linux/drivers/firewire/fw-ohci.c
Stefan Richter ccff962943 firewire: fw-ohci: use of uninitialized data in AR handler
header_length and payload_length are filled with random data if an
unknown tcode was read from the AR buffer (i.e. if the AR buffer
contained invalid data).

We still need a better strategy to recover from this, but at least
handle_ar_packet now doesn't return out of bound buffer addresses
anymore.

Signed-off-by: Stefan Richter <stefanr@s5r6.in-berlin.de>
2008-06-19 00:12:34 +02:00

2578 lines
71 KiB
C

/*
* Driver for OHCI 1394 controllers
*
* Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/
#include <linux/compiler.h>
#include <linux/delay.h>
#include <linux/dma-mapping.h>
#include <linux/gfp.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/pci.h>
#include <linux/spinlock.h>
#include <asm/page.h>
#include <asm/system.h>
#ifdef CONFIG_PPC_PMAC
#include <asm/pmac_feature.h>
#endif
#include "fw-ohci.h"
#include "fw-transaction.h"
#define DESCRIPTOR_OUTPUT_MORE 0
#define DESCRIPTOR_OUTPUT_LAST (1 << 12)
#define DESCRIPTOR_INPUT_MORE (2 << 12)
#define DESCRIPTOR_INPUT_LAST (3 << 12)
#define DESCRIPTOR_STATUS (1 << 11)
#define DESCRIPTOR_KEY_IMMEDIATE (2 << 8)
#define DESCRIPTOR_PING (1 << 7)
#define DESCRIPTOR_YY (1 << 6)
#define DESCRIPTOR_NO_IRQ (0 << 4)
#define DESCRIPTOR_IRQ_ERROR (1 << 4)
#define DESCRIPTOR_IRQ_ALWAYS (3 << 4)
#define DESCRIPTOR_BRANCH_ALWAYS (3 << 2)
#define DESCRIPTOR_WAIT (3 << 0)
struct descriptor {
__le16 req_count;
__le16 control;
__le32 data_address;
__le32 branch_address;
__le16 res_count;
__le16 transfer_status;
} __attribute__((aligned(16)));
struct db_descriptor {
__le16 first_size;
__le16 control;
__le16 second_req_count;
__le16 first_req_count;
__le32 branch_address;
__le16 second_res_count;
__le16 first_res_count;
__le32 reserved0;
__le32 first_buffer;
__le32 second_buffer;
__le32 reserved1;
} __attribute__((aligned(16)));
#define CONTROL_SET(regs) (regs)
#define CONTROL_CLEAR(regs) ((regs) + 4)
#define COMMAND_PTR(regs) ((regs) + 12)
#define CONTEXT_MATCH(regs) ((regs) + 16)
struct ar_buffer {
struct descriptor descriptor;
struct ar_buffer *next;
__le32 data[0];
};
struct ar_context {
struct fw_ohci *ohci;
struct ar_buffer *current_buffer;
struct ar_buffer *last_buffer;
void *pointer;
u32 regs;
struct tasklet_struct tasklet;
};
struct context;
typedef int (*descriptor_callback_t)(struct context *ctx,
struct descriptor *d,
struct descriptor *last);
/*
* A buffer that contains a block of DMA-able coherent memory used for
* storing a portion of a DMA descriptor program.
*/
struct descriptor_buffer {
struct list_head list;
dma_addr_t buffer_bus;
size_t buffer_size;
size_t used;
struct descriptor buffer[0];
};
struct context {
struct fw_ohci *ohci;
u32 regs;
int total_allocation;
/*
* List of page-sized buffers for storing DMA descriptors.
* Head of list contains buffers in use and tail of list contains
* free buffers.
*/
struct list_head buffer_list;
/*
* Pointer to a buffer inside buffer_list that contains the tail
* end of the current DMA program.
*/
struct descriptor_buffer *buffer_tail;
/*
* The descriptor containing the branch address of the first
* descriptor that has not yet been filled by the device.
*/
struct descriptor *last;
/*
* The last descriptor in the DMA program. It contains the branch
* address that must be updated upon appending a new descriptor.
*/
struct descriptor *prev;
descriptor_callback_t callback;
struct tasklet_struct tasklet;
};
#define IT_HEADER_SY(v) ((v) << 0)
#define IT_HEADER_TCODE(v) ((v) << 4)
#define IT_HEADER_CHANNEL(v) ((v) << 8)
#define IT_HEADER_TAG(v) ((v) << 14)
#define IT_HEADER_SPEED(v) ((v) << 16)
#define IT_HEADER_DATA_LENGTH(v) ((v) << 16)
struct iso_context {
struct fw_iso_context base;
struct context context;
int excess_bytes;
void *header;
size_t header_length;
};
#define CONFIG_ROM_SIZE 1024
struct fw_ohci {
struct fw_card card;
u32 version;
__iomem char *registers;
dma_addr_t self_id_bus;
__le32 *self_id_cpu;
struct tasklet_struct bus_reset_tasklet;
int node_id;
int generation;
int request_generation; /* for timestamping incoming requests */
u32 bus_seconds;
bool old_uninorth;
bool bus_reset_packet_quirk;
/*
* Spinlock for accessing fw_ohci data. Never call out of
* this driver with this lock held.
*/
spinlock_t lock;
u32 self_id_buffer[512];
/* Config rom buffers */
__be32 *config_rom;
dma_addr_t config_rom_bus;
__be32 *next_config_rom;
dma_addr_t next_config_rom_bus;
u32 next_header;
struct ar_context ar_request_ctx;
struct ar_context ar_response_ctx;
struct context at_request_ctx;
struct context at_response_ctx;
u32 it_context_mask;
struct iso_context *it_context_list;
u32 ir_context_mask;
struct iso_context *ir_context_list;
};
static inline struct fw_ohci *fw_ohci(struct fw_card *card)
{
return container_of(card, struct fw_ohci, card);
}
#define IT_CONTEXT_CYCLE_MATCH_ENABLE 0x80000000
#define IR_CONTEXT_BUFFER_FILL 0x80000000
#define IR_CONTEXT_ISOCH_HEADER 0x40000000
#define IR_CONTEXT_CYCLE_MATCH_ENABLE 0x20000000
#define IR_CONTEXT_MULTI_CHANNEL_MODE 0x10000000
#define IR_CONTEXT_DUAL_BUFFER_MODE 0x08000000
#define CONTEXT_RUN 0x8000
#define CONTEXT_WAKE 0x1000
#define CONTEXT_DEAD 0x0800
#define CONTEXT_ACTIVE 0x0400
#define OHCI1394_MAX_AT_REQ_RETRIES 0x2
#define OHCI1394_MAX_AT_RESP_RETRIES 0x2
#define OHCI1394_MAX_PHYS_RESP_RETRIES 0x8
#define FW_OHCI_MAJOR 240
#define OHCI1394_REGISTER_SIZE 0x800
#define OHCI_LOOP_COUNT 500
#define OHCI1394_PCI_HCI_Control 0x40
#define SELF_ID_BUF_SIZE 0x800
#define OHCI_TCODE_PHY_PACKET 0x0e
#define OHCI_VERSION_1_1 0x010010
static char ohci_driver_name[] = KBUILD_MODNAME;
#ifdef CONFIG_FIREWIRE_OHCI_DEBUG
#define OHCI_PARAM_DEBUG_AT_AR 1
#define OHCI_PARAM_DEBUG_SELFIDS 2
#define OHCI_PARAM_DEBUG_IRQS 4
#define OHCI_PARAM_DEBUG_BUSRESETS 8 /* only effective before chip init */
static int param_debug;
module_param_named(debug, param_debug, int, 0644);
MODULE_PARM_DESC(debug, "Verbose logging (default = 0"
", AT/AR events = " __stringify(OHCI_PARAM_DEBUG_AT_AR)
", self-IDs = " __stringify(OHCI_PARAM_DEBUG_SELFIDS)
", IRQs = " __stringify(OHCI_PARAM_DEBUG_IRQS)
", busReset events = " __stringify(OHCI_PARAM_DEBUG_BUSRESETS)
", or a combination, or all = -1)");
static void log_irqs(u32 evt)
{
if (likely(!(param_debug &
(OHCI_PARAM_DEBUG_IRQS | OHCI_PARAM_DEBUG_BUSRESETS))))
return;
if (!(param_debug & OHCI_PARAM_DEBUG_IRQS) &&
!(evt & OHCI1394_busReset))
return;
printk(KERN_DEBUG KBUILD_MODNAME ": IRQ "
"%08x%s%s%s%s%s%s%s%s%s%s%s%s%s\n",
evt,
evt & OHCI1394_selfIDComplete ? " selfID" : "",
evt & OHCI1394_RQPkt ? " AR_req" : "",
evt & OHCI1394_RSPkt ? " AR_resp" : "",
evt & OHCI1394_reqTxComplete ? " AT_req" : "",
evt & OHCI1394_respTxComplete ? " AT_resp" : "",
evt & OHCI1394_isochRx ? " IR" : "",
evt & OHCI1394_isochTx ? " IT" : "",
evt & OHCI1394_postedWriteErr ? " postedWriteErr" : "",
evt & OHCI1394_cycleTooLong ? " cycleTooLong" : "",
evt & OHCI1394_cycle64Seconds ? " cycle64Seconds" : "",
evt & OHCI1394_regAccessFail ? " regAccessFail" : "",
evt & OHCI1394_busReset ? " busReset" : "",
evt & ~(OHCI1394_selfIDComplete | OHCI1394_RQPkt |
OHCI1394_RSPkt | OHCI1394_reqTxComplete |
OHCI1394_respTxComplete | OHCI1394_isochRx |
OHCI1394_isochTx | OHCI1394_postedWriteErr |
OHCI1394_cycleTooLong | OHCI1394_cycle64Seconds |
OHCI1394_regAccessFail | OHCI1394_busReset)
? " ?" : "");
}
static const char *speed[] = {
[0] = "S100", [1] = "S200", [2] = "S400", [3] = "beta",
};
static const char *power[] = {
[0] = "+0W", [1] = "+15W", [2] = "+30W", [3] = "+45W",
[4] = "-3W", [5] = " ?W", [6] = "-3..-6W", [7] = "-3..-10W",
};
static const char port[] = { '.', '-', 'p', 'c', };
static char _p(u32 *s, int shift)
{
return port[*s >> shift & 3];
}
