linux/arch/x86/kernel/uprobes.c
Dave Hansen 6ba48ff46f x86: Remove arbitrary instruction size limit in instruction decoder
The current x86 instruction decoder steps along through the
instruction stream but always ensures that it never steps farther
than the largest possible instruction size (MAX_INSN_SIZE).

The MPX code is now going to be doing some decoding of userspace
instructions.  We copy those from userspace in to the kernel and
they're obviously completely untrusted coming from userspace.  In
addition to the constraint that instructions can only be so long,
we also have to be aware of how long the buffer is that came in
from userspace.  This _looks_ to be similar to what the perf and
kprobes is doing, but it's unclear to me whether they are
affected.

The whole reason we need this is that it is perfectly valid to be
executing an instruction within MAX_INSN_SIZE bytes of an
unreadable page. We should be able to gracefully handle short
reads in those cases.

This adds support to the decoder to record how long the buffer
being decoded is and to refuse to "validate" the instruction if
we would have gone over the end of the buffer to decode it.

The kprobes code probably needs to be looked at here a bit more
carefully.  This patch still respects the MAX_INSN_SIZE limit
there but the kprobes code does look like it might be able to
be a bit more strict than it currently is.

Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Acked-by: Jim Keniston <jkenisto@us.ibm.com>
Acked-by: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com>
Cc: x86@kernel.org
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Cc: Ananth N Mavinakayanahalli <ananth@in.ibm.com>
Cc: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
Cc: "David S. Miller" <davem@davemloft.net>
Link: http://lkml.kernel.org/r/20141114153957.E6B01535@viggo.jf.intel.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2014-11-18 00:58:52 +01:00

929 lines
29 KiB
C

/*
* User-space Probes (UProbes) for x86
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
* Copyright (C) IBM Corporation, 2008-2011
* Authors:
* Srikar Dronamraju
* Jim Keniston
*/
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/ptrace.h>
#include <linux/uprobes.h>
#include <linux/uaccess.h>
#include <linux/kdebug.h>
#include <asm/processor.h>
#include <asm/insn.h>
/* Post-execution fixups. */
/* Adjust IP back to vicinity of actual insn */
#define UPROBE_FIX_IP 0x01
/* Adjust the return address of a call insn */
#define UPROBE_FIX_CALL 0x02
/* Instruction will modify TF, don't change it */
#define UPROBE_FIX_SETF 0x04
#define UPROBE_FIX_RIP_SI 0x08
#define UPROBE_FIX_RIP_DI 0x10
#define UPROBE_FIX_RIP_BX 0x20
#define UPROBE_FIX_RIP_MASK \
(UPROBE_FIX_RIP_SI | UPROBE_FIX_RIP_DI | UPROBE_FIX_RIP_BX)
#define UPROBE_TRAP_NR UINT_MAX
/* Adaptations for mhiramat x86 decoder v14. */
#define OPCODE1(insn) ((insn)->opcode.bytes[0])
#define OPCODE2(insn) ((insn)->opcode.bytes[1])
#define OPCODE3(insn) ((insn)->opcode.bytes[2])
#define MODRM_REG(insn) X86_MODRM_REG((insn)->modrm.value)
#define W(row, b0, b1, b2, b3, b4, b5, b6, b7, b8, b9, ba, bb, bc, bd, be, bf)\
(((b0##UL << 0x0)|(b1##UL << 0x1)|(b2##UL << 0x2)|(b3##UL << 0x3) | \
(b4##UL << 0x4)|(b5##UL << 0x5)|(b6##UL << 0x6)|(b7##UL << 0x7) | \
(b8##UL << 0x8)|(b9##UL << 0x9)|(ba##UL << 0xa)|(bb##UL << 0xb) | \
(bc##UL << 0xc)|(bd##UL << 0xd)|(be##UL << 0xe)|(bf##UL << 0xf)) \
<< (row % 32))
/*
* Good-instruction tables for 32-bit apps. This is non-const and volatile
* to keep gcc from statically optimizing it out, as variable_test_bit makes
* some versions of gcc to think only *(unsigned long*) is used.
