linux/drivers/iio/health/afe4403.c
Thomas Gleixner 1802d0beec treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 174
Based on 1 normalized pattern(s):

  this program is free software you can redistribute it and or modify
  it under the terms of the gnu general public license version 2 as
  published by the free software foundation this program is
  distributed in the hope that it will be useful but without any
  warranty without even the implied warranty of merchantability or
  fitness for a particular purpose see the gnu general public license
  for more details

extracted by the scancode license scanner the SPDX license identifier

  GPL-2.0-only

has been chosen to replace the boilerplate/reference in 655 file(s).

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Allison Randal <allison@lohutok.net>
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Richard Fontana <rfontana@redhat.com>
Cc: linux-spdx@vger.kernel.org
Link: https://lkml.kernel.org/r/20190527070034.575739538@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-05-30 11:26:41 -07:00

622 lines
16 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* AFE4403 Heart Rate Monitors and Low-Cost Pulse Oximeters
*
* Copyright (C) 2015-2016 Texas Instruments Incorporated - http://www.ti.com/
* Andrew F. Davis <afd@ti.com>
*/
#include <linux/device.h>
#include <linux/err.h>
#include <linux/interrupt.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/regmap.h>
#include <linux/spi/spi.h>
#include <linux/sysfs.h>
#include <linux/regulator/consumer.h>
#include <linux/iio/iio.h>
#include <linux/iio/sysfs.h>
#include <linux/iio/buffer.h>
#include <linux/iio/trigger.h>
#include <linux/iio/triggered_buffer.h>
#include <linux/iio/trigger_consumer.h>
#include "afe440x.h"
#define AFE4403_DRIVER_NAME "afe4403"
/* AFE4403 Registers */
#define AFE4403_TIAGAIN 0x20
#define AFE4403_TIA_AMB_GAIN 0x21
enum afe4403_fields {
/* Gains */
F_RF_LED1, F_CF_LED1,
F_RF_LED, F_CF_LED,
/* LED Current */
F_ILED1, F_ILED2,
/* sentinel */
F_MAX_FIELDS
};
static const struct reg_field afe4403_reg_fields[] = {
/* Gains */
[F_RF_LED1] = REG_FIELD(AFE4403_TIAGAIN, 0, 2),
[F_CF_LED1] = REG_FIELD(AFE4403_TIAGAIN, 3, 7),
[F_RF_LED] = REG_FIELD(AFE4403_TIA_AMB_GAIN, 0, 2),
[F_CF_LED] = REG_FIELD(AFE4403_TIA_AMB_GAIN, 3, 7),
/* LED Current */
[F_ILED1] = REG_FIELD(AFE440X_LEDCNTRL, 0, 7),
[F_ILED2] = REG_FIELD(AFE440X_LEDCNTRL, 8, 15),
};
/**
* struct afe4403_data - AFE4403 device instance data
* @dev: Device structure
* @spi: SPI device handle
* @regmap: Register map of the device
* @fields: Register fields of the device
* @regulator: Pointer to the regulator for the IC
* @trig: IIO trigger for this device
* @irq: ADC_RDY line interrupt number
*/
struct afe4403_data {
struct device *dev;
struct spi_device *spi;
struct regmap *regmap;
struct regmap_field *fields[F_MAX_FIELDS];
struct regulator *regulator;
struct iio_trigger *trig;
int irq;
};
enum afe4403_chan_id {
LED2 = 1,
ALED2,
LED1,
ALED1,
LED2_ALED2,
LED1_ALED1,
};
static const unsigned int afe4403_channel_values[] = {
[LED2] = AFE440X_LED2VAL,
[ALED2] = AFE440X_ALED2VAL,
[LED1] = AFE440X_LED1VAL,
[ALED1] = AFE440X_ALED1VAL,
[LED2_ALED2] = AFE440X_LED2_ALED2VAL,
[LED1_ALED1] = AFE440X_LED1_ALED1VAL,
};
static const unsigned int afe4403_channel_leds[] = {
[LED2] = F_ILED2,
