq_table, policy->cpu);
|
|
|
|
/*
|
|
* the first call to ->target() should result in us actually
|
|
* writing something to the appropriate registers.
|
|
*/
|
|
data->resume = 1;
|
|
|
|
return result;
|
|
|
|
err_freqfree:
|
|
kfree(data->freq_table);
|
|
err_unreg:
|
|
acpi_processor_unregister_performance(perf, cpu);
|
|
err_free:
|
|
kfree(data);
|
|
per_cpu(acfreq_data, cpu) = NULL;
|
|
|
|
return result;
|
|
}
|
|
|
|
static int acpi_cpufreq_cpu_exit(struct cpufreq_policy *policy)
|
|
{
|
|
struct acpi_cpufreq_data *data = per_cpu(acfreq_data, policy->cpu);
|
|
|
|
pr_debug("acpi_cpufreq_cpu_exit\n");
|
|
|
|
if (data) {
|
|
cpufreq_frequency_table_put_attr(policy->cpu);
|
|
per_cpu(acfreq_data, policy->cpu) = NULL;
|
|
acpi_processor_unregister_performance(data->acpi_data,
|
|
policy->cpu);
|
|
kfree(data->freq_table);
|
|
kfree(data);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int acpi_cpufreq_resume(struct cpufreq_policy *policy)
|
|
{
|
|
struct acpi_cpufreq_data *data = per_cpu(acfreq_data, policy->cpu);
|
|
|
|
pr_debug("acpi_cpufreq_resume\n");
|
|
|
|
data->resume = 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static struct freq_attr *acpi_cpufreq_attr[] = {
|
|
&cpufreq_freq_attr_scaling_available_freqs,
|
|
NULL,
|
|
};
|
|
|
|
static struct cpufreq_driver acpi_cpufreq_driver = {
|
|
.verify = acpi_cpufreq_verify,
|
|
.target = acpi_cpufreq_target,
|
|
.bios_limit = acpi_processor_get_bios_limit,
|
|
.init = acpi_cpufreq_cpu_init,
|
|
.exit = acpi_cpufreq_cpu_exit,
|
|
.resume = acpi_cpufreq_resume,
|
|
.name = "acpi-cpufreq",
|
|
.owner = THIS_MODULE,
|
|
.attr = acpi_cpufreq_attr,
|
|
};
|
|
|
|
static int __init acpi_cpufreq_init(void)
|
|
{
|
|
int ret;
|
|
|
|
if (acpi_disabled)
|
|
return 0;
|
|
|
|
pr_debug("acpi_cpufreq_init\n");
|
|
|
|
ret = acpi_cpufreq_early_init();
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = cpufreq_register_driver(&acpi_cpufreq_driver);
|
|
if (ret)
|
|
free_acpi_perf_data();
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void __exit acpi_cpufreq_exit(void)
|
|
{
|
|
pr_debug("acpi_cpufreq_exit\n");
|
|
|
|
cpufreq_unregister_driver(&acpi_cpufreq_driver);
|
|
|
|
free_percpu(acpi_perf_data);
|
|
}
|
|
|
|
module_param(acpi_pstate_strict, uint, 0644);
|
|
MODULE_PARM_DESC(acpi_pstate_strict,
|
|
"value 0 or non-zero. non-zero -> strict ACPI checks are "
|
|
"performed during frequency changes.");
|
|
|
|
late_initcall(acpi_cpufreq_init);
|
|
module_exit(acpi_cpufreq_exit);
|
|
|
|
MODULE_ALIAS("acpi");
|