static void log_selfids(int node_id, int generation, int self_id_count, u32 *s)
{
if (likely(!(param_debug & OHCI_PARAM_DEBUG_SELFIDS)))
return;
printk(KERN_DEBUG KBUILD_MODNAME ": %d selfIDs, generation %d, "
"local node ID %04x\n", self_id_count, generation, node_id);
for (; self_id_count--; ++s)
if ((*s & 1 << 23) == 0)
printk(KERN_DEBUG "selfID 0: %08x, phy %d [%c%c%c] "
"%s gc=%d %s %s%s%s\n",
*s, *s >> 24 & 63, _p(s, 6), _p(s, 4), _p(s, 2),
speed[*s >> 14 & 3], *s >> 16 & 63,
power[*s >> 8 & 7], *s >> 22 & 1 ? "L" : "",
*s >> 11 & 1 ? "c" : "", *s & 2 ? "i" : "");
else
printk(KERN_DEBUG "selfID n: %08x, phy %d "
"[%c%c%c%c%c%c%c%c]\n",
*s, *s >> 24 & 63,
_p(s, 16), _p(s, 14), _p(s, 12), _p(s, 10),
_p(s, 8), _p(s, 6), _p(s, 4), _p(s, 2));
}
static const char *evts[] = {
[0x00] = "evt_no_status", [0x01] = "-reserved-",
[0x02] = "evt_long_packet", [0x03] = "evt_missing_ack",
[0x04] = "evt_underrun", [0x05] = "evt_overrun",
[0x06] = "evt_descriptor_read", [0x07] = "evt_data_read",
[0x08] = "evt_data_write", [0x09] = "evt_bus_reset",
[0x0a] = "evt_timeout", [0x0b] = "evt_tcode_err",
[0x0c] = "-reserved-", [0x0d] = "-reserved-",
[0x0e] = "evt_unknown", [0x0f] = "evt_flushed",
[0x10] = "-reserved-", [0x11] = "ack_complete",
[0x12] = "ack_pending ", [0x13] = "-reserved-",
[0x14] = "ack_busy_X", [0x15] = "ack_busy_A",
[0x16] = "ack_busy_B", [0x17] = "-reserved-",
[0x18] = "-reserved-", [0x19] = "-reserved-",
[0x1a] = "-reserved-", [0x1b] = "ack_tardy",
[0x1c] = "-reserved-", [0x1d] = "ack_data_error",
[0x1e] = "ack_type_error", [0x1f] = "-reserved-",
[0x20] = "pending/cancelled",
};
static const char *tcodes[] = {
[0x0] = "QW req", [0x1] = "BW req",
[0x2] = "W resp", [0x3] = "-reserved-",
[0x4] = "QR req", [0x5] = "BR req",
[0x6] = "QR resp", [0x7] = "BR resp",
[0x8] = "cycle start", [0x9] = "Lk req",
[0xa] = "async stream packet", [0xb] = "Lk resp",
[0xc] = "-reserved-", [0xd] = "-reserved-",
[0xe] = "link internal", [0xf] = "-reserved-",
};
static const char *phys[] = {
[0x0] = "phy config packet", [0x1] = "link-on packet",
[0x2] = "self-id packet", [0x3] = "-reserved-",
};
static void log_ar_at_event(char dir, int speed, u32 *header, int evt)
{
int tcode = header[0] >> 4 & 0xf;
char specific[12];
if (likely(!(param_debug & OHCI_PARAM_DEBUG_AT_AR)))
return;
if (unlikely(evt >= ARRAY_SIZE(evts)))
evt = 0x1f;
if (evt == OHCI1394_evt_bus_reset) {
printk(KERN_DEBUG "A%c evt_bus_reset, generation %d\n",
dir, (header[2] >> 16) & 0xff);
return;
}
if (header[0] == ~header[1]) {
printk(KERN_DEBUG "A%c %s, %s, %08x\n",
dir, evts[evt], phys[header[0] >> 30 & 0x3],
header[0]);
return;
}
switch (tcode) {
case 0x0: case 0x6: case 0x8:
snprintf(specific, sizeof(specific), " = %08x",
be32_to_cpu((__force __be32)header[3]));
break;
case 0x1: case 0x5: case 0x7: case 0x9: case 0xb:
snprintf(specific, sizeof(specific), " %x,%x",
header[3] >> 16, header[3] & 0xffff);
break;
default:
specific[0] = '\0';
}
switch (tcode) {
case 0xe: case 0xa:
printk(KERN_DEBUG "A%c %s, %s\n",
dir, evts[evt], tcodes[tcode]);
break;
case 0x0: case 0x1: case 0x4: case 0x5: case 0x9:
printk(KERN_DEBUG "A%c spd %x tl %02x, "
"%04x -> %04x, %s, "
"%s, %04x%08x%s\n",
dir, speed, header[0] >> 10 & 0x3f,
header[1] >> 16, header[0] >> 16, evts[evt],
tcodes[tcode], header[1] & 0xffff, header[2], specific);
break;
default:
printk(KERN_DEBUG "A%c spd %x tl %02x, "
"%04x -> %04x, %s, "
"%s%s\n",
dir, speed, header[0] >> 10 & 0x3f,
header[1] >> 16, header[0] >> 16, evts[evt],
tcodes[tcode], specific);
}
}
#else
#define log_irqs(evt)
#define log_selfids(node_id, generation, self_id_count, sid)
#define log_ar_at_event(dir, speed, header, evt)
#endif /* CONFIG_FIREWIRE_OHCI_DEBUG */
static inline void reg_write(const struct fw_ohci *ohci, int offset, u32 data)
{
writel(data, ohci->registers + offset);
}
static inline u32 reg_read(const struct fw_ohci *ohci, int offset)
{
return readl(ohci->registers + offset);
}
static inline void flush_writes(const struct fw_ohci *ohci)
{
/* Do a dummy read to flush writes. */
reg_read(ohci, OHCI1394_Version);
}
static int
ohci_update_phy_reg(struct fw_card *card, int addr,
int clear_bits, int set_bits)
{
struct fw_ohci *ohci = fw_ohci(card);
u32 val, old;
reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Read(addr));
flush_writes(ohci);
msleep(2);
val = reg_read(ohci, OHCI1394_PhyControl);
if ((val & OHCI1394_PhyControl_ReadDone) == 0) {
fw_error("failed to set phy reg bits.\n");
return -EBUSY;
}
old = OHCI1394_PhyControl_ReadData(val);
old = (old & ~clear_bits) | set_bits;
reg_write(ohci, OHCI1394_PhyControl,
OHCI1394_PhyControl_Write(addr, old));
return 0;
}
static int ar_context_add_page(struct ar_context *ctx)
{
struct device *dev = ctx->ohci->card.device;
struct ar_buffer *ab;
dma_addr_t uninitialized_var(ab_bus);
size_t offset;
ab = dma_alloc_coherent(dev, PAGE_SIZE, &ab_bus, GFP_ATOMIC);
if (ab == NULL)
return -ENOMEM;
memset(&ab->descriptor, 0, sizeof(ab->descriptor));
ab->descriptor.control = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
DESCRIPTOR_STATUS |
DESCRIPTOR_BRANCH_ALWAYS);
offset = offsetof(struct ar_buffer, data);
ab->descriptor.req_count = cpu_to_le16(PAGE_SIZE - offset);
ab->descriptor.data_address = cpu_to_le32(ab_bus + offset);
ab->descriptor.res_count = cpu_to_le16(PAGE_SIZE - offset);
ab->descriptor.branch_address = 0;
ctx->last_buffer->descriptor.branch_address = cpu_to_le32(ab_bus | 1);
ctx->last_buffer->next = ab;
ctx->last_buffer = ab;
reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
flush_writes(ctx->ohci);
return 0;
}
#if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
#define cond_le32_to_cpu(v) \
(ohci->old_uninorth ? (__force __u32)(v) : le32_to_cpu(v))
#else
#define cond_le32_to_cpu(v) le32_to_cpu(v)
#endif
static __le32 *handle_ar_packet(struct ar_context *ctx, __le32 *buffer)
{
struct fw_ohci *ohci = ctx->ohci;
struct fw_packet p;
u32 status, length, tcode;
int evt;
p.header[0] = cond_le32_to_cpu(buffer[0]);
p.header[1] = cond_le32_to_cpu(buffer[1]);
p.header[2] = cond_le32_to_cpu(buffer[2]);
tcode = (p.header[0] >> 4) & 0x0f;
switch (tcode) {
case TCODE_WRITE_QUADLET_REQUEST:
case TCODE_READ_QUADLET_RESPONSE:
p.header[3] = (__force __u32) buffer[3];
p.header_length = 16;
p.payload_length = 0;
break;
case TCODE_READ_BLOCK_REQUEST :
p.header[3] = cond_le32_to_cpu(buffer[3]);
p.header_length = 16;
p.payload_length = 0;
break;
case TCODE_WRITE_BLOCK_REQUEST:
case TCODE_READ_BLOCK_RESPONSE:
case TCODE_LOCK_REQUEST:
case TCODE_LOCK_RESPONSE:
p.header[3] = cond_le32_to_cpu(buffer[3]);
p.header_length = 16;
p.payload_length = p.header[3] >> 16;
break;
case TCODE_WRITE_RESPONSE:
case TCODE_READ_QUADLET_REQUEST:
case OHCI_TCODE_PHY_PACKET:
p.header_length = 12;
p.payload_length = 0;
break;
default:
/* FIXME: Stop context, discard everything, and restart? */
p.header_length = 0;
p.payload_length = 0;
}
p.payload = (void *) buffer + p.header_length;
/* FIXME: What to do about evt_* errors? */
length = (p.header_length + p.payload_length + 3) / 4;
status = cond_le32_to_cpu(buffer[length]);
evt = (status >> 16) & 0x1f;
p.ack = evt - 16;
p.speed = (status >> 21) & 0x7;
p.timestamp = status & 0xffff;
p.generation = ohci->request_generation;
log_ar_at_event('R', p.speed, p.header, evt);
/*
* The OHCI bus reset handler synthesizes a phy packet with
* the new generation number when a bus reset happens (see
* section 8.4.2.3). This helps us determine when a request
* was received and make sure we send the response in the same
* generation. We only need this for requests; for responses
* we use the unique tlabel for finding the matching
* request.
*
* Alas some chips sometimes emit bus reset packets with a
* wrong generation. We set the correct generation for these
* at a slightly incorrect time (in bus_reset_tasklet).