*/
#if defined(CONFIG_X86_32) || defined(CONFIG_IA32_EMULATION)
static volatile u32 good_insns_32[256 / 32] = {
/* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
/* ---------------------------------------------- */
W(0x00, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0) | /* 00 */
W(0x10, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0) , /* 10 */
W(0x20, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1) | /* 20 */
W(0x30, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1) , /* 30 */
W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
W(0x50, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 50 */
W(0x60, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0) | /* 60 */
W(0x70, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 70 */
W(0x80, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 80 */
W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */
W(0xa0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* a0 */
W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* b0 */
W(0xc0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* c0 */
W(0xd0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* d0 */
W(0xe0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0) | /* e0 */
W(0xf0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1) /* f0 */
/* ---------------------------------------------- */
/* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
};
#else
#define good_insns_32 NULL
#endif
/* Good-instruction tables for 64-bit apps */
#if defined(CONFIG_X86_64)
static volatile u32 good_insns_64[256 / 32] = {
/* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
/* ---------------------------------------------- */
W(0x00, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0) | /* 00 */
W(0x10, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0) , /* 10 */
W(0x20, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0) | /* 20 */
W(0x30, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0) , /* 30 */
W(0x40, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 40 */
W(0x50, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 50 */
W(0x60, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0) | /* 60 */
W(0x70, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 70 */
W(0x80, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 80 */
W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */
W(0xa0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* a0 */
W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* b0 */
W(0xc0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* c0 */
W(0xd0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* d0 */
W(0xe0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0) | /* e0 */
W(0xf0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1) /* f0 */
/* ---------------------------------------------- */
/* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
};
#else
#define good_insns_64 NULL
#endif
/* Using this for both 64-bit and 32-bit apps */
static volatile u32 good_2byte_insns[256 / 32] = {
/* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
/* ---------------------------------------------- */
W(0x00, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1) | /* 00 */
W(0x10, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1) , /* 10 */
W(0x20, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1) | /* 20 */
W(0x30, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 30 */
W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
W(0x50, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 50 */
W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 60 */
W(0x70, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1) , /* 70 */
W(0x80, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 80 */
W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */
W(0xa0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1) | /* a0 */
W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1) , /* b0 */
W(0xc0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* c0 */
W(0xd0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* d0 */
W(0xe0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* e0 */
W(0xf0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0) /* f0 */
/* ---------------------------------------------- */
/* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
};
#undef W
/*
* opcodes we'll probably never support:
*
* 6c-6d, e4-e5, ec-ed - in
* 6e-6f, e6-e7, ee-ef - out
* cc, cd - int3, int
* cf - iret
* d6 - illegal instruction
* f1 - int1/icebp
* f4 - hlt
* fa, fb - cli, sti
* 0f - lar, lsl, syscall, clts, sysret, sysenter, sysexit, invd, wbinvd, ud2
*
* invalid opcodes in 64-bit mode:
*
* 06, 0e, 16, 1e, 27, 2f, 37, 3f, 60-62, 82, c4-c5, d4-d5
* 63 - we support this opcode in x86_64 but not in i386.
*
* opcodes we may need to refine support for:
*
* 0f - 2-byte instructions: For many of these instructions, the validity
* depends on the prefix and/or the reg field. On such instructions, we
* just consider the opcode combination valid if it corresponds to any
* valid instruction.
*
* 8f - Group 1 - only reg = 0 is OK
* c6-c7 - Group 11 - only reg = 0 is OK
* d9-df - fpu insns with some illegal encodings
* f2, f3 - repnz, repz prefixes. These are also the first byte for
* certain floating-point instructions, such as addsd.
*
* fe - Group 4 - only reg = 0 or 1 is OK
* ff - Group 5 - only reg = 0-6 is OK
*
* others -- Do we need to support these?
*
* 0f - (floating-point?) prefetch instructions
* 07, 17, 1f - pop es, pop ss, pop ds
* 26, 2e, 36, 3e - es:, cs:, ss:, ds: segment prefixes --
* but 64 and 65 (fs: and gs:) seem to be used, so we support them
* 67 - addr16 prefix
* ce - into
* f0 - lock prefix
*/
/*
* TODO:
* - Where necessary, examine the modrm byte and allow only valid instructions
* in the different Groups and fpu instructions.
