linux/mm/page_io.c
Barry Song f238b8c33c arm64: mm: swap: support THP_SWAP on hardware with MTE
Commit d0637c505f ("arm64: enable THP_SWAP for arm64") brings up
THP_SWAP on ARM64, but it doesn't enable THP_SWP on hardware with MTE as
the MTE code works with the assumption tags save/restore is always
handling a folio with only one page.

The limitation should be removed as more and more ARM64 SoCs have this
feature.  Co-existence of MTE and THP_SWAP becomes more and more
important.

This patch makes MTE tags saving support large folios, then we don't need
to split large folios into base pages for swapping out on ARM64 SoCs with
MTE any more.

arch_prepare_to_swap() should take folio rather than page as parameter
because we support THP swap-out as a whole.  It saves tags for all pages
in a large folio.

As now we are restoring tags based-on folio, in arch_swap_restore(), we
may increase some extra loops and early-exitings while refaulting a large
folio which is still in swapcache in do_swap_page().  In case a large
folio has nr pages, do_swap_page() will only set the PTE of the particular
page which is causing the page fault.  Thus do_swap_page() runs nr times,
and each time, arch_swap_restore() will loop nr times for those subpages
in the folio.  So right now the algorithmic complexity becomes O(nr^2).

Once we support mapping large folios in do_swap_page(), extra loops and
early-exitings will decrease while not being completely removed as a large
folio might get partially tagged in corner cases such as, 1.  a large
folio in swapcache can be partially unmapped, thus, MTE tags for the
unmapped pages will be invalidated; 2.  users might use mprotect() to set
MTEs on a part of a large folio.

arch_thp_swp_supported() is dropped since ARM64 MTE was the only one who
needed it.

Link: https://lkml.kernel.org/r/20240322114136.61386-2-21cnbao@gmail.com
Signed-off-by: Barry Song <v-songbaohua@oppo.com>
Reviewed-by: Steven Price <steven.price@arm.com>
Acked-by: Chris Li <chrisl@kernel.org>
Reviewed-by: Ryan Roberts <ryan.roberts@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Kemeng Shi <shikemeng@huaweicloud.com>
Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Peter Collingbourne <pcc@google.com>
Cc: Yosry Ahmed <yosryahmed@google.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Lorenzo Stoakes <lstoakes@gmail.com>
Cc: "Mike Rapoport (IBM)" <rppt@kernel.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.ibm.com>
Cc: Rick Edgecombe <rick.p.edgecombe@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-04-25 20:56:07 -07:00

547 lines
14 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* linux/mm/page_io.c
*
* Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
*
* Swap reorganised 29.12.95,
* Asynchronous swapping added 30.12.95. Stephen Tweedie
* Removed race in async swapping. 14.4.1996. Bruno Haible
* Add swap of shared pages through the page cache. 20.2.1998. Stephen Tweedie
* Always use brw_page, life becomes simpler. 12 May 1998 Eric Biederman
*/
#include <linux/mm.h>
#include <linux/kernel_stat.h>
#include <linux/gfp.h>
#include <linux/pagemap.h>
#include <linux/swap.h>
#include <linux/bio.h>
#include <linux/swapops.h>
#include <linux/writeback.h>
#include <linux/blkdev.h>
#include <linux/psi.h>
#include <linux/uio.h>
#include <linux/sched/task.h>
#include <linux/delayacct.h>
#include <linux/zswap.h>
#include "swap.h"
static void __end_swap_bio_write(struct bio *bio)
{
struct folio *folio = bio_first_folio_all(bio);
if (bio->bi_status) {
/*
* We failed to write the page out to swap-space.
* Re-dirty the page in order to avoid it being reclaimed.
* Also print a dire warning that things will go BAD (tm)
* very quickly.