*/
if (evt == OHCI1394_evt_bus_reset) {
if (!ohci->bus_reset_packet_quirk)
ohci->request_generation = (p.header[2] >> 16) & 0xff;
} else if (ctx == &ohci->ar_request_ctx) {
fw_core_handle_request(&ohci->card, &p);
} else {
fw_core_handle_response(&ohci->card, &p);
}
return buffer + length + 1;
}
static void ar_context_tasklet(unsigned long data)
{
struct ar_context *ctx = (struct ar_context *)data;
struct fw_ohci *ohci = ctx->ohci;
struct ar_buffer *ab;
struct descriptor *d;
void *buffer, *end;
ab = ctx->current_buffer;
d = &ab->descriptor;
if (d->res_count == 0) {
size_t size, rest, offset;
dma_addr_t start_bus;
void *start;
/*
* This descriptor is finished and we may have a
* packet split across this and the next buffer. We
* reuse the page for reassembling the split packet.
*/
offset = offsetof(struct ar_buffer, data);
start = buffer = ab;
start_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
ab = ab->next;
d = &ab->descriptor;
size = buffer + PAGE_SIZE - ctx->pointer;
rest = le16_to_cpu(d->req_count) - le16_to_cpu(d->res_count);
memmove(buffer, ctx->pointer, size);
memcpy(buffer + size, ab->data, rest);
ctx->current_buffer = ab;
ctx->pointer = (void *) ab->data + rest;
end = buffer + size + rest;
while (buffer < end)
buffer = handle_ar_packet(ctx, buffer);
dma_free_coherent(ohci->card.device, PAGE_SIZE,
start, start_bus);
ar_context_add_page(ctx);
} else {
buffer = ctx->pointer;
ctx->pointer = end =
(void *) ab + PAGE_SIZE - le16_to_cpu(d->res_count);
while (buffer < end)
buffer = handle_ar_packet(ctx, buffer);
}
}
static int
ar_context_init(struct ar_context *ctx, struct fw_ohci *ohci, u32 regs)
{
struct ar_buffer ab;
ctx->regs = regs;
ctx->ohci = ohci;
ctx->last_buffer = &ab;
tasklet_init(&ctx->tasklet, ar_context_tasklet, (unsigned long)ctx);
ar_context_add_page(ctx);
ar_context_add_page(ctx);
ctx->current_buffer = ab.next;
ctx->pointer = ctx->current_buffer->data;
return 0;
}
static void ar_context_run(struct ar_context *ctx)
{
struct ar_buffer *ab = ctx->current_buffer;
dma_addr_t ab_bus;
size_t offset;
offset = offsetof(struct ar_buffer, data);
ab_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
reg_write(ctx->ohci, COMMAND_PTR(ctx->regs), ab_bus | 1);
reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN);
flush_writes(ctx->ohci);
}
static struct descriptor *
find_branch_descriptor(struct descriptor *d, int z)
{
int b, key;
b = (le16_to_cpu(d->control) & DESCRIPTOR_BRANCH_ALWAYS) >> 2;
key = (le16_to_cpu(d->control) & DESCRIPTOR_KEY_IMMEDIATE) >> 8;
/* figure out which descriptor the branch address goes in */
if (z == 2 && (b == 3 || key == 2))
return d;
else
return d + z - 1;
}
static void context_tasklet(unsigned long data)
{
struct context *ctx = (struct context *) data;
struct descriptor *d, *last;
u32 address;
int z;
struct descriptor_buffer *desc;
desc = list_entry(ctx->buffer_list.next,
struct descriptor_buffer, list);
last = ctx->last;
while (last->branch_address != 0) {
struct descriptor_buffer *old_desc = desc;
address = le32_to_cpu(last->branch_address);
z = address & 0xf;
address &= ~0xf;
/* If the branch address points to a buffer outside of the
* current buffer, advance to the next buffer. */
if (address < desc->buffer_bus ||
address >= desc->buffer_bus + desc->used)
desc = list_entry(desc->list.next,
struct descriptor_buffer, list);
d = desc->buffer + (address - desc->buffer_bus) / sizeof(*d);
last = find_branch_descriptor(d, z);
if (!ctx->callback(ctx, d, last))
break;
if (old_desc != desc) {
/* If we've advanced to the next buffer, move the
* previous buffer to the free list. */
unsigned long flags;
old_desc->used = 0;
spin_lock_irqsave(&ctx->ohci->lock, flags);
list_move_tail(&old_desc->list, &ctx->buffer_list);
spin_unlock_irqrestore(&ctx->ohci->lock, flags);
}
ctx->last = last;
}
}
/*
* Allocate a new buffer and add it to the list of free buffers for this
* context. Must be called with ohci->lock held.
*/
static int
context_add_buffer(struct context *ctx)
{
struct descriptor_buffer *desc;
dma_addr_t uninitialized_var(bus_addr);
int offset;
/*
* 16MB of descriptors should be far more than enough for any DMA
* program. This will catch run-away userspace or DoS attacks.
*/
if (ctx->total_allocation >= 16*1024*1024)
return -ENOMEM;
desc = dma_alloc_coherent(ctx->ohci->card.device, PAGE_SIZE,
&bus_addr, GFP_ATOMIC);
if (!desc)
return -ENOMEM;
offset = (void *)&desc->buffer - (void *)desc;
desc->buffer_size = PAGE_SIZE - offset;
desc->buffer_bus = bus_addr + offset;
desc->used = 0;
list_add_tail(&desc->list, &ctx->buffer_list);
ctx->total_allocation += PAGE_SIZE;
return 0;
}
static int
context_init(struct context *ctx, struct fw_ohci *ohci,
u32 regs, descriptor_callback_t callback)
{
ctx->ohci = ohci;
ctx->regs = regs;
ctx->total_allocation = 0;
INIT_LIST_HEAD(&ctx->buffer_list);
if (context_add_buffer(ctx) < 0)
return -ENOMEM;
ctx->buffer_tail = list_entry(ctx->buffer_list.next,
struct descriptor_buffer, list);
tasklet_init(&ctx->tasklet, context_tasklet, (unsigned long)ctx);
ctx->callback = callback;
/*
* We put a dummy descriptor in the buffer that has a NULL
* branch address and looks like it's been sent. That way we
* have a descriptor to append DMA programs to.
*/
memset(ctx->buffer_tail->buffer, 0, sizeof(*ctx->buffer_tail->buffer));
ctx->buffer_tail->buffer->control = cpu_to_le16(DESCRIPTOR_OUTPUT_LAST);
ctx->buffer_tail->buffer->transfer_status = cpu_to_le16(0x8011);
ctx->buffer_tail->used += sizeof(*ctx->buffer_tail->buffer);
ctx->last = ctx->buffer_tail->buffer;
ctx->prev = ctx->buffer_tail->buffer;
return 0;
}
static void
context_release(struct context *ctx)
{
struct fw_card *card = &ctx->ohci->card;
struct descriptor_buffer *desc, *tmp;
list_for_each_entry_safe(desc, tmp, &ctx->buffer_list, list)
dma_free_coherent(card->device, PAGE_SIZE, desc,
desc->buffer_bus -
((void *)&desc->buffer - (void *)desc));
}
/* Must be called with ohci->lock held */
static struct descriptor *
context_get_descriptors(struct context *ctx, int z, dma_addr_t *d_bus)
{
struct descriptor *d = NULL;
struct descriptor_buffer *desc = ctx->buffer_tail;
if (z * sizeof(*d) > desc->buffer_size)
return NULL;
if (z * sizeof(*d) > desc->buffer_size - desc->used) {
/* No room for the descriptor in this buffer, so advance to the
* next one. */
if (desc->list.next == &ctx->buffer_list) {
/* If there is no free buffer next in the list,
* allocate one. */
if (context_add_buffer(ctx) < 0)
return NULL;
}
desc = list_entry(desc->list.next,
struct descriptor_buffer, list);
ctx->buffer_tail = desc;
}
d = desc->buffer + desc->used / sizeof(*d);
memset(d, 0, z * sizeof(*d));
*d_bus = desc->buffer_bus + desc->used;
return d;
}
static void context_run(struct context *ctx, u32 extra)
{
struct fw_ohci *ohci = ctx->ohci;
reg_write(ohci, COMMAND_PTR(ctx->regs),
le32_to_cpu(ctx->last->branch_address));
reg_write(ohci, CONTROL_CLEAR(ctx->regs), ~0);
reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN | extra);
flush_writes(ohci);
}
static void context_append(struct context *ctx,
struct descriptor *d, int z, int extra)
{
dma_addr_t d_bus;
struct descriptor_buffer *desc = ctx->buffer_tail;
d_bus = desc->buffer_bus + (d - desc->buffer) * sizeof(*d);
desc->used += (z + extra) * sizeof(*d);
ctx->prev->branch_address = cpu_to_le32(d_bus | z);
ctx->prev = find_branch_descriptor(d, z);
reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
flush_writes(ctx->ohci);
}
static void context_stop(struct context *ctx)
{
u32 reg;
int i;
reg_write(ctx->ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
flush_writes(ctx->ohci);
for (i = 0; i < 10; i++) {
reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
if ((reg & CONTEXT_ACTIVE) == 0)
break;
fw_notify("context_stop: still active (0x%08x)\n", reg);
mdelay(1);
}
}
struct driver_data {
struct fw_packet *packet;
};
/*
* This function apppends a packet to the DMA queue for transmission.
* Must always be called with the ochi->lock held to ensure proper
* generation handling and locking around packet queue manipulation.
*/
static int
at_context_queue_packet(struct context *ctx, struct fw_packet *packet)
{
struct fw_ohci *ohci = ctx->ohci;
dma_addr_t d_bus, uninitialized_var(payload_bus);
struct driver_data *driver_data;
struct descriptor *d, *last;
__le32 *header;
int z, tcode;
u32 reg;
d = context_get_descriptors(ctx, 4, &d_bus);
if (d == NULL) {
packet->ack = RCODE_SEND_ERROR;
return -1;
}
d[0].control = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
d[0].res_count = cpu_to_le16(packet->timestamp);
/*
* The DMA format for asyncronous link packets is different
* from the IEEE1394 layout, so shift the fields around
* accordingly. If header_length is 8, it's a PHY packet, to
* which we need to prepend an extra quadlet.