*/
static bool is_prefix_bad(struct insn *insn)
{
int i;
for (i = 0; i < insn->prefixes.nbytes; i++) {
switch (insn->prefixes.bytes[i]) {
case 0x26: /* INAT_PFX_ES */
case 0x2E: /* INAT_PFX_CS */
case 0x36: /* INAT_PFX_DS */
case 0x3E: /* INAT_PFX_SS */
case 0xF0: /* INAT_PFX_LOCK */
return true;
}
}
return false;
}
static int uprobe_init_insn(struct arch_uprobe *auprobe, struct insn *insn, bool x86_64)
{
u32 volatile *good_insns;
insn_init(insn, auprobe->insn, sizeof(auprobe->insn), x86_64);
/* has the side-effect of processing the entire instruction */
insn_get_length(insn);
if (WARN_ON_ONCE(!insn_complete(insn)))
return -ENOEXEC;
if (is_prefix_bad(insn))
return -ENOTSUPP;
if (x86_64)
good_insns = good_insns_64;
else
good_insns = good_insns_32;
if (test_bit(OPCODE1(insn), (unsigned long *)good_insns))
return 0;
if (insn->opcode.nbytes == 2) {
if (test_bit(OPCODE2(insn), (unsigned long *)good_2byte_insns))
return 0;
}
return -ENOTSUPP;
}
#ifdef CONFIG_X86_64
static inline bool is_64bit_mm(struct mm_struct *mm)
{
return !config_enabled(CONFIG_IA32_EMULATION) ||
!(mm->context.ia32_compat == TIF_IA32);
}
/*
* If arch_uprobe->insn doesn't use rip-relative addressing, return
* immediately. Otherwise, rewrite the instruction so that it accesses
* its memory operand indirectly through a scratch register. Set
* defparam->fixups accordingly. (The contents of the scratch register
* will be saved before we single-step the modified instruction,
* and restored afterward).
*
* We do this because a rip-relative instruction can access only a
* relatively small area (+/- 2 GB from the instruction), and the XOL
* area typically lies beyond that area. At least for instructions
* that store to memory, we can't execute the original instruction
* and "fix things up" later, because the misdirected store could be
* disastrous.
*
* Some useful facts about rip-relative instructions:
*
* - There's always a modrm byte with bit layout "00 reg 101".
* - There's never a SIB byte.
* - The displacement is always 4 bytes.
* - REX.B=1 bit in REX prefix, which normally extends r/m field,
* has no effect on rip-relative mode. It doesn't make modrm byte
* with r/m=101 refer to register 1101 = R13.
*/
static void riprel_analyze(struct arch_uprobe *auprobe, struct insn *insn)
{
u8 *cursor;
u8 reg;
u8 reg2;
if (!insn_rip_relative(insn))
return;
/*
* insn_rip_relative() would have decoded rex_prefix, vex_prefix, modrm.
* Clear REX.b bit (extension of MODRM.rm field):
* we want to encode low numbered reg, not r8+.
*/
if (insn->rex_prefix.nbytes) {
cursor = auprobe->insn + insn_offset_rex_prefix(insn);
/* REX byte has 0100wrxb layout, clearing REX.b bit */
*cursor &= 0xfe;
}
/*
* Similar treatment for VEX3 prefix.
* TODO: add XOP/EVEX treatment when insn decoder supports them
*/
if (insn->vex_prefix.nbytes == 3) {
/*
* vex2: c5 rvvvvLpp (has no b bit)
* vex3/xop: c4/8f rxbmmmmm wvvvvLpp
* evex: 62 rxbR00mm wvvvv1pp zllBVaaa
* (evex will need setting of both b and x since
* in non-sib encoding evex.x is 4th bit of MODRM.rm)
* Setting VEX3.b (setting because it has inverted meaning):
*/
cursor = auprobe->insn + insn_offset_vex_prefix(insn) + 1;
*cursor |= 0x20;
}
/*
* Convert from rip-relative addressing to register-relative addressing
* via a scratch register.