[LED1] = F_ILED1,
};
static const struct iio_chan_spec afe4403_channels[] = {
/* ADC values */
AFE440X_INTENSITY_CHAN(LED2, 0),
AFE440X_INTENSITY_CHAN(ALED2, 0),
AFE440X_INTENSITY_CHAN(LED1, 0),
AFE440X_INTENSITY_CHAN(ALED1, 0),
AFE440X_INTENSITY_CHAN(LED2_ALED2, 0),
AFE440X_INTENSITY_CHAN(LED1_ALED1, 0),
/* LED current */
AFE440X_CURRENT_CHAN(LED2),
AFE440X_CURRENT_CHAN(LED1),
};
static const struct afe440x_val_table afe4403_res_table[] = {
{ 500000 }, { 250000 }, { 100000 }, { 50000 },
{ 25000 }, { 10000 }, { 1000000 }, { 0 },
};
AFE440X_TABLE_ATTR(in_intensity_resistance_available, afe4403_res_table);
static const struct afe440x_val_table afe4403_cap_table[] = {
{ 0, 5000 }, { 0, 10000 }, { 0, 20000 }, { 0, 25000 },
{ 0, 30000 }, { 0, 35000 }, { 0, 45000 }, { 0, 50000 },
{ 0, 55000 }, { 0, 60000 }, { 0, 70000 }, { 0, 75000 },
{ 0, 80000 }, { 0, 85000 }, { 0, 95000 }, { 0, 100000 },
{ 0, 155000 }, { 0, 160000 }, { 0, 170000 }, { 0, 175000 },
{ 0, 180000 }, { 0, 185000 }, { 0, 195000 }, { 0, 200000 },
{ 0, 205000 }, { 0, 210000 }, { 0, 220000 }, { 0, 225000 },
{ 0, 230000 }, { 0, 235000 }, { 0, 245000 }, { 0, 250000 },
};
AFE440X_TABLE_ATTR(in_intensity_capacitance_available, afe4403_cap_table);
static ssize_t afe440x_show_register(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct iio_dev *indio_dev = dev_to_iio_dev(dev);
struct afe4403_data *afe = iio_priv(indio_dev);
struct afe440x_attr *afe440x_attr = to_afe440x_attr(attr);
unsigned int reg_val;
int vals[2];
int ret;
ret = regmap_field_read(afe->fields[afe440x_attr->field], &reg_val);
if (ret)
return ret;
if (reg_val >= afe440x_attr->table_size)
return -EINVAL;
vals[0] = afe440x_attr->val_table[reg_val].integer;
vals[1] = afe440x_attr->val_table[reg_val].fract;
return iio_format_value(buf, IIO_VAL_INT_PLUS_MICRO, 2, vals);
}
static ssize_t afe440x_store_register(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct iio_dev *indio_dev = dev_to_iio_dev(dev);
struct afe4403_data *afe = iio_priv(indio_dev);
struct afe440x_attr *afe440x_attr = to_afe440x_attr(attr);
int val, integer, fract, ret;
ret = iio_str_to_fixpoint(buf, 100000, &integer, &fract);
if (ret)
return ret;
for (val = 0; val < afe440x_attr->table_size; val++)
if (afe440x_attr->val_table[val].integer == integer &&
afe440x_attr->val_table[val].fract == fract)
break;
if (val == afe440x_attr->table_size)
return -EINVAL;
ret = regmap_field_write(afe->fields[afe440x_attr->field], val);
if (ret)
return ret;
return count;
}
static AFE440X_ATTR(in_intensity1_resistance, F_RF_LED, afe4403_res_table);
static AFE440X_ATTR(in_intensity1_capacitance, F_CF_LED, afe4403_cap_table);
static AFE440X_ATTR(in_intensity2_resistance, F_RF_LED, afe4403_res_table);
static AFE440X_ATTR(in_intensity2_capacitance, F_CF_LED, afe4403_cap_table);
static AFE440X_ATTR(in_intensity3_resistance, F_RF_LED1, afe4403_res_table);
static AFE440X_ATTR(in_intensity3_capacitance, F_CF_LED1, afe4403_cap_table);
static AFE440X_ATTR(in_intensity4_resistance, F_RF_LED1, afe4403_res_table);
static AFE440X_ATTR(in_intensity4_capacitance, F_CF_LED1, afe4403_cap_table);
static struct attribute *afe440x_attributes[] = {
&dev_attr_in_intensity_resistance_available.attr,
&dev_attr_in_intensity_capacitance_available.attr,
&afe440x_attr_in_intensity1_resistance.dev_attr.attr,