*/
header = (__le32 *) &d[1];
if (packet->header_length > 8) {
header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
(packet->speed << 16));
header[1] = cpu_to_le32((packet->header[1] & 0xffff) |
(packet->header[0] & 0xffff0000));
header[2] = cpu_to_le32(packet->header[2]);
tcode = (packet->header[0] >> 4) & 0x0f;
if (TCODE_IS_BLOCK_PACKET(tcode))
header[3] = cpu_to_le32(packet->header[3]);
else
header[3] = (__force __le32) packet->header[3];
d[0].req_count = cpu_to_le16(packet->header_length);
} else {
header[0] = cpu_to_le32((OHCI1394_phy_tcode << 4) |
(packet->speed << 16));
header[1] = cpu_to_le32(packet->header[0]);
header[2] = cpu_to_le32(packet->header[1]);
d[0].req_count = cpu_to_le16(12);
}
driver_data = (struct driver_data *) &d[3];
driver_data->packet = packet;
packet->driver_data = driver_data;
if (packet->payload_length > 0) {
payload_bus =
dma_map_single(ohci->card.device, packet->payload,
packet->payload_length, DMA_TO_DEVICE);
if (dma_mapping_error(payload_bus)) {
packet->ack = RCODE_SEND_ERROR;
return -1;
}
d[2].req_count = cpu_to_le16(packet->payload_length);
d[2].data_address = cpu_to_le32(payload_bus);
last = &d[2];
z = 3;
} else {
last = &d[0];
z = 2;
}
last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
DESCRIPTOR_IRQ_ALWAYS |
DESCRIPTOR_BRANCH_ALWAYS);
/*
* If the controller and packet generations don't match, we need to
* bail out and try again. If IntEvent.busReset is set, the AT context
* is halted, so appending to the context and trying to run it is
* futile. Most controllers do the right thing and just flush the AT
* queue (per section 7.2.3.2 of the OHCI 1.1 specification), but
* some controllers (like a JMicron JMB381 PCI-e) misbehave and wind
* up stalling out. So we just bail out in software and try again
* later, and everyone is happy.
* FIXME: Document how the locking works.
*/
if (ohci->generation != packet->generation ||
reg_read(ohci, OHCI1394_IntEventSet) & OHCI1394_busReset) {
if (packet->payload_length > 0)
dma_unmap_single(ohci->card.device, payload_bus,
packet->payload_length, DMA_TO_DEVICE);
packet->ack = RCODE_GENERATION;
return -1;
}
context_append(ctx, d, z, 4 - z);
/* If the context isn't already running, start it up. */
reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
if ((reg & CONTEXT_RUN) == 0)
context_run(ctx, 0);
return 0;
}
static int handle_at_packet(struct context *context,
struct descriptor *d,
struct descriptor *last)
{
struct driver_data *driver_data;
struct fw_packet *packet;
struct fw_ohci *ohci = context->ohci;
dma_addr_t payload_bus;
int evt;
if (last->transfer_status == 0)
/* This descriptor isn't done yet, stop iteration. */
return 0;
driver_data = (struct driver_data *) &d[3];
packet = driver_data->packet;
if (packet == NULL)
/* This packet was cancelled, just continue. */
return 1;
payload_bus = le32_to_cpu(last->data_address);
if (payload_bus != 0)
dma_unmap_single(ohci->card.device, payload_bus,
packet->payload_length, DMA_TO_DEVICE);
evt = le16_to_cpu(last->transfer_status) & 0x1f;
packet->timestamp = le16_to_cpu(last->res_count);
log_ar_at_event('T', packet->speed, packet->header, evt);
switch (evt) {
case OHCI1394_evt_timeout:
/* Async response transmit timed out. */
packet->ack = RCODE_CANCELLED;
break;
case OHCI1394_evt_flushed:
/*
* The packet was flushed should give same error as
* when we try to use a stale generation count.
*/
packet->ack = RCODE_GENERATION;
break;
case OHCI1394_evt_missing_ack:
/*
* Using a valid (current) generation count, but the
* node is not on the bus or not sending acks.
*/
packet->ack = RCODE_NO_ACK;
break;
case ACK_COMPLETE + 0x10:
case ACK_PENDING + 0x10:
case ACK_BUSY_X + 0x10:
case ACK_BUSY_A + 0x10:
case ACK_BUSY_B + 0x10:
case ACK_DATA_ERROR + 0x10:
case ACK_TYPE_ERROR + 0x10:
packet->ack = evt - 0x10;
break;
default:
packet->ack = RCODE_SEND_ERROR;
break;
}
packet->callback(packet, &ohci->card, packet->ack);
return 1;
}
#define HEADER_GET_DESTINATION(q) (((q) >> 16) & 0xffff)
#define HEADER_GET_TCODE(q) (((q) >> 4) & 0x0f)
#define HEADER_GET_OFFSET_HIGH(q) (((q) >> 0) & 0xffff)
#define HEADER_GET_DATA_LENGTH(q) (((q) >> 16) & 0xffff)
#define HEADER_GET_EXTENDED_TCODE(q) (((q) >> 0) & 0xffff)
static void
handle_local_rom(struct fw_ohci *ohci, struct fw_packet *packet, u32 csr)
{
struct fw_packet response;
int tcode, length, i;
tcode = HEADER_GET_TCODE(packet->header[0]);
if (TCODE_IS_BLOCK_PACKET(tcode))
length = HEADER_GET_DATA_LENGTH(packet->header[3]);
else
length = 4;
i = csr - CSR_CONFIG_ROM;
if (i + length > CONFIG_ROM_SIZE) {
fw_fill_response(&response, packet->header,
RCODE_ADDRESS_ERROR, NULL, 0);
} else if (!TCODE_IS_READ_REQUEST(tcode)) {
fw_fill_response(&response, packet->header,
RCODE_TYPE_ERROR, NULL, 0);
} else {
fw_fill_response(&response, packet->header, RCODE_COMPLETE,
(void *) ohci->config_rom + i, length);
}
fw_core_handle_response(&ohci->card, &response);
}
static void
handle_local_lock(struct fw_ohci *ohci, struct fw_packet *packet, u32 csr)
{
struct fw_packet response;
int tcode, length, ext_tcode, sel;
__be32 *payload, lock_old;
u32 lock_arg, lock_data;
tcode = HEADER_GET_TCODE(packet->header[0]);
length = HEADER_GET_DATA_LENGTH(packet->header[3]);
payload = packet->payload;
ext_tcode = HEADER_GET_EXTENDED_TCODE(packet->header[3]);
if (tcode == TCODE_LOCK_REQUEST &&
ext_tcode == EXTCODE_COMPARE_SWAP && length == 8) {
lock_arg = be32_to_cpu(payload[0]);
lock_data = be32_to_cpu(payload[1]);
} else if (tcode == TCODE_READ_QUADLET_REQUEST) {
lock_arg = 0;
lock_data = 0;
} else {
fw_fill_response(&response, packet->header,
RCODE_TYPE_ERROR, NULL, 0);
goto out;
}
sel = (csr - CSR_BUS_MANAGER_ID) / 4;
reg_write(ohci, OHCI1394_CSRData, lock_data);
reg_write(ohci, OHCI1394_CSRCompareData, lock_arg);
reg_write(ohci, OHCI1394_CSRControl, sel);
if (reg_read(ohci, OHCI1394_CSRControl) & 0x80000000)
lock_old = cpu_to_be32(reg_read(ohci, OHCI1394_CSRData));
else
fw_notify("swap not done yet\n");
fw_fill_response(&response, packet->header,
RCODE_COMPLETE, &lock_old, sizeof(lock_old));
out:
fw_core_handle_response(&ohci->card, &response);
}
static void
handle_local_request(struct context *ctx, struct fw_packet *packet)
{
u64 offset;
u32 csr;
if (ctx == &ctx->ohci->at_request_ctx) {
packet->ack = ACK_PENDING;
packet->callback(packet, &ctx->ohci->card, packet->ack);
}
offset =
((unsigned long long)
HEADER_GET_OFFSET_HIGH(packet->header[1]) << 32) |
packet->header[2];
csr = offset - CSR_REGISTER_BASE;
/* Handle config rom reads. */
if (csr >= CSR_CONFIG_ROM && csr < CSR_CONFIG_ROM_END)
handle_local_rom(ctx->ohci, packet, csr);
else switch (csr) {
case CSR_BUS_MANAGER_ID:
case CSR_BANDWIDTH_AVAILABLE:
case CSR_CHANNELS_AVAILABLE_HI:
case CSR_CHANNELS_AVAILABLE_LO:
handle_local_lock(ctx->ohci, packet, csr);
break;
default:
if (ctx == &ctx->ohci->at_request_ctx)
fw_core_handle_request(&ctx->ohci->card, packet);
else
fw_core_handle_response(&ctx->ohci->card, packet);
break;
}
if (ctx == &ctx->ohci->at_response_ctx) {
packet->ack = ACK_COMPLETE;
packet->callback(packet, &ctx->ohci->card, packet->ack);
}
}
static void
at_context_transmit(struct context *ctx, struct fw_packet *packet)
{
unsigned long flags;
int retval;
spin_lock_irqsave(&ctx->ohci->lock, flags);
if (HEADER_GET_DESTINATION(packet->header[0]) == ctx->ohci->node_id &&
ctx->ohci->generation == packet->generation) {
spin_unlock_irqrestore(&ctx->ohci->lock, flags);
handle_local_request(ctx, packet);
return;
}
retval = at_context_queue_packet(ctx, packet);
spin_unlock_irqrestore(&ctx->ohci->lock, flags);
if (retval < 0)
packet->callback(packet, &ctx->ohci->card, packet->ack);
}
static void bus_reset_tasklet(unsigned long data)
{
struct fw_ohci *ohci = (struct fw_ohci *)data;
int self_id_count, i, j, reg;
int generation, new_generation;
unsigned long flags;
void *free_rom = NULL;
dma_addr_t free_rom_bus = 0;
reg = reg_read(ohci, OHCI1394_NodeID);
if (!(reg & OHCI1394_NodeID_idValid)) {
fw_notify("node ID not valid, new bus reset in progress\n");
return;
}
if ((reg & OHCI1394_NodeID_nodeNumber) == 63) {
fw_notify("malconfigured bus\n");
return;
}
ohci->node_id = reg & (OHCI1394_NodeID_busNumber |
OHCI1394_NodeID_nodeNumber);
reg = reg_read(ohci, OHCI1394_SelfIDCount);
if (reg & OHCI1394_SelfIDCount_selfIDError) {
fw_notify("inconsistent self IDs\n");
return;
}
/*
* The count in the SelfIDCount register is the number of
* bytes in the self ID receive buffer. Since we also receive
* the inverted quadlets and a header quadlet, we shift one
* bit extra to get the actual number of self IDs.