*
* Also clear PG_reclaim to avoid folio_rotate_reclaimable()
*/
folio_mark_dirty(folio);
pr_alert_ratelimited("Write-error on swap-device (%u:%u:%llu)\n",
MAJOR(bio_dev(bio)), MINOR(bio_dev(bio)),
(unsigned long long)bio->bi_iter.bi_sector);
folio_clear_reclaim(folio);
}
folio_end_writeback(folio);
}
static void end_swap_bio_write(struct bio *bio)
{
__end_swap_bio_write(bio);
bio_put(bio);
}
static void __end_swap_bio_read(struct bio *bio)
{
struct folio *folio = bio_first_folio_all(bio);
if (bio->bi_status) {
pr_alert_ratelimited("Read-error on swap-device (%u:%u:%llu)\n",
MAJOR(bio_dev(bio)), MINOR(bio_dev(bio)),
(unsigned long long)bio->bi_iter.bi_sector);
} else {
folio_mark_uptodate(folio);
}
folio_unlock(folio);
}
static void end_swap_bio_read(struct bio *bio)
{
__end_swap_bio_read(bio);
bio_put(bio);
}
int generic_swapfile_activate(struct swap_info_struct *sis,
struct file *swap_file,
sector_t *span)
{
struct address_space *mapping = swap_file->f_mapping;
struct inode *inode = mapping->host;
unsigned blocks_per_page;
unsigned long page_no;
unsigned blkbits;
sector_t probe_block;
sector_t last_block;
sector_t lowest_block = -1;
sector_t highest_block = 0;
int nr_extents = 0;
int ret;
blkbits = inode->i_blkbits;
blocks_per_page = PAGE_SIZE >> blkbits;
/*
* Map all the blocks into the extent tree. This code doesn't try
* to be very smart.
*/
probe_block = 0;
page_no = 0;
last_block = i_size_read(inode) >> blkbits;
while ((probe_block + blocks_per_page) <= last_block &&
page_no < sis->max) {
unsigned block_in_page;
sector_t first_block;
cond_resched();
first_block = probe_block;
ret = bmap(inode, &first_block);
if (ret || !first_block)
goto bad_bmap;
/*
* It must be PAGE_SIZE aligned on-disk
*/
if (first_block & (blocks_per_page - 1)) {
probe_block++;
goto reprobe;
}
for (block_in_page = 1; block_in_page < blocks_per_page;
block_in_page++) {
sector_t block;
block = probe_block + block_in_page;
ret = bmap(inode, &block);
if (ret || !block)
goto bad_bmap;
if (block != first_block + block_in_page) {
/* Discontiguity */
probe_block++;
goto reprobe;
}
}
first_block >>= (PAGE_SHIFT - blkbits);
if (page_no) { /* exclude the header page */
if (first_block < lowest_block)
lowest_block = first_block;
if (first_block > highest_block)
highest_block = first_block;
}
/*
* We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
*/
ret = add_swap_extent(sis, page_no, 1, first_block);
if (ret < 0)
goto out;
nr_extents += ret;
page_no++;
probe_block += blocks_per_page;
reprobe:
continue;
}
ret = nr_extents;
*span = 1 + highest_block - lowest_block;
if (page_no == 0)
page_no = 1; /* force Empty message */
sis->max = page_no;
sis->pages = page_no - 1;
sis->highest_bit = page_no - 1;
out:
return ret;
bad_bmap:
pr_err("swapon: swapfile has holes\n");
ret = -EINVAL;
goto out;
}
/*
* We may have stale swap cache pages in memory: notice
* them here and get rid of the unnecessary final write.
*/
int swap_writepage(struct page *page, struct writeback_control *wbc)
{
struct folio *folio = page_folio(page);
int ret;
if (folio_free_swap(folio)) {
folio_unlock(folio);
return 0;
}
/*
* Arch code may have to preserve more data than just the page
* contents, e.g. memory tags.