&afe440x_attr_in_intensity1_capacitance.dev_attr.attr,
&afe440x_attr_in_intensity2_resistance.dev_attr.attr,
&afe440x_attr_in_intensity2_capacitance.dev_attr.attr,
&afe440x_attr_in_intensity3_resistance.dev_attr.attr,
&afe440x_attr_in_intensity3_capacitance.dev_attr.attr,
&afe440x_attr_in_intensity4_resistance.dev_attr.attr,
&afe440x_attr_in_intensity4_capacitance.dev_attr.attr,
NULL
};
static const struct attribute_group afe440x_attribute_group = {
.attrs = afe440x_attributes
};
static int afe4403_read(struct afe4403_data *afe, unsigned int reg, u32 *val)
{
u8 tx[4] = {AFE440X_CONTROL0, 0x0, 0x0, AFE440X_CONTROL0_READ};
u8 rx[3];
int ret;
/* Enable reading from the device */
ret = spi_write_then_read(afe->spi, tx, 4, NULL, 0);
if (ret)
return ret;
ret = spi_write_then_read(afe->spi, &reg, 1, rx, 3);
if (ret)
return ret;
*val = (rx[0] << 16) |
(rx[1] << 8) |
(rx[2]);
/* Disable reading from the device */
tx[3] = AFE440X_CONTROL0_WRITE;
ret = spi_write_then_read(afe->spi, tx, 4, NULL, 0);
if (ret)
return ret;
return 0;
}
static int afe4403_read_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
int *val, int *val2, long mask)
{
struct afe4403_data *afe = iio_priv(indio_dev);
unsigned int reg = afe4403_channel_values[chan->address];
unsigned int field = afe4403_channel_leds[chan->address];
int ret;
switch (chan->type) {
case IIO_INTENSITY:
switch (mask) {
case IIO_CHAN_INFO_RAW:
ret = afe4403_read(afe, reg, val);
if (ret)
return ret;
return IIO_VAL_INT;
}
break;
case IIO_CURRENT:
switch (mask) {
case IIO_CHAN_INFO_RAW:
ret = regmap_field_read(afe->fields[field], val);
if (ret)
return ret;
return IIO_VAL_INT;
case IIO_CHAN_INFO_SCALE:
*val = 0;
*val2 = 800000;
return IIO_VAL_INT_PLUS_MICRO;
}
break;
default:
break;
}
return -EINVAL;
}
static int afe4403_write_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
int val, int val2, long mask)
{
struct afe4403_data *afe = iio_priv(indio_dev);
unsigned int field = afe4403_channel_leds[chan->address];
switch (chan->type) {
case IIO_CURRENT:
switch (mask) {
case IIO_CHAN_INFO_RAW:
return regmap_field_write(afe->fields[field], val);
}
break;
default:
break;
}
return -EINVAL;
}
static const struct iio_info afe4403_iio_info = {
.attrs = &afe440x_attribute_group,
.read_raw = afe4403_read_raw,
.write_raw = afe4403_write_raw,
};
static irqreturn_t afe4403_trigger_handler(int irq, void *private)
{
struct iio_poll_func *pf = private;
struct iio_dev *indio_dev = pf->indio_dev;
struct afe4403_data *afe = iio_priv(indio_dev);
int ret, bit, i = 0;
s32 buffer[8];
u8 tx[4] = {AFE440X_CONTROL0, 0x0, 0x0, AFE440X_CONTROL0_READ};
u8 rx[3];
/* Enable reading from the device */
ret = spi_write_then_read(afe->spi, tx, 4, NULL, 0);
if (ret)
goto err;
for_each_set_bit(bit, indio_dev->active_scan_mask,
indio_dev->masklength) {
ret = spi_write_then_read(afe->spi,
&afe4403_channel_values[bit], 1,
rx, 3);
if (ret)
goto err;
buffer[i++] = (rx[0] << 16) |
(rx[1] << 8) |
(rx[2]);
}
/* Disable reading from the device */
tx[3] = AFE440X_CONTROL0_WRITE;
ret = spi_write_then_read(afe->spi, tx, 4, NULL, 0);
if (ret)
goto err;
iio_push_to_buffers_with_timestamp(indio_dev, buffer, pf->timestamp);
err:
iio_trigger_notify_done(indio_dev->trig);
return IRQ_HANDLED;
}
static const struct iio_trigger_ops afe4403_trigger_ops = {
};
#define AFE4403_TIMING_PAIRS \