*
* This is tricky since there are insns with modrm byte
* which also use registers not encoded in modrm byte:
* [i]div/[i]mul: implicitly use dx:ax
* shift ops: implicitly use cx
* cmpxchg: implicitly uses ax
* cmpxchg8/16b: implicitly uses dx:ax and bx:cx
* Encoding: 0f c7/1 modrm
* The code below thinks that reg=1 (cx), chooses si as scratch.
* mulx: implicitly uses dx: mulx r/m,r1,r2 does r1:r2 = dx * r/m.
* First appeared in Haswell (BMI2 insn). It is vex-encoded.
* Example where none of bx,cx,dx can be used as scratch reg:
* c4 e2 63 f6 0d disp32 mulx disp32(%rip),%ebx,%ecx
* [v]pcmpistri: implicitly uses cx, xmm0
* [v]pcmpistrm: implicitly uses xmm0
* [v]pcmpestri: implicitly uses ax, dx, cx, xmm0
* [v]pcmpestrm: implicitly uses ax, dx, xmm0
* Evil SSE4.2 string comparison ops from hell.
* maskmovq/[v]maskmovdqu: implicitly uses (ds:rdi) as destination.
* Encoding: 0f f7 modrm, 66 0f f7 modrm, vex-encoded: c5 f9 f7 modrm.
* Store op1, byte-masked by op2 msb's in each byte, to (ds:rdi).
* AMD says it has no 3-operand form (vex.vvvv must be 1111)
* and that it can have only register operands, not mem
* (its modrm byte must have mode=11).
* If these restrictions will ever be lifted,
* we'll need code to prevent selection of di as scratch reg!
*
* Summary: I don't know any insns with modrm byte which
* use SI register implicitly. DI register is used only
* by one insn (maskmovq) and BX register is used
* only by one too (cmpxchg8b).
* BP is stack-segment based (may be a problem?).
* AX, DX, CX are off-limits (many implicit users).
* SP is unusable (it's stack pointer - think about "pop mem";
* also, rsp+disp32 needs sib encoding -> insn length change).
*/
reg = MODRM_REG(insn); /* Fetch modrm.reg */
reg2 = 0xff; /* Fetch vex.vvvv */
if (insn->vex_prefix.nbytes == 2)
reg2 = insn->vex_prefix.bytes[1];
else if (insn->vex_prefix.nbytes == 3)
reg2 = insn->vex_prefix.bytes[2];
/*
* TODO: add XOP, EXEV vvvv reading.
*
* vex.vvvv field is in bits 6-3, bits are inverted.
* But in 32-bit mode, high-order bit may be ignored.
* Therefore, let's consider only 3 low-order bits.
*/
reg2 = ((reg2 >> 3) & 0x7) ^ 0x7;
/*
* Register numbering is ax,cx,dx,bx, sp,bp,si,di, r8..r15.
*
* Choose scratch reg. Order is important: must not select bx
* if we can use si (cmpxchg8b case!)
*/
if (reg != 6 && reg2 != 6) {
reg2 = 6;
auprobe->defparam.fixups |= UPROBE_FIX_RIP_SI;
} else if (reg != 7 && reg2 != 7) {
reg2 = 7;
auprobe->defparam.fixups |= UPROBE_FIX_RIP_DI;
/* TODO (paranoia): force maskmovq to not use di */
} else {
reg2 = 3;
auprobe->defparam.fixups |= UPROBE_FIX_RIP_BX;
}
/*
* Point cursor at the modrm byte. The next 4 bytes are the
* displacement. Beyond the displacement, for some instructions,
* is the immediate operand.
*/
cursor = auprobe->insn + insn_offset_modrm(insn);
/*
* Change modrm from "00 reg 101" to "10 reg reg2". Example:
* 89 05 disp32 mov %eax,disp32(%rip) becomes
* 89 86 disp32 mov %eax,disp32(%rsi)
*/
*cursor = 0x80 | (reg << 3) | reg2;
}
static inline unsigned long *
scratch_reg(struct arch_uprobe *auprobe, struct pt_regs *regs)
{
if (auprobe->defparam.fixups & UPROBE_FIX_RIP_SI)
return &regs->si;
if (auprobe->defparam.fixups & UPROBE_FIX_RIP_DI)
return &regs->di;
return &regs->bx;
}
/*
* If we're emulating a rip-relative instruction, save the contents
* of the scratch register and store the target address in that register.