*/
self_id_count = (reg >> 3) & 0x3ff;
if (self_id_count == 0) {
fw_notify("inconsistent self IDs\n");
return;
}
generation = (cond_le32_to_cpu(ohci->self_id_cpu[0]) >> 16) & 0xff;
rmb();
for (i = 1, j = 0; j < self_id_count; i += 2, j++) {
if (ohci->self_id_cpu[i] != ~ohci->self_id_cpu[i + 1]) {
fw_notify("inconsistent self IDs\n");
return;
}
ohci->self_id_buffer[j] =
cond_le32_to_cpu(ohci->self_id_cpu[i]);
}
rmb();
/*
* Check the consistency of the self IDs we just read. The
* problem we face is that a new bus reset can start while we
* read out the self IDs from the DMA buffer. If this happens,
* the DMA buffer will be overwritten with new self IDs and we
* will read out inconsistent data. The OHCI specification
* (section 11.2) recommends a technique similar to
* linux/seqlock.h, where we remember the generation of the
* self IDs in the buffer before reading them out and compare
* it to the current generation after reading them out. If
* the two generations match we know we have a consistent set
* of self IDs.
*/
new_generation = (reg_read(ohci, OHCI1394_SelfIDCount) >> 16) & 0xff;
if (new_generation != generation) {
fw_notify("recursive bus reset detected, "
"discarding self ids\n");
return;
}
/* FIXME: Document how the locking works. */
spin_lock_irqsave(&ohci->lock, flags);
ohci->generation = generation;
context_stop(&ohci->at_request_ctx);
context_stop(&ohci->at_response_ctx);
reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);
if (ohci->bus_reset_packet_quirk)
ohci->request_generation = generation;
/*
* This next bit is unrelated to the AT context stuff but we
* have to do it under the spinlock also. If a new config rom
* was set up before this reset, the old one is now no longer
* in use and we can free it. Update the config rom pointers
* to point to the current config rom and clear the
* next_config_rom pointer so a new udpate can take place.
*/
if (ohci->next_config_rom != NULL) {
if (ohci->next_config_rom != ohci->config_rom) {
free_rom = ohci->config_rom;
free_rom_bus = ohci->config_rom_bus;
}
ohci->config_rom = ohci->next_config_rom;
ohci->config_rom_bus = ohci->next_config_rom_bus;
ohci->next_config_rom = NULL;
/*
* Restore config_rom image and manually update
* config_rom registers. Writing the header quadlet
* will indicate that the config rom is ready, so we
* do that last.
*/
reg_write(ohci, OHCI1394_BusOptions,
be32_to_cpu(ohci->config_rom[2]));
ohci->config_rom[0] = cpu_to_be32(ohci->next_header);
reg_write(ohci, OHCI1394_ConfigROMhdr, ohci->next_header);
}
#ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
reg_write(ohci, OHCI1394_PhyReqFilterHiSet, ~0);
reg_write(ohci, OHCI1394_PhyReqFilterLoSet, ~0);
#endif
spin_unlock_irqrestore(&ohci->lock, flags);
if (free_rom)
dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
free_rom, free_rom_bus);
log_selfids(ohci->node_id, generation,
self_id_count, ohci->self_id_buffer);
fw_core_handle_bus_reset(&ohci->card, ohci->node_id, generation,
self_id_count, ohci->self_id_buffer);
}
static irqreturn_t irq_handler(int irq, void *data)
{
struct fw_ohci *ohci = data;
u32 event, iso_event, cycle_time;
int i;
event = reg_read(ohci, OHCI1394_IntEventClear);
if (!event || !~event)
return IRQ_NONE;
/* busReset must not be cleared yet, see OHCI 1.1 clause 7.2.3.2 */
reg_write(ohci, OHCI1394_IntEventClear, event & ~OHCI1394_busReset);
log_irqs(event);
if (event & OHCI1394_selfIDComplete)
tasklet_schedule(&ohci->bus_reset_tasklet);
if (event & OHCI1394_RQPkt)
tasklet_schedule(&ohci->ar_request_ctx.tasklet);
if (event & OHCI1394_RSPkt)
tasklet_schedule(&ohci->ar_response_ctx.tasklet);
if (event & OHCI1394_reqTxComplete)
tasklet_schedule(&ohci->at_request_ctx.tasklet);
if (event & OHCI1394_respTxComplete)
tasklet_schedule(&ohci->at_response_ctx.tasklet);
iso_event = reg_read(ohci, OHCI1394_IsoRecvIntEventClear);
reg_write(ohci, OHCI1394_IsoRecvIntEventClear, iso_event);
while (iso_event) {
i = ffs(iso_event) - 1;
tasklet_schedule(&ohci->ir_context_list[i].context.tasklet);
iso_event &= ~(1 << i);
}
iso_event = reg_read(ohci, OHCI1394_IsoXmitIntEventClear);
reg_write(ohci, OHCI1394_IsoXmitIntEventClear, iso_event);
while (iso_event) {
i = ffs(iso_event) - 1;
tasklet_schedule(&ohci->it_context_list[i].context.tasklet);
iso_event &= ~(1 << i);
}
if (unlikely(event & OHCI1394_regAccessFail))
fw_error("Register access failure - "
"please notify linux1394-devel@lists.sf.net\n");
if (unlikely(event & OHCI1394_postedWriteErr))
fw_error("PCI posted write error\n");
if (unlikely(event & OHCI1394_cycleTooLong)) {
if (printk_ratelimit())
fw_notify("isochronous cycle too long\n");
reg_write(ohci, OHCI1394_LinkControlSet,
OHCI1394_LinkControl_cycleMaster);
}
if (event & OHCI1394_cycle64Seconds) {
cycle_time = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
if ((cycle_time & 0x80000000) == 0)
ohci->bus_seconds++;
}
return IRQ_HANDLED;
}
static int software_reset(struct fw_ohci *ohci)
{
int i;
reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset);
for (i = 0; i < OHCI_LOOP_COUNT; i++) {
if ((reg_read(ohci, OHCI1394_HCControlSet) &
OHCI1394_HCControl_softReset) == 0)
return 0;
msleep(1);
}
return -EBUSY;
}
static int ohci_enable(struct fw_card *card, u32 *config_rom, size_t length)
{
struct fw_ohci *ohci = fw_ohci(card);
struct pci_dev *dev = to_pci_dev(card->device);
u32 lps;
int i;
if (software_reset(ohci)) {
fw_error("Failed to reset ohci card.\n");
return -EBUSY;
}
/*
* Now enable LPS, which we need in order to start accessing
* most of the registers. In fact, on some cards (ALI M5251),
* accessing registers in the SClk domain without LPS enabled
* will lock up the machine. Wait 50msec to make sure we have
* full link enabled. However, with some cards (well, at least
* a JMicron PCIe card), we have to try again sometimes.
*/
reg_write(ohci, OHCI1394_HCControlSet,
OHCI1394_HCControl_LPS |
OHCI1394_HCControl_postedWriteEnable);
flush_writes(ohci);
for (lps = 0, i = 0; !lps && i < 3; i++) {
msleep(50);
lps = reg_read(ohci, OHCI1394_HCControlSet) &
OHCI1394_HCControl_LPS;
}
if (!lps) {
fw_error("Failed to set Link Power Status\n");
return -EIO;
}
reg_write(ohci, OHCI1394_HCControlClear,
OHCI1394_HCControl_noByteSwapData);
reg_write(ohci, OHCI1394_LinkControlSet,
OHCI1394_LinkControl_rcvSelfID |
OHCI1394_LinkControl_cycleTimerEnable |
OHCI1394_LinkControl_cycleMaster);
reg_write(ohci, OHCI1394_ATRetries,
OHCI1394_MAX_AT_REQ_RETRIES |
(OHCI1394_MAX_AT_RESP_RETRIES << 4) |
(OHCI1394_MAX_PHYS_RESP_RETRIES << 8));
ar_context_run(&ohci->ar_request_ctx);
ar_context_run(&ohci->ar_response_ctx);
reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->self_id_bus);
reg_write(ohci, OHCI1394_PhyUpperBound, 0x00010000);
reg_write(ohci, OHCI1394_IntEventClear, ~0);
reg_write(ohci, OHCI1394_IntMaskClear, ~0);
reg_write(ohci, OHCI1394_IntMaskSet,
OHCI1394_selfIDComplete |
OHCI1394_RQPkt | OHCI1394_RSPkt |
OHCI1394_reqTxComplete | OHCI1394_respTxComplete |
OHCI1394_isochRx | OHCI1394_isochTx |
OHCI1394_postedWriteErr | OHCI1394_cycleTooLong |
OHCI1394_cycle64Seconds | OHCI1394_regAccessFail |
OHCI1394_masterIntEnable);
if (param_debug & OHCI_PARAM_DEBUG_BUSRESETS)
reg_write(ohci, OHCI1394_IntMaskSet, OHCI1394_busReset);
/* Activate link_on bit and contender bit in our self ID packets.*/
if (ohci_update_phy_reg(card, 4, 0,
PHY_LINK_ACTIVE | PHY_CONTENDER) < 0)
return -EIO;
/*
* When the link is not yet enabled, the atomic config rom
* update mechanism described below in ohci_set_config_rom()
* is not active. We have to update ConfigRomHeader and
* BusOptions manually, and the write to ConfigROMmap takes
* effect immediately. We tie this to the enabling of the
* link, so we have a valid config rom before enabling - the
* OHCI requires that ConfigROMhdr and BusOptions have valid
* values before enabling.
*
* However, when the ConfigROMmap is written, some controllers
* always read back quadlets 0 and 2 from the config rom to
* the ConfigRomHeader and BusOptions registers on bus reset.
* They shouldn't do that in this initial case where the link
* isn't enabled. This means we have to use the same
* workaround here, setting the bus header to 0 and then write
* the right values in the bus reset tasklet.
*/
if (config_rom) {
ohci->next_config_rom =
dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
&ohci->next_config_rom_bus,
GFP_KERNEL);
if (ohci->next_config_rom == NULL)
return -ENOMEM;
memset(ohci->next_config_rom, 0, CONFIG_ROM_SIZE);
fw_memcpy_to_be32(ohci->next_config_rom, config_rom, length * 4);
} else {
/*
* In the suspend case, config_rom is NULL, which
* means that we just reuse the old config rom.