{ AFE440X_LED2STC, 0x000050 }, \
{ AFE440X_LED2ENDC, 0x0003e7 }, \
{ AFE440X_LED1LEDSTC, 0x0007d0 }, \
{ AFE440X_LED1LEDENDC, 0x000bb7 }, \
{ AFE440X_ALED2STC, 0x000438 }, \
{ AFE440X_ALED2ENDC, 0x0007cf }, \
{ AFE440X_LED1STC, 0x000820 }, \
{ AFE440X_LED1ENDC, 0x000bb7 }, \
{ AFE440X_LED2LEDSTC, 0x000000 }, \
{ AFE440X_LED2LEDENDC, 0x0003e7 }, \
{ AFE440X_ALED1STC, 0x000c08 }, \
{ AFE440X_ALED1ENDC, 0x000f9f }, \
{ AFE440X_LED2CONVST, 0x0003ef }, \
{ AFE440X_LED2CONVEND, 0x0007cf }, \
{ AFE440X_ALED2CONVST, 0x0007d7 }, \
{ AFE440X_ALED2CONVEND, 0x000bb7 }, \
{ AFE440X_LED1CONVST, 0x000bbf }, \
{ AFE440X_LED1CONVEND, 0x009c3f }, \
{ AFE440X_ALED1CONVST, 0x000fa7 }, \
{ AFE440X_ALED1CONVEND, 0x001387 }, \
{ AFE440X_ADCRSTSTCT0, 0x0003e8 }, \
{ AFE440X_ADCRSTENDCT0, 0x0003eb }, \
{ AFE440X_ADCRSTSTCT1, 0x0007d0 }, \
{ AFE440X_ADCRSTENDCT1, 0x0007d3 }, \
{ AFE440X_ADCRSTSTCT2, 0x000bb8 }, \
{ AFE440X_ADCRSTENDCT2, 0x000bbb }, \
{ AFE440X_ADCRSTSTCT3, 0x000fa0 }, \
{ AFE440X_ADCRSTENDCT3, 0x000fa3 }, \
{ AFE440X_PRPCOUNT, 0x009c3f }, \
{ AFE440X_PDNCYCLESTC, 0x001518 }, \
{ AFE440X_PDNCYCLEENDC, 0x00991f }
static const struct reg_sequence afe4403_reg_sequences[] = {
AFE4403_TIMING_PAIRS,
{ AFE440X_CONTROL1, AFE440X_CONTROL1_TIMEREN },
{ AFE4403_TIAGAIN, AFE440X_TIAGAIN_ENSEPGAIN },
};
static const struct regmap_range afe4403_yes_ranges[] = {
regmap_reg_range(AFE440X_LED2VAL, AFE440X_LED1_ALED1VAL),
};
static const struct regmap_access_table afe4403_volatile_table = {
.yes_ranges = afe4403_yes_ranges,
.n_yes_ranges = ARRAY_SIZE(afe4403_yes_ranges),
};
static const struct regmap_config afe4403_regmap_config = {
.reg_bits = 8,
.val_bits = 24,
.max_register = AFE440X_PDNCYCLEENDC,
.cache_type = REGCACHE_RBTREE,
.volatile_table = &afe4403_volatile_table,
};
static const struct of_device_id afe4403_of_match[] = {
{ .compatible = "ti,afe4403", },
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, afe4403_of_match);
static int __maybe_unused afe4403_suspend(struct device *dev)
{
struct iio_dev *indio_dev = spi_get_drvdata(to_spi_device(dev));
struct afe4403_data *afe = iio_priv(indio_dev);
int ret;
ret = regmap_update_bits(afe->regmap, AFE440X_CONTROL2,
AFE440X_CONTROL2_PDN_AFE,
AFE440X_CONTROL2_PDN_AFE);
if (ret)
return ret;
ret = regulator_disable(afe->regulator);
if (ret) {
dev_err(dev, "Unable to disable regulator\n");
return ret;
}
return 0;
}
static int __maybe_unused afe4403_resume(struct device *dev)
{
struct iio_dev *indio_dev = spi_get_drvdata(to_spi_device(dev));
struct afe4403_data *afe = iio_priv(indio_dev);
int ret;
ret = regulator_enable(afe->regulator);
if (ret) {
dev_err(dev, "Unable to enable regulator\n");
return ret;
}
ret = regmap_update_bits(afe->regmap, AFE440X_CONTROL2,
AFE440X_CONTROL2_PDN_AFE, 0);
if (ret)
return ret;
return 0;
}
static SIMPLE_DEV_PM_OPS(afe4403_pm_ops, afe4403_suspend, afe4403_resume);
static int afe4403_probe(struct spi_device *spi)
{
struct iio_dev *indio_dev;
struct afe4403_data *afe;
int i, ret;
indio_dev = devm_iio_device_alloc(&spi->dev, sizeof(*afe));
if (!indio_dev)
return -ENOMEM;
afe = iio_priv(indio_dev);
spi_set_drvdata(spi, indio_dev);
afe->dev = &spi->dev;
afe->spi = spi;
afe->irq = spi->irq;
afe->regmap = devm_regmap_init_spi(spi, &afe4403_regmap_config);
if (IS_ERR(afe->regmap)) {
dev_err(afe->dev, "Unable to allocate register map\n");