*/
static void riprel_pre_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
{
if (auprobe->defparam.fixups & UPROBE_FIX_RIP_MASK) {
struct uprobe_task *utask = current->utask;
unsigned long *sr = scratch_reg(auprobe, regs);
utask->autask.saved_scratch_register = *sr;
*sr = utask->vaddr + auprobe->defparam.ilen;
}
}
static void riprel_post_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
{
if (auprobe->defparam.fixups & UPROBE_FIX_RIP_MASK) {
struct uprobe_task *utask = current->utask;
unsigned long *sr = scratch_reg(auprobe, regs);
*sr = utask->autask.saved_scratch_register;
}
}
#else /* 32-bit: */
static inline bool is_64bit_mm(struct mm_struct *mm)
{
return false;
}
/*
* No RIP-relative addressing on 32-bit
*/
static void riprel_analyze(struct arch_uprobe *auprobe, struct insn *insn)
{
}
static void riprel_pre_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
{
}
static void riprel_post_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
{
}
#endif /* CONFIG_X86_64 */
struct uprobe_xol_ops {
bool (*emulate)(struct arch_uprobe *, struct pt_regs *);
int (*pre_xol)(struct arch_uprobe *, struct pt_regs *);
int (*post_xol)(struct arch_uprobe *, struct pt_regs *);
void (*abort)(struct arch_uprobe *, struct pt_regs *);
};
static inline int sizeof_long(void)
{
return is_ia32_task() ? 4 : 8;
}
static int default_pre_xol_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
{
riprel_pre_xol(auprobe, regs);
return 0;
}
static int push_ret_address(struct pt_regs *regs, unsigned long ip)
{
unsigned long new_sp = regs->sp - sizeof_long();
if (copy_to_user((void __user *)new_sp, &ip, sizeof_long()))
return -EFAULT;
regs->sp = new_sp;
return 0;
}
/*
* We have to fix things up as follows:
*
* Typically, the new ip is relative to the copied instruction. We need
* to make it relative to the original instruction (FIX_IP). Exceptions
* are return instructions and absolute or indirect jump or call instructions.
*
* If the single-stepped instruction was a call, the return address that
* is atop the stack is the address following the copied instruction. We
* need to make it the address following the original instruction (FIX_CALL).
*
* If the original instruction was a rip-relative instruction such as
* "movl %edx,0xnnnn(%rip)", we have instead executed an equivalent
* instruction using a scratch register -- e.g., "movl %edx,0xnnnn(%rsi)".
* We need to restore the contents of the scratch register
* (FIX_RIP_reg).
