linux/arch/x86/platform/intel-mid/sfi.c
Jiang Liu f18298595a x86, intel-mid: Create IRQs for APB timers and RTC timers
Intel MID platforms has no legacy interrupts, so no IRQ descriptors
preallocated. We need to call mp_map_gsi_to_irq() to create IRQ
descriptors for APB timers and RTC timers, otherwise it may cause
invalid memory access as:
[    0.116839] BUG: unable to handle kernel NULL pointer dereference at
0000003a
[    0.123803] IP: [<c1071c0e>] setup_irq+0xf/0x4d

Tested-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Signed-off-by: Jiang Liu <jiang.liu@linux.intel.com>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Joerg Roedel <joro@8bytes.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: H. Peter Anvin <hpa@linux.intel.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Rafael J. Wysocki <rjw@rjwysocki.net>
Cc: Bjorn Helgaas <bhelgaas@google.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: David Cohen <david.a.cohen@linux.intel.com>
Cc: <stable@vger.kernel.org> # 3.17
Link: http://lkml.kernel.org/r/1414387308-27148-3-git-send-email-jiang.liu@linux.intel.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-10-29 08:52:23 +01:00

513 lines
13 KiB
C

/*
* intel_mid_sfi.c: Intel MID SFI initialization code
*
* (C) Copyright 2013 Intel Corporation
* Author: Sathyanarayanan Kuppuswamy <