*/
ret = arch_prepare_to_swap(folio);
if (ret) {
folio_mark_dirty(folio);
folio_unlock(folio);
return ret;
}
if (zswap_store(folio)) {
folio_start_writeback(folio);
folio_unlock(folio);
folio_end_writeback(folio);
return 0;
}
if (!mem_cgroup_zswap_writeback_enabled(folio_memcg(folio))) {
folio_mark_dirty(folio);
return AOP_WRITEPAGE_ACTIVATE;
}
__swap_writepage(folio, wbc);
return 0;
}
static inline void count_swpout_vm_event(struct folio *folio)
{
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
if (unlikely(folio_test_pmd_mappable(folio))) {
count_memcg_folio_events(folio, THP_SWPOUT, 1);
count_vm_event(THP_SWPOUT);
}
#endif
count_vm_events(PSWPOUT, folio_nr_pages(folio));
}
#if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP)
static void bio_associate_blkg_from_page(struct bio *bio, struct folio *folio)
{
struct cgroup_subsys_state *css;
struct mem_cgroup *memcg;
memcg = folio_memcg(folio);
if (!memcg)
return;
rcu_read_lock();
css = cgroup_e_css(memcg->css.cgroup, &io_cgrp_subsys);
bio_associate_blkg_from_css(bio, css);
rcu_read_unlock();
}
#else
#define bio_associate_blkg_from_page(bio, folio) do { } while (0)
#endif /* CONFIG_MEMCG && CONFIG_BLK_CGROUP */
struct swap_iocb {
struct kiocb iocb;
struct bio_vec bvec[SWAP_CLUSTER_MAX];
int pages;
int len;
};
static mempool_t *sio_pool;
int sio_pool_init(void)
{
if (!sio_pool) {
mempool_t *pool = mempool_create_kmalloc_pool(
SWAP_CLUSTER_MAX, sizeof(struct swap_iocb));
if (cmpxchg(&sio_pool, NULL, pool))
mempool_destroy(pool);
}
if (!sio_pool)
return -ENOMEM;
return 0;
}
static void sio_write_complete(struct kiocb *iocb, long ret)
{
struct swap_iocb *sio = container_of(iocb, struct swap_iocb, iocb);
struct page *page = sio->bvec[0].bv_page;
int p;
if (ret != sio->len) {
/*
* In the case of swap-over-nfs, this can be a
* temporary failure if the system has limited
* memory for allocating transmit buffers.
* Mark the page dirty and avoid
* folio_rotate_reclaimable but rate-limit the
* messages but do not flag PageError like
* the normal direct-to-bio case as it could
* be temporary.
*/
pr_err_ratelimited("Write error %ld on dio swapfile (%llu)\n",
ret, page_file_offset(page));
for (p = 0; p < sio->pages; p++) {
page = sio->bvec[p].bv_page;
set_page_dirty(page);
ClearPageReclaim(page);
}
}
for (p = 0; p < sio->pages; p++)
end_page_writeback(sio->bvec[p].bv_page);
mempool_free(sio, sio_pool);
}
static void swap_writepage_fs(struct folio *folio, struct writeback_control *wbc)
{
struct swap_iocb *sio = NULL;
struct swap_info_struct *sis = swp_swap_info(folio->swap);
struct file *swap_file = sis->swap_file;
loff_t pos = folio_file_pos(folio);
count_swpout_vm_event(folio);
folio_start_writeback(folio);
folio_unlock(folio);
if (wbc->swap_plug)
sio = *wbc->swap_plug;
if (sio) {
if (sio->iocb.ki_filp != swap_file ||
sio->iocb.ki_pos + sio->len != pos) {
swap_write_unplug(sio);
sio = NULL;
}
}
if (!sio) {
sio = mempool_alloc(sio_pool, GFP_NOIO);
init_sync_kiocb(&sio->iocb, swap_file);