*/
static int default_post_xol_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
{
struct uprobe_task *utask = current->utask;
riprel_post_xol(auprobe, regs);
if (auprobe->defparam.fixups & UPROBE_FIX_IP) {
long correction = utask->vaddr - utask->xol_vaddr;
regs->ip += correction;
} else if (auprobe->defparam.fixups & UPROBE_FIX_CALL) {
regs->sp += sizeof_long(); /* Pop incorrect return address */
if (push_ret_address(regs, utask->vaddr + auprobe->defparam.ilen))
return -ERESTART;
}
/* popf; tell the caller to not touch TF */
if (auprobe->defparam.fixups & UPROBE_FIX_SETF)
utask->autask.saved_tf = true;
return 0;
}
static void default_abort_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
{
riprel_post_xol(auprobe, regs);
}
static struct uprobe_xol_ops default_xol_ops = {
.pre_xol = default_pre_xol_op,
.post_xol = default_post_xol_op,
.abort = default_abort_op,
};
static bool branch_is_call(struct arch_uprobe *auprobe)
{
return auprobe->branch.opc1 == 0xe8;
}
#define CASE_COND \
COND(70, 71, XF(OF)) \
COND(72, 73, XF(CF)) \
COND(74, 75, XF(ZF)) \
COND(78, 79, XF(SF)) \
COND(7a, 7b, XF(PF)) \
COND(76, 77, XF(CF) || XF(ZF)) \
COND(7c, 7d, XF(SF) != XF(OF)) \
COND(7e, 7f, XF(ZF) || XF(SF) != XF(OF))
#define COND(op_y, op_n, expr) \
case 0x ## op_y: DO((expr) != 0) \
case 0x ## op_n: DO((expr) == 0)
#define XF(xf) (!!(flags & X86_EFLAGS_ ## xf))
static bool is_cond_jmp_opcode(u8 opcode)
{
switch (opcode) {
#define DO(expr) \
return true;
CASE_COND
#undef DO
default:
return false;
}
}
static bool check_jmp_cond(struct arch_uprobe *auprobe, struct pt_regs *regs)
{
unsigned long flags = regs->flags;
switch (auprobe->branch.opc1) {
#define DO(expr) \
return expr;
CASE_COND
#undef DO
default: /* not a conditional jmp */
return true;
}
}
#undef XF
#undef COND
#undef CASE_COND
static bool branch_emulate_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
{
unsigned long new_ip = regs->ip += auprobe->branch.ilen;
unsigned long offs = (long)auprobe->branch.offs;
if (branch_is_call(auprobe)) {
/*
* If it fails we execute this (mangled, see the comment in
* branch_clear_offset) insn out-of-line. In the likely case
* this should trigger the trap, and the probed application
* should die or restart the same insn after it handles the
* signal, arch_uprobe_post_xol() won't be even called.
*
* But there is corner case, see the comment in ->post_xol().
*/
if (push_ret_address(regs, new_ip))
return false;
} else if (!check_jmp_cond(auprobe, regs)) {
offs = 0;
}
regs->ip = new_ip + offs;
return true;
}
static int branch_post_xol_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
{
BUG_ON(!branch_is_call(auprobe));
/*
* We can only get here if branch_emulate_op() failed to push the ret
* address _and_ another thread expanded our stack before the (mangled)
* "call" insn was executed out-of-line. Just restore ->sp and restart.
* We could also restore ->ip and try to call branch_emulate_op() again.
*/
regs->sp += sizeof_long();
return -ERESTART;
}
static void branch_clear_offset(struct arch_uprobe *auprobe, struct insn *insn)
{
/*
* Turn this insn into "call 1f; 1:", this is what we will execute
* out-of-line if ->emulate() fails. We only need this to generate
* a trap, so that the probed task receives the correct signal with
* the properly filled siginfo.
*
* But see the comment in ->post_xol(), in the unlikely case it can
* succeed. So we need to ensure that the new ->ip can not fall into
* the non-canonical area and trigger #GP.
*
* We could turn it into (say) "pushf", but then we would need to
* divorce ->insn[] and ->ixol[]. We need to preserve the 1st byte
* of ->insn[] for set_orig_insn().
*/
memset(auprobe->insn + insn_offset_immediate(insn),
0, insn->immediate.nbytes);
}
static struct uprobe_xol_ops branch_xol_ops = {
.emulate = branch_emulate_op,
.post_xol = branch_post_xol_op,
};
/* Returns -ENOSYS if branch_xol_ops doesn't handle this insn */
static int branch_setup_xol_ops(struct arch_uprobe *auprobe, struct insn *insn)
{
u8 opc1 = OPCODE1(insn);
int i;
switch (opc1) {
case 0xeb: /* jmp 8 */
case 0xe9: /* jmp 32 */
case 0x90: /* prefix* + nop; same as jmp with .offs = 0 */
break;
case 0xe8: /* call relative */
branch_clear_offset(auprobe, insn);
break;
case 0x0f:
if (insn->opcode.nbytes != 2)
return -ENOSYS;
/*
* If it is a "near" conditional jmp, OPCODE2() - 0x10 matches
* OPCODE1() of the "short" jmp which checks the same condition.