*/
ohci->next_config_rom = ohci->config_rom;
ohci->next_config_rom_bus = ohci->config_rom_bus;
}
ohci->next_header = be32_to_cpu(ohci->next_config_rom[0]);
ohci->next_config_rom[0] = 0;
reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
reg_write(ohci, OHCI1394_BusOptions,
be32_to_cpu(ohci->next_config_rom[2]));
reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000);
if (request_irq(dev->irq, irq_handler,
IRQF_SHARED, ohci_driver_name, ohci)) {
fw_error("Failed to allocate shared interrupt %d.\n",
dev->irq);
dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
ohci->config_rom, ohci->config_rom_bus);
return -EIO;
}
reg_write(ohci, OHCI1394_HCControlSet,
OHCI1394_HCControl_linkEnable |
OHCI1394_HCControl_BIBimageValid);
flush_writes(ohci);
/*
* We are ready to go, initiate bus reset to finish the
* initialization.
*/
fw_core_initiate_bus_reset(&ohci->card, 1);
return 0;
}
static int
ohci_set_config_rom(struct fw_card *card, u32 *config_rom, size_t length)
{
struct fw_ohci *ohci;
unsigned long flags;
int retval = -EBUSY;
__be32 *next_config_rom;
dma_addr_t uninitialized_var(next_config_rom_bus);
ohci = fw_ohci(card);
/*
* When the OHCI controller is enabled, the config rom update
* mechanism is a bit tricky, but easy enough to use. See
* section 5.5.6 in the OHCI specification.
*
* The OHCI controller caches the new config rom address in a
* shadow register (ConfigROMmapNext) and needs a bus reset
* for the changes to take place. When the bus reset is
* detected, the controller loads the new values for the
* ConfigRomHeader and BusOptions registers from the specified
* config rom and loads ConfigROMmap from the ConfigROMmapNext
* shadow register. All automatically and atomically.
*
* Now, there's a twist to this story. The automatic load of
* ConfigRomHeader and BusOptions doesn't honor the
* noByteSwapData bit, so with a be32 config rom, the
* controller will load be32 values in to these registers
* during the atomic update, even on litte endian
* architectures. The workaround we use is to put a 0 in the
* header quadlet; 0 is endian agnostic and means that the
* config rom isn't ready yet. In the bus reset tasklet we
* then set up the real values for the two registers.
*
* We use ohci->lock to avoid racing with the code that sets
* ohci->next_config_rom to NULL (see bus_reset_tasklet).
*/
next_config_rom =
dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
&next_config_rom_bus, GFP_KERNEL);
if (next_config_rom == NULL)
return -ENOMEM;
spin_lock_irqsave(&ohci->lock, flags);
if (ohci->next_config_rom == NULL) {
ohci->next_config_rom = next_config_rom;
ohci->next_config_rom_bus = next_config_rom_bus;
memset(ohci->next_config_rom, 0, CONFIG_ROM_SIZE);
fw_memcpy_to_be32(ohci->next_config_rom, config_rom,
length * 4);
ohci->next_header = config_rom[0];
ohci->next_config_rom[0] = 0;
reg_write(ohci, OHCI1394_ConfigROMmap,
ohci->next_config_rom_bus);
retval = 0;
}
spin_unlock_irqrestore(&ohci->lock, flags);
/*
* Now initiate a bus reset to have the changes take
* effect. We clean up the old config rom memory and DMA
* mappings in the bus reset tasklet, since the OHCI
* controller could need to access it before the bus reset
* takes effect.
*/
if (retval == 0)
fw_core_initiate_bus_reset(&ohci->card, 1);
else
dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
next_config_rom, next_config_rom_bus);
return retval;
}
static void ohci_send_request(struct fw_card *card, struct fw_packet *packet)
{
struct fw_ohci *ohci = fw_ohci(card);
at_context_transmit(&ohci->at_request_ctx, packet);
}
static void ohci_send_response(struct fw_card *card, struct fw_packet *packet)
{
struct fw_ohci *ohci = fw_ohci(card);
at_context_transmit(&ohci->at_response_ctx, packet);
}
static int ohci_cancel_packet(struct fw_card *card, struct fw_packet *packet)
{
struct fw_ohci *ohci = fw_ohci(card);
struct context *ctx = &ohci->at_request_ctx;
struct driver_data *driver_data = packet->driver_data;
int retval = -ENOENT;
tasklet_disable(&ctx->tasklet);
if (packet->ack != 0)
goto out;
log_ar_at_event('T', packet->speed, packet->header, 0x20);
driver_data->packet = NULL;
packet->ack = RCODE_CANCELLED;
packet->callback(packet, &ohci->card, packet->ack);
retval = 0;
out:
tasklet_enable(&ctx->tasklet);
return retval;
}
static int
ohci_enable_phys_dma(struct fw_card *card, int node_id, int generation)
{
#ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
return 0;
#else
struct fw_ohci *ohci = fw_ohci(card);
unsigned long flags;
int n, retval = 0;
/*
* FIXME: Make sure this bitmask is cleared when we clear the busReset
* interrupt bit. Clear physReqResourceAllBuses on bus reset.
*/
spin_lock_irqsave(&ohci->lock, flags);
if (ohci->generation != generation) {
retval = -ESTALE;
goto out;
}
/*
* Note, if the node ID contains a non-local bus ID, physical DMA is
* enabled for _all_ nodes on remote buses.
*/
n = (node_id & 0xffc0) == LOCAL_BUS ? node_id & 0x3f : 63;
if (n < 32)
reg_write(ohci, OHCI1394_PhyReqFilterLoSet, 1 << n);
else
reg_write(ohci, OHCI1394_PhyReqFilterHiSet, 1 << (n - 32));
flush_writes(ohci);
out:
spin_unlock_irqrestore(&ohci->lock, flags);
return retval;
#endif /* CONFIG_FIREWIRE_OHCI_REMOTE_DMA */
}
static u64
ohci_get_bus_time(struct fw_card *card)
{
struct fw_ohci *ohci = fw_ohci(card);
u32 cycle_time;
u64 bus_time;
cycle_time = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
bus_time = ((u64) ohci->bus_seconds << 32) | cycle_time;
return bus_time;
}
static int handle_ir_dualbuffer_packet(struct context *context,
struct descriptor *d,
struct descriptor *last)
{
struct iso_context *ctx =
container_of(context, struct iso_context, context);
struct db_descriptor *db = (struct db_descriptor *) d;
__le32 *ir_header;
size_t header_length;
void *p, *end;
int i;
if (db->first_res_count != 0 && db->second_res_count != 0) {
if (ctx->excess_bytes <= le16_to_cpu(db->second_req_count)) {
/* This descriptor isn't done yet, stop iteration. */
return 0;
}
ctx->excess_bytes -= le16_to_cpu(db->second_req_count);
}
header_length = le16_to_cpu(db->first_req_count) -
le16_to_cpu(db->first_res_count);
i = ctx->header_length;
p = db + 1;
end = p + header_length;
while (p < end && i + ctx->base.header_size <= PAGE_SIZE) {
/*
* The iso header is byteswapped to little endian by
* the controller, but the remaining header quadlets
* are big endian. We want to present all the headers
* as big endian, so we have to swap the first
* quadlet.
*/
*(u32 *) (ctx->header + i) = __swab32(*(u32 *) (p + 4));
memcpy(ctx->header + i + 4, p + 8, ctx->base.header_size - 4);
i += ctx->base.header_size;
ctx->excess_bytes +=
(le32_to_cpu(*(__le32 *)(p + 4)) >> 16) & 0xffff;
p += ctx->base.header_size + 4;
}
ctx->header_length = i;
ctx->excess_bytes -= le16_to_cpu(db->second_req_count) -
le16_to_cpu(db->second_res_count);
if (le16_to_cpu(db->control) & DESCRIPTOR_IRQ_ALWAYS) {
ir_header = (__le32 *) (db + 1);
ctx->base.callback(&ctx->base,
le32_to_cpu(ir_header[0]) & 0xffff,
ctx->header_length, ctx->header,
ctx->base.callback_data);
ctx->header_length = 0;
}
return 1;
}
static int handle_ir_packet_per_buffer(struct context *context,
struct descriptor *d,
struct descriptor *last)
{
struct iso_context *ctx =
container_of(context, struct iso_context, context);
struct descriptor *pd;
__le32 *ir_header;
void *p;
int i;
for (pd = d; pd <= last; pd++) {
if (pd->transfer_status)
break;
}
if (pd > last)
/* Descriptor(s) not done yet, stop iteration */
return 0;
i = ctx->header_length;
p = last + 1;
if (ctx->base.header_size > 0 &&
i + ctx->base.header_size <= PAGE_SIZE) {
/*
* The iso header is byteswapped to little endian by
* the controller, but the remaining header quadlets
* are big endian. We want to present all the headers
* as big endian, so we have to swap the first quadlet.