sio->iocb.ki_complete = sio_write_complete;
sio->iocb.ki_pos = pos;
sio->pages = 0;
sio->len = 0;
}
bvec_set_folio(&sio->bvec[sio->pages], folio, folio_size(folio), 0);
sio->len += folio_size(folio);
sio->pages += 1;
if (sio->pages == ARRAY_SIZE(sio->bvec) || !wbc->swap_plug) {
swap_write_unplug(sio);
sio = NULL;
}
if (wbc->swap_plug)
*wbc->swap_plug = sio;
}
static void swap_writepage_bdev_sync(struct folio *folio,
struct writeback_control *wbc, struct swap_info_struct *sis)
{
struct bio_vec bv;
struct bio bio;
bio_init(&bio, sis->bdev, &bv, 1,
REQ_OP_WRITE | REQ_SWAP | wbc_to_write_flags(wbc));
bio.bi_iter.bi_sector = swap_folio_sector(folio);
bio_add_folio_nofail(&bio, folio, folio_size(folio), 0);
bio_associate_blkg_from_page(&bio, folio);
count_swpout_vm_event(folio);
folio_start_writeback(folio);
folio_unlock(folio);
submit_bio_wait(&bio);
__end_swap_bio_write(&bio);
}
static void swap_writepage_bdev_async(struct folio *folio,
struct writeback_control *wbc, struct swap_info_struct *sis)
{
struct bio *bio;
bio = bio_alloc(sis->bdev, 1,
REQ_OP_WRITE | REQ_SWAP | wbc_to_write_flags(wbc),
GFP_NOIO);
bio->bi_iter.bi_sector = swap_folio_sector(folio);
bio->bi_end_io = end_swap_bio_write;
bio_add_folio_nofail(bio, folio, folio_size(folio), 0);
bio_associate_blkg_from_page(bio, folio);
count_swpout_vm_event(folio);
folio_start_writeback(folio);
folio_unlock(folio);
submit_bio(bio);
}
void __swap_writepage(struct folio *folio, struct writeback_control *wbc)
{
struct swap_info_struct *sis = swp_swap_info(folio->swap);
VM_BUG_ON_FOLIO(!folio_test_swapcache(folio), folio);
/*
* ->flags can be updated non-atomicially (scan_swap_map_slots),
* but that will never affect SWP_FS_OPS, so the data_race
* is safe.
*/
if (data_race(sis->flags & SWP_FS_OPS))
swap_writepage_fs(folio, wbc);
else if (sis->flags & SWP_SYNCHRONOUS_IO)
swap_writepage_bdev_sync(folio, wbc, sis);
else
swap_writepage_bdev_async(folio, wbc, sis);
}
void swap_write_unplug(struct swap_iocb *sio)
{
struct iov_iter from;
struct address_space *mapping = sio->iocb.ki_filp->f_mapping;
int ret;
iov_iter_bvec(&from, ITER_SOURCE, sio->bvec, sio->pages, sio->len);
ret = mapping->a_ops->swap_rw(&sio->iocb, &from);
if (ret != -EIOCBQUEUED)
sio_write_complete(&sio->iocb, ret);
}
static void sio_read_complete(struct kiocb *iocb, long ret)
{
struct swap_iocb *sio = container_of(iocb, struct swap_iocb, iocb);
int p;
if (ret == sio->len) {
for (p = 0; p < sio->pages; p++) {
struct folio *folio = page_folio(sio->bvec[p].bv_page);
folio_mark_uptodate(folio);
folio_unlock(folio);
}
count_vm_events(PSWPIN, sio->pages);
} else {
for (p = 0; p < sio->pages; p++) {
struct folio *folio = page_folio(sio->bvec[p].bv_page);
folio_unlock(folio);
}
pr_alert_ratelimited("Read-error on swap-device\n");
}
mempool_free(sio, sio_pool);
}
static void swap_read_folio_fs(struct folio *folio, struct swap_iocb **plug)
{
struct swap_info_struct *sis = swp_swap_info(folio->swap);
struct swap_iocb *sio = NULL;