return PTR_ERR(afe->regmap);
}
for (i = 0; i < F_MAX_FIELDS; i++) {
afe->fields[i] = devm_regmap_field_alloc(afe->dev, afe->regmap,
afe4403_reg_fields[i]);
if (IS_ERR(afe->fields[i])) {
dev_err(afe->dev, "Unable to allocate regmap fields\n");
return PTR_ERR(afe->fields[i]);
}
}
afe->regulator = devm_regulator_get(afe->dev, "tx_sup");
if (IS_ERR(afe->regulator)) {
dev_err(afe->dev, "Unable to get regulator\n");
return PTR_ERR(afe->regulator);
}
ret = regulator_enable(afe->regulator);
if (ret) {
dev_err(afe->dev, "Unable to enable regulator\n");
return ret;
}
ret = regmap_write(afe->regmap, AFE440X_CONTROL0,
AFE440X_CONTROL0_SW_RESET);
if (ret) {
dev_err(afe->dev, "Unable to reset device\n");
goto err_disable_reg;
}
ret = regmap_multi_reg_write(afe->regmap, afe4403_reg_sequences,
ARRAY_SIZE(afe4403_reg_sequences));
if (ret) {
dev_err(afe->dev, "Unable to set register defaults\n");
goto err_disable_reg;
}
indio_dev->modes = INDIO_DIRECT_MODE;
indio_dev->dev.parent = afe->dev;
indio_dev->channels = afe4403_channels;
indio_dev->num_channels = ARRAY_SIZE(afe4403_channels);
indio_dev->name = AFE4403_DRIVER_NAME;
indio_dev->info = &afe4403_iio_info;
if (afe->irq > 0) {
afe->trig = devm_iio_trigger_alloc(afe->dev,
"%s-dev%d",
indio_dev->name,
indio_dev->id);
if (!afe->trig) {
dev_err(afe->dev, "Unable to allocate IIO trigger\n");
ret = -ENOMEM;
goto err_disable_reg;
}
iio_trigger_set_drvdata(afe->trig, indio_dev);
afe->trig->ops = &afe4403_trigger_ops;
afe->trig->dev.parent = afe->dev;
ret = iio_trigger_register(afe->trig);
if (ret) {
dev_err(afe->dev, "Unable to register IIO trigger\n");
goto err_disable_reg;
}
ret = devm_request_threaded_irq(afe->dev, afe->irq,
iio_trigger_generic_data_rdy_poll,
NULL, IRQF_ONESHOT,
AFE4403_DRIVER_NAME,
afe->trig);
if (ret) {
dev_err(afe->dev, "Unable to request IRQ\n");
goto err_trig;
}
}
ret = iio_triggered_buffer_setup(indio_dev, &iio_pollfunc_store_time,
afe4403_trigger_handler, NULL);
if (ret) {
dev_err(afe->dev, "Unable to setup buffer\n");
goto err_trig;
}
ret = iio_device_register(indio_dev);
if (ret) {
dev_err(afe->dev, "Unable to register IIO device\n");
goto err_buff;
}
return 0;
err_buff:
iio_triggered_buffer_cleanup(indio_dev);
err_trig:
if (afe->irq > 0)
iio_trigger_unregister(afe->trig);
err_disable_reg:
regulator_disable(afe->regulator);
return ret;
}
static int afe4403_remove(struct spi_device *spi)
{
struct iio_dev *indio_dev = spi_get_drvdata(spi);
struct afe4403_data *afe = iio_priv(indio_dev);
int ret;
iio_device_unregister(indio_dev);
iio_triggered_buffer_cleanup(indio_dev);
if (afe->irq > 0)
iio_trigger_unregister(afe->trig);
ret = regulator_disable(afe->regulator);
if (ret) {
dev_err(afe->dev, "Unable to disable regulator\n");
return ret;
}
return 0;
}
static const struct spi_device_id afe4403_ids[] = {
{ "afe4403", 0 },
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(spi, afe4403_ids);
static struct spi_driver afe4403_spi_driver = {
.driver = {
.name = AFE4403_DRIVER_NAME,
.of_match_table = afe4403_of_match,
.pm = &afe4403_pm_ops,
},
.probe = afe4403_probe,
.remove = afe4403_remove,
.id_table = afe4403_ids,
};
module_spi_driver(afe4403_spi_driver);
MODULE_AUTHOR("Andrew F. Davis <afd@ti.com>");
MODULE_DESCRIPTION("TI AFE4403 Heart Rate Monitor and Pulse Oximeter AFE");
MODULE_LICENSE("GPL v2");