*/
*(u32 *) (ctx->header + i) = __swab32(*(u32 *) (p + 4));
memcpy(ctx->header + i + 4, p + 8, ctx->base.header_size - 4);
ctx->header_length += ctx->base.header_size;
}
if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS) {
ir_header = (__le32 *) p;
ctx->base.callback(&ctx->base,
le32_to_cpu(ir_header[0]) & 0xffff,
ctx->header_length, ctx->header,
ctx->base.callback_data);
ctx->header_length = 0;
}
return 1;
}
static int handle_it_packet(struct context *context,
struct descriptor *d,
struct descriptor *last)
{
struct iso_context *ctx =
container_of(context, struct iso_context, context);
if (last->transfer_status == 0)
/* This descriptor isn't done yet, stop iteration. */
return 0;
if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS)
ctx->base.callback(&ctx->base, le16_to_cpu(last->res_count),
0, NULL, ctx->base.callback_data);
return 1;
}
static struct fw_iso_context *
ohci_allocate_iso_context(struct fw_card *card, int type, size_t header_size)
{
struct fw_ohci *ohci = fw_ohci(card);
struct iso_context *ctx, *list;
descriptor_callback_t callback;
u32 *mask, regs;
unsigned long flags;
int index, retval = -ENOMEM;
if (type == FW_ISO_CONTEXT_TRANSMIT) {
mask = &ohci->it_context_mask;
list = ohci->it_context_list;
callback = handle_it_packet;
} else {
mask = &ohci->ir_context_mask;
list = ohci->ir_context_list;
if (ohci->version >= OHCI_VERSION_1_1)
callback = handle_ir_dualbuffer_packet;
else
callback = handle_ir_packet_per_buffer;
}
spin_lock_irqsave(&ohci->lock, flags);
index = ffs(*mask) - 1;
if (index >= 0)
*mask &= ~(1 << index);
spin_unlock_irqrestore(&ohci->lock, flags);
if (index < 0)
return ERR_PTR(-EBUSY);
if (type == FW_ISO_CONTEXT_TRANSMIT)
regs = OHCI1394_IsoXmitContextBase(index);
else
regs = OHCI1394_IsoRcvContextBase(index);
ctx = &list[index];
memset(ctx, 0, sizeof(*ctx));
ctx->header_length = 0;
ctx->header = (void *) __get_free_page(GFP_KERNEL);
if (ctx->header == NULL)
goto out;
retval = context_init(&ctx->context, ohci, regs, callback);
if (retval < 0)
goto out_with_header;
return &ctx->base;
out_with_header:
free_page((unsigned long)ctx->header);
out:
spin_lock_irqsave(&ohci->lock, flags);
*mask |= 1 << index;
spin_unlock_irqrestore(&ohci->lock, flags);
return ERR_PTR(retval);
}
static int ohci_start_iso(struct fw_iso_context *base,
s32 cycle, u32 sync, u32 tags)
{
struct iso_context *ctx = container_of(base, struct iso_context, base);
struct fw_ohci *ohci = ctx->context.ohci;
u32 control, match;
int index;
if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
index = ctx - ohci->it_context_list;
match = 0;
if (cycle >= 0)
match = IT_CONTEXT_CYCLE_MATCH_ENABLE |
(cycle & 0x7fff) << 16;
reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 1 << index);
reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << index);
context_run(&ctx->context, match);
} else {
index = ctx - ohci->ir_context_list;
control = IR_CONTEXT_ISOCH_HEADER;
if (ohci->version >= OHCI_VERSION_1_1)
control |= IR_CONTEXT_DUAL_BUFFER_MODE;
match = (tags << 28) | (sync << 8) | ctx->base.channel;
if (cycle >= 0) {
match |= (cycle & 0x07fff) << 12;
control |= IR_CONTEXT_CYCLE_MATCH_ENABLE;
}
reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 1 << index);
reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, 1 << index);
reg_write(ohci, CONTEXT_MATCH(ctx->context.regs), match);
context_run(&ctx->context, control);
}
return 0;
}
static int ohci_stop_iso(struct fw_iso_context *base)
{
struct fw_ohci *ohci = fw_ohci(base->card);
struct iso_context *ctx = container_of(base, struct iso_context, base);
int index;
if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
index = ctx - ohci->it_context_list;
reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << index);
} else {
index = ctx - ohci->ir_context_list;
reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 1 << index);
}
flush_writes(ohci);
context_stop(&ctx->context);
return 0;
}
static void ohci_free_iso_context(struct fw_iso_context *base)
{
struct fw_ohci *ohci = fw_ohci(base->card);
struct iso_context *ctx = container_of(base, struct iso_context, base);
unsigned long flags;
int index;
ohci_stop_iso(base);
context_release(&ctx->context);
free_page((unsigned long)ctx->header);
spin_lock_irqsave(&ohci->lock, flags);
if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
index = ctx - ohci->it_context_list;
ohci->it_context_mask |= 1 << index;
} else {
index = ctx - ohci->ir_context_list;
ohci->ir_context_mask |= 1 << index;
}
spin_unlock_irqrestore(&ohci->lock, flags);
}
static int
ohci_queue_iso_transmit(struct fw_iso_context *base,
struct fw_iso_packet *packet,
struct fw_iso_buffer *buffer,
unsigned long payload)
{
struct iso_context *ctx = container_of(base, struct iso_context, base);
struct descriptor *d, *last, *pd;
struct fw_iso_packet *p;
__le32 *header;
dma_addr_t d_bus, page_bus;
u32 z, header_z, payload_z, irq;
u32 payload_index, payload_end_index, next_page_index;
int page, end_page, i, length, offset;
/*
* FIXME: Cycle lost behavior should be configurable: lose
* packet, retransmit or terminate..
*/
p = packet;
payload_index = payload;
if (p->skip)
z = 1;
else
z = 2;
if (p->header_length > 0)
z++;
/* Determine the first page the payload isn't contained in. */
end_page = PAGE_ALIGN(payload_index + p->payload_length) >> PAGE_SHIFT;
if (p->payload_length > 0)
payload_z = end_page - (payload_index >> PAGE_SHIFT);
else
payload_z = 0;
z += payload_z;
/* Get header size in number of descriptors. */
header_z = DIV_ROUND_UP(p->header_length, sizeof(*d));
d = context_get_descriptors(&ctx->context, z + header_z, &d_bus);
if (d == NULL)
return -ENOMEM;
if (!p->skip) {
d[0].control = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
d[0].req_count = cpu_to_le16(8);
header = (__le32 *) &d[1];
header[0] = cpu_to_le32(IT_HEADER_SY(p->sy) |
IT_HEADER_TAG(p->tag) |
IT_HEADER_TCODE(TCODE_STREAM_DATA) |
IT_HEADER_CHANNEL(ctx->base.channel) |
IT_HEADER_SPEED(ctx->base.speed));
header[1] =
cpu_to_le32(IT_HEADER_DATA_LENGTH(p->header_length +
p->payload_length));
}
if (p->header_length > 0) {
d[2].req_count = cpu_to_le16(p->header_length);
d[2].data_address = cpu_to_le32(d_bus + z * sizeof(*d));
memcpy(&d[z], p->header, p->header_length);
}
pd = d + z - payload_z;
payload_end_index = payload_index + p->payload_length;
for (i = 0; i < payload_z; i++) {
page = payload_index >> PAGE_SHIFT;
offset = payload_index & ~PAGE_MASK;
next_page_index = (page + 1) << PAGE_SHIFT;
length =
min(next_page_index, payload_end_index) - payload_index;
pd[i].req_count = cpu_to_le16(length);
page_bus = page_private(buffer->pages[page]);
pd[i].data_address = cpu_to_le32(page_bus + offset);
payload_index += length;
}
if (p->interrupt)
irq = DESCRIPTOR_IRQ_ALWAYS;
else
irq = DESCRIPTOR_NO_IRQ;
last = z == 2 ? d : d + z - 1;
last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
DESCRIPTOR_STATUS |
DESCRIPTOR_BRANCH_ALWAYS |
irq);
context_append(&ctx->context, d, z, header_z);
return 0;
}
static int
ohci_queue_iso_receive_dualbuffer(struct fw_iso_context *base,
struct fw_iso_packet *packet,
struct fw_iso_buffer *buffer,
unsigned long payload)
{
struct iso_context *ctx = container_of(base, struct iso_context, base);
struct db_descriptor *db = NULL;
struct descriptor *d;
struct fw_iso_packet *p;
dma_addr_t d_bus, page_bus;
u32 z, header_z, length, rest;
int page, offset, packet_count, header_size;
/*
* FIXME: Cycle lost behavior should be configurable: lose
* packet, retransmit or terminate..
*/
p = packet;
z = 2;
/*
* The OHCI controller puts the status word in the header
* buffer too, so we need 4 extra bytes per packet.
*/
packet_count = p->header_length / ctx->base.header_size;
header_size = packet_count * (ctx->base.header_size + 4);
/* Get header size in number of descriptors. */
header_z = DIV_ROUND_UP(header_size, sizeof(*d));
page = payload >> PAGE_SHIFT;
offset = payload & ~PAGE_MASK;
rest = p->payload_length;
/* FIXME: make packet-per-buffer/dual-buffer a context option */
while (rest > 0) {
d = context_get_descriptors(&ctx->context,
z + header_z, &d_bus);
if (d == NULL)
return -ENOMEM;
db = (struct db_descriptor *) d;
db->control = cpu_to_le16(DESCRIPTOR_STATUS |
DESCRIPTOR_BRANCH_ALWAYS);
db->first_size = cpu_to_le16(ctx->base.header_size + 4);
if (p->skip && rest == p->payload_length) {
db->control |= cpu_to_le16(DESCRIPTOR_WAIT);
db->first_req_count = db->first_size;
} else {
db->first_req_count = cpu_to_le16(header_size);
}
db->first_res_count = db->first_req_count;
db->first_buffer = cpu_to_le32(d_bus + sizeof(*db));
if (p->skip && rest == p->payload_length)
length = 4;
else if (offset + rest < PAGE_SIZE)
length = rest;
else
length = PAGE_SIZE - offset;
db->second_req_count = cpu_to_le16(length);
db->second_res_count = db->second_req_count;
page_bus = page_private(buffer->pages[page]);
db->second_buffer = cpu_to_le32(page_bus + offset);
if (p->interrupt && length == rest)
db->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
context_append(&ctx->context, d, z, header_z);
offset = (offset + length) & ~PAGE_MASK;
rest -= length;
if (offset == 0)
page++;
}
return 0;
}
static int
ohci_queue_iso_receive_packet_per_buffer(struct fw_iso_context *base,
struct fw_iso_packet *packet,
struct fw_iso_buffer *buffer,
unsigned long payload)
{
struct iso_context *ctx = container_of(base, struct iso_context, base);
struct descriptor *d = NULL, *pd = NULL;
struct fw_iso_packet *p = packet;
dma_addr_t d_bus, page_bus;
u32 z, header_z, rest;
int i, j, length;
int page, offset, packet_count, header_size, payload_per_buffer;
/*
* The OHCI controller puts the status word in the
* buffer too, so we need 4 extra bytes per packet.