*/
opc1 = OPCODE2(insn) - 0x10;
default:
if (!is_cond_jmp_opcode(opc1))
return -ENOSYS;
}
/*
* 16-bit overrides such as CALLW (66 e8 nn nn) are not supported.
* Intel and AMD behavior differ in 64-bit mode: Intel ignores 66 prefix.
* No one uses these insns, reject any branch insns with such prefix.
*/
for (i = 0; i < insn->prefixes.nbytes; i++) {
if (insn->prefixes.bytes[i] == 0x66)
return -ENOTSUPP;
}
auprobe->branch.opc1 = opc1;
auprobe->branch.ilen = insn->length;
auprobe->branch.offs = insn->immediate.value;
auprobe->ops = &branch_xol_ops;
return 0;
}
/**
* arch_uprobe_analyze_insn - instruction analysis including validity and fixups.
* @mm: the probed address space.
* @arch_uprobe: the probepoint information.
* @addr: virtual address at which to install the probepoint
* Return 0 on success or a -ve number on error.
*/
int arch_uprobe_analyze_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long addr)
{
struct insn insn;
u8 fix_ip_or_call = UPROBE_FIX_IP;
int ret;
ret = uprobe_init_insn(auprobe, &insn, is_64bit_mm(mm));
if (ret)
return ret;
ret = branch_setup_xol_ops(auprobe, &insn);
if (ret != -ENOSYS)
return ret;
/*
* Figure out which fixups default_post_xol_op() will need to perform,
* and annotate defparam->fixups accordingly.
*/
switch (OPCODE1(&insn)) {
case 0x9d: /* popf */
auprobe->defparam.fixups |= UPROBE_FIX_SETF;
break;
case 0xc3: /* ret or lret -- ip is correct */
case 0xcb:
case 0xc2:
case 0xca:
case 0xea: /* jmp absolute -- ip is correct */
fix_ip_or_call = 0;
break;
case 0x9a: /* call absolute - Fix return addr, not ip */
fix_ip_or_call = UPROBE_FIX_CALL;
break;
case 0xff:
switch (MODRM_REG(&insn)) {
case 2: case 3: /* call or lcall, indirect */
fix_ip_or_call = UPROBE_FIX_CALL;
break;
case 4: case 5: /* jmp or ljmp, indirect */
fix_ip_or_call = 0;
break;
}
/* fall through */
default:
riprel_analyze(auprobe, &insn);
}
auprobe->defparam.ilen = insn.length;
auprobe->defparam.fixups |= fix_ip_or_call;
auprobe->ops = &default_xol_ops;
return 0;
}
/*
* arch_uprobe_pre_xol - prepare to execute out of line.
* @auprobe: the probepoint information.
* @regs: reflects the saved user state of current task.
*/
int arch_uprobe_pre_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
{
struct uprobe_task *utask = current->utask;
if (auprobe->ops->pre_xol) {
int err = auprobe->ops->pre_xol(auprobe, regs);
if (err)
return err;
}
regs->ip = utask->xol_vaddr;
utask->autask.saved_trap_nr = current->thread.trap_nr;
current->thread.trap_nr = UPROBE_TRAP_NR;
utask->autask.saved_tf = !!(regs->flags & X86_EFLAGS_TF);
regs->flags |= X86_EFLAGS_TF;
if (test_tsk_thread_flag(current, TIF_BLOCKSTEP))
set_task_blockstep(current, false);
return 0;
}
/*
* If xol insn itself traps and generates a signal(Say,
* SIGILL/SIGSEGV/etc), then detect the case where a singlestepped
* instruction jumps back to its own address. It is assumed that anything
* like do_page_fault/do_trap/etc sets thread.trap_nr != -1.
*
* arch_uprobe_pre_xol/arch_uprobe_post_xol save/restore thread.trap_nr,
* arch_uprobe_xol_was_trapped() simply checks that ->trap_nr is not equal to
* UPROBE_TRAP_NR == -1 set by arch_uprobe_pre_xol().
*/
bool arch_uprobe_xol_was_trapped(struct task_struct *t)
{
if (t->thread.trap_nr != UPROBE_TRAP_NR)
return true;
return false;
}
/*
* Called after single-stepping. To avoid the SMP problems that can
* occur when we temporarily put back the original opcode to
* single-step, we single-stepped a copy of the instruction.