loff_t pos = folio_file_pos(folio);
if (plug)
sio = *plug;
if (sio) {
if (sio->iocb.ki_filp != sis->swap_file ||
sio->iocb.ki_pos + sio->len != pos) {
swap_read_unplug(sio);
sio = NULL;
}
}
if (!sio) {
sio = mempool_alloc(sio_pool, GFP_KERNEL);
init_sync_kiocb(&sio->iocb, sis->swap_file);
sio->iocb.ki_pos = pos;
sio->iocb.ki_complete = sio_read_complete;
sio->pages = 0;
sio->len = 0;
}
bvec_set_folio(&sio->bvec[sio->pages], folio, folio_size(folio), 0);
sio->len += folio_size(folio);
sio->pages += 1;
if (sio->pages == ARRAY_SIZE(sio->bvec) || !plug) {
swap_read_unplug(sio);
sio = NULL;
}
if (plug)
*plug = sio;
}
static void swap_read_folio_bdev_sync(struct folio *folio,
struct swap_info_struct *sis)
{
struct bio_vec bv;
struct bio bio;
bio_init(&bio, sis->bdev, &bv, 1, REQ_OP_READ);
bio.bi_iter.bi_sector = swap_folio_sector(folio);
bio_add_folio_nofail(&bio, folio, folio_size(folio), 0);
/*
* Keep this task valid during swap readpage because the oom killer may
* attempt to access it in the page fault retry time check.
*/
get_task_struct(current);
count_vm_event(PSWPIN);
submit_bio_wait(&bio);
__end_swap_bio_read(&bio);
put_task_struct(current);
}
static void swap_read_folio_bdev_async(struct folio *folio,
struct swap_info_struct *sis)
{
struct bio *bio;
bio = bio_alloc(sis->bdev, 1, REQ_OP_READ, GFP_KERNEL);
bio->bi_iter.bi_sector = swap_folio_sector(folio);
bio->bi_end_io = end_swap_bio_read;
bio_add_folio_nofail(bio, folio, folio_size(folio), 0);
count_vm_event(PSWPIN);
submit_bio(bio);
}
void swap_read_folio(struct folio *folio, bool synchronous,
struct swap_iocb **plug)
{
struct swap_info_struct *sis = swp_swap_info(folio->swap);
bool workingset = folio_test_workingset(folio);
unsigned long pflags;
bool in_thrashing;
VM_BUG_ON_FOLIO(!folio_test_swapcache(folio) && !synchronous, folio);
VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
VM_BUG_ON_FOLIO(folio_test_uptodate(folio), folio);
/*
* Count submission time as memory stall and delay. When the device
* is congested, or the submitting cgroup IO-throttled, submission
* can be a significant part of overall IO time.
*/
if (workingset) {
delayacct_thrashing_start(&in_thrashing);
psi_memstall_enter(&pflags);
}
delayacct_swapin_start();
if (zswap_load(folio)) {
folio_mark_uptodate(folio);
folio_unlock(folio);
} else if (data_race(sis->flags & SWP_FS_OPS)) {
swap_read_folio_fs(folio, plug);
} else if (synchronous || (sis->flags & SWP_SYNCHRONOUS_IO)) {
swap_read_folio_bdev_sync(folio, sis);
} else {
swap_read_folio_bdev_async(folio, sis);
}
if (workingset) {
delayacct_thrashing_end(&in_thrashing);
psi_memstall_leave(&pflags);
}
delayacct_swapin_end();
}
void __swap_read_unplug(struct swap_iocb *sio)
{
struct iov_iter from;
struct address_space *mapping = sio->iocb.ki_filp->f_mapping;
int ret;
iov_iter_bvec(&from, ITER_DEST, sio->bvec, sio->pages, sio->len);
ret = mapping->a_ops->swap_rw(&sio->iocb, &from);
if (ret != -EIOCBQUEUED)
sio_read_complete(&sio->iocb, ret);
}