*/
packet_count = p->header_length / ctx->base.header_size;
header_size = ctx->base.header_size + 4;
/* Get header size in number of descriptors. */
header_z = DIV_ROUND_UP(header_size, sizeof(*d));
page = payload >> PAGE_SHIFT;
offset = payload & ~PAGE_MASK;
payload_per_buffer = p->payload_length / packet_count;
for (i = 0; i < packet_count; i++) {
/* d points to the header descriptor */
z = DIV_ROUND_UP(payload_per_buffer + offset, PAGE_SIZE) + 1;
d = context_get_descriptors(&ctx->context,
z + header_z, &d_bus);
if (d == NULL)
return -ENOMEM;
d->control = cpu_to_le16(DESCRIPTOR_STATUS |
DESCRIPTOR_INPUT_MORE);
if (p->skip && i == 0)
d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
d->req_count = cpu_to_le16(header_size);
d->res_count = d->req_count;
d->transfer_status = 0;
d->data_address = cpu_to_le32(d_bus + (z * sizeof(*d)));
rest = payload_per_buffer;
for (j = 1; j < z; j++) {
pd = d + j;
pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
DESCRIPTOR_INPUT_MORE);
if (offset + rest < PAGE_SIZE)
length = rest;
else
length = PAGE_SIZE - offset;
pd->req_count = cpu_to_le16(length);
pd->res_count = pd->req_count;
pd->transfer_status = 0;
page_bus = page_private(buffer->pages[page]);
pd->data_address = cpu_to_le32(page_bus + offset);
offset = (offset + length) & ~PAGE_MASK;
rest -= length;
if (offset == 0)
page++;
}
pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
DESCRIPTOR_INPUT_LAST |
DESCRIPTOR_BRANCH_ALWAYS);
if (p->interrupt && i == packet_count - 1)
pd->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
context_append(&ctx->context, d, z, header_z);
}
return 0;
}
static int
ohci_queue_iso(struct fw_iso_context *base,
struct fw_iso_packet *packet,
struct fw_iso_buffer *buffer,
unsigned long payload)
{
struct iso_context *ctx = container_of(base, struct iso_context, base);
unsigned long flags;
int retval;
spin_lock_irqsave(&ctx->context.ohci->lock, flags);
if (base->type == FW_ISO_CONTEXT_TRANSMIT)
retval = ohci_queue_iso_transmit(base, packet, buffer, payload);
else if (ctx->context.ohci->version >= OHCI_VERSION_1_1)
retval = ohci_queue_iso_receive_dualbuffer(base, packet,
buffer, payload);
else
retval = ohci_queue_iso_receive_packet_per_buffer(base, packet,
buffer,
payload);
spin_unlock_irqrestore(&ctx->context.ohci->lock, flags);
return retval;
}
static const struct fw_card_driver ohci_driver = {
.name = ohci_driver_name,
.enable = ohci_enable,
.update_phy_reg = ohci_update_phy_reg,
.set_config_rom = ohci_set_config_rom,
.send_request = ohci_send_request,
.send_response = ohci_send_response,
.cancel_packet = ohci_cancel_packet,
.enable_phys_dma = ohci_enable_phys_dma,
.get_bus_time = ohci_get_bus_time,
.allocate_iso_context = ohci_allocate_iso_context,
.free_iso_context = ohci_free_iso_context,
.queue_iso = ohci_queue_iso,
.start_iso = ohci_start_iso,
.stop_iso = ohci_stop_iso,
};
#ifdef CONFIG_PPC_PMAC
static void ohci_pmac_on(struct pci_dev *dev)
{
if (machine_is(powermac)) {
struct device_node *ofn = pci_device_to_OF_node(dev);
if (ofn) {
pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 1);
pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 1);
}
}
}
static void ohci_pmac_off(struct pci_dev *dev)
{
if (machine_is(powermac)) {
struct device_node *ofn = pci_device_to_OF_node(dev);
if (ofn) {
pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 0);
pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 0);
}
}
}
#else
#define ohci_pmac_on(dev)
#define ohci_pmac_off(dev)
#endif /* CONFIG_PPC_PMAC */
static int __devinit
pci_probe(struct pci_dev *dev, const struct pci_device_id *ent)
{
struct fw_ohci *ohci;
u32 bus_options, max_receive, link_speed;
u64 guid;
int err;
size_t size;
ohci = kzalloc(sizeof(*ohci), GFP_KERNEL);
if (ohci == NULL) {
fw_error("Could not malloc fw_ohci data.\n");
return -ENOMEM;
}
fw_card_initialize(&ohci->card, &ohci_driver, &dev->dev);
ohci_pmac_on(dev);
err = pci_enable_device(dev);
if (err) {
fw_error("Failed to enable OHCI hardware.\n");
goto fail_free;
}
pci_set_master(dev);
pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0);
pci_set_drvdata(dev, ohci);
#if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
ohci->old_uninorth = dev->vendor == PCI_VENDOR_ID_APPLE &&
dev->device == PCI_DEVICE_ID_APPLE_UNI_N_FW;
#endif
ohci->bus_reset_packet_quirk = dev->vendor == PCI_VENDOR_ID_TI;
spin_lock_init(&ohci->lock);
tasklet_init(&ohci->bus_reset_tasklet,
bus_reset_tasklet, (unsigned long)ohci);
err = pci_request_region(dev, 0, ohci_driver_name);
if (err) {
fw_error("MMIO resource unavailable\n");
goto fail_disable;
}
ohci->registers = pci_iomap(dev, 0, OHCI1394_REGISTER_SIZE);
if (ohci->registers == NULL) {
fw_error("Failed to remap registers\n");
err = -ENXIO;
goto fail_iomem;
}
ar_context_init(&ohci->ar_request_ctx, ohci,
OHCI1394_AsReqRcvContextControlSet);
ar_context_init(&ohci->ar_response_ctx, ohci,
OHCI1394_AsRspRcvContextControlSet);
context_init(&ohci->at_request_ctx, ohci,
OHCI1394_AsReqTrContextControlSet, handle_at_packet);
context_init(&ohci->at_response_ctx, ohci,
OHCI1394_AsRspTrContextControlSet, handle_at_packet);
reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, ~0);
ohci->it_context_mask = reg_read(ohci, OHCI1394_IsoRecvIntMaskSet);
reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, ~0);
size = sizeof(struct iso_context) * hweight32(ohci->it_context_mask);
ohci->it_context_list = kzalloc(size, GFP_KERNEL);
reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, ~0);
ohci->ir_context_mask = reg_read(ohci, OHCI1394_IsoXmitIntMaskSet);
reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, ~0);
size = sizeof(struct iso_context) * hweight32(ohci->ir_context_mask);
ohci->ir_context_list = kzalloc(size, GFP_KERNEL);
if (ohci->it_context_list == NULL || ohci->ir_context_list == NULL) {
fw_error("Out of memory for it/ir contexts.\n");
err = -ENOMEM;
goto fail_registers;
}
/* self-id dma buffer allocation */
ohci->self_id_cpu = dma_alloc_coherent(ohci->card.device,
SELF_ID_BUF_SIZE,
&ohci->self_id_bus,
GFP_KERNEL);
if (ohci->self_id_cpu == NULL) {
fw_error("Out of memory for self ID buffer.\n");
err = -ENOMEM;
goto fail_registers;
}
bus_options = reg_read(ohci, OHCI1394_BusOptions);
max_receive = (bus_options >> 12) & 0xf;
link_speed = bus_options & 0x7;
guid = ((u64) reg_read(ohci, OHCI1394_GUIDHi) << 32) |
reg_read(ohci, OHCI1394_GUIDLo);
err = fw_card_add(&ohci->card, max_receive, link_speed, guid);
if (err < 0)
goto fail_self_id;
ohci->version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
fw_notify("Added fw-ohci device %s, OHCI version %x.%x\n",
dev->dev.bus_id, ohci->version >> 16, ohci->version & 0xff);
return 0;
fail_self_id:
dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE,
ohci->self_id_cpu, ohci->self_id_bus);
fail_registers:
kfree(ohci->it_context_list);
kfree(ohci->ir_context_list);
pci_iounmap(dev, ohci->registers);
fail_iomem:
pci_release_region(dev, 0);
fail_disable:
pci_disable_device(dev);
fail_free:
kfree(&ohci->card);
ohci_pmac_off(dev);
return err;
}
static void pci_remove(struct pci_dev *dev)
{
struct fw_ohci *ohci;
ohci = pci_get_drvdata(dev);
reg_write(ohci, OHCI1394_IntMaskClear, ~0);
flush_writes(ohci);
fw_core_remove_card(&ohci->card);
/*
* FIXME: Fail all pending packets here, now that the upper
* layers can't queue any more.
*/
software_reset(ohci);
free_irq(dev->irq, ohci);
dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE,
ohci->self_id_cpu, ohci->self_id_bus);
kfree(ohci->it_context_list);
kfree(ohci->ir_context_list);
pci_iounmap(dev, ohci->registers);
pci_release_region(dev, 0);
pci_disable_device(dev);
kfree(&ohci->card);
ohci_pmac_off(dev);
fw_notify("Removed fw-ohci device.\n");
}
#ifdef CONFIG_PM
static int pci_suspend(struct pci_dev *dev, pm_message_t state)
{
struct fw_ohci *ohci = pci_get_drvdata(dev);
int err;
software_reset(ohci);
free_irq(dev->irq, ohci);
err = pci_save_state(dev);
if (err) {
fw_error("pci_save_state failed\n");
return err;
}
err = pci_set_power_state(dev, pci_choose_state(dev, state));
if (err)
fw_error("pci_set_power_state failed with %d\n", err);
ohci_pmac_off(dev);
return 0;
}
static int pci_resume(struct pci_dev *dev)
{
struct fw_ohci *ohci = pci_get_drvdata(dev);
int err;
ohci_pmac_on(dev);
pci_set_power_state(dev, PCI_D0);
pci_restore_state(dev);
err = pci_enable_device(dev);
if (err) {
fw_error("pci_enable_device failed\n");
return err;
}
return ohci_enable(&ohci->card, NULL, 0);
}
#endif
static struct pci_device_id pci_table[] = {
{ PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI, ~0) },
{ }
};
MODULE_DEVICE_TABLE(pci, pci_table);
static struct pci_driver fw_ohci_pci_driver = {
.name = ohci_driver_name,
.id_table = pci_table,
.probe = pci_probe,
.remove = pci_remove,
#ifdef CONFIG_PM
.resume = pci_resume,
.suspend = pci_suspend,
#endif
};
MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
MODULE_LICENSE("GPL");
/* Provide a module alias so root-on-sbp2 initrds don't break. */
#ifndef CONFIG_IEEE1394_OHCI1394_MODULE
MODULE_ALIAS("ohci1394");
#endif
static int __init fw_ohci_init(void)
{
return pci_register_driver(&fw_ohci_pci_driver);
}
static void __exit fw_ohci_cleanup(void)
{
pci_unregister_driver(&fw_ohci_pci_driver);
}
module_init(fw_ohci_init);
module_exit(fw_ohci_cleanup);