*
* This function prepares to resume execution after the single-step.
*/
int arch_uprobe_post_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
{
struct uprobe_task *utask = current->utask;
bool send_sigtrap = utask->autask.saved_tf;
int err = 0;
WARN_ON_ONCE(current->thread.trap_nr != UPROBE_TRAP_NR);
current->thread.trap_nr = utask->autask.saved_trap_nr;
if (auprobe->ops->post_xol) {
err = auprobe->ops->post_xol(auprobe, regs);
if (err) {
/*
* Restore ->ip for restart or post mortem analysis.
* ->post_xol() must not return -ERESTART unless this
* is really possible.
*/
regs->ip = utask->vaddr;
if (err == -ERESTART)
err = 0;
send_sigtrap = false;
}
}
/*
* arch_uprobe_pre_xol() doesn't save the state of TIF_BLOCKSTEP
* so we can get an extra SIGTRAP if we do not clear TF. We need
* to examine the opcode to make it right.
*/
if (send_sigtrap)
send_sig(SIGTRAP, current, 0);
if (!utask->autask.saved_tf)
regs->flags &= ~X86_EFLAGS_TF;
return err;
}
/* callback routine for handling exceptions. */
int arch_uprobe_exception_notify(struct notifier_block *self, unsigned long val, void *data)
{
struct die_args *args = data;
struct pt_regs *regs = args->regs;
int ret = NOTIFY_DONE;
/* We are only interested in userspace traps */
if (regs && !user_mode_vm(regs))
return NOTIFY_DONE;
switch (val) {
case DIE_INT3:
if (uprobe_pre_sstep_notifier(regs))
ret = NOTIFY_STOP;
break;
case DIE_DEBUG:
if (uprobe_post_sstep_notifier(regs))
ret = NOTIFY_STOP;
default:
break;
}
return ret;
}
/*
* This function gets called when XOL instruction either gets trapped or
* the thread has a fatal signal. Reset the instruction pointer to its
* probed address for the potential restart or for post mortem analysis.
*/
void arch_uprobe_abort_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
{
struct uprobe_task *utask = current->utask;
if (auprobe->ops->abort)
auprobe->ops->abort(auprobe, regs);
current->thread.trap_nr = utask->autask.saved_trap_nr;
regs->ip = utask->vaddr;
/* clear TF if it was set by us in arch_uprobe_pre_xol() */
if (!utask->autask.saved_tf)
regs->flags &= ~X86_EFLAGS_TF;
}
static bool __skip_sstep(struct arch_uprobe *auprobe, struct pt_regs *regs)
{
if (auprobe->ops->emulate)
return auprobe->ops->emulate(auprobe, regs);
return false;
}
bool arch_uprobe_skip_sstep(struct arch_uprobe *auprobe, struct pt_regs *regs)
{
bool ret = __skip_sstep(auprobe, regs);
if (ret && (regs->flags & X86_EFLAGS_TF))
send_sig(SIGTRAP, current, 0);
return ret;
}
unsigned long
arch_uretprobe_hijack_return_addr(unsigned long trampoline_vaddr, struct pt_regs *regs)
{
int rasize = sizeof_long(), nleft;
unsigned long orig_ret_vaddr = 0; /* clear high bits for 32-bit apps */
if (copy_from_user(&orig_ret_vaddr, (void __user *)regs->sp, rasize))
return -1;
/* check whether address has been already hijacked */
if (orig_ret_vaddr == trampoline_vaddr)
return orig_ret_vaddr;
nleft = copy_to_user((void __user *)regs->sp, &trampoline_vaddr, rasize);
if (likely(!nleft))
return orig_ret_vaddr;
if (nleft != rasize) {
pr_err("uprobe: return address clobbered: pid=%d, %%sp=%#lx, "
"%%ip=%#lx\n", current->pid, regs->sp, regs->ip);
force_sig_info(SIGSEGV, SEND_SIG_FORCED, current);
}
return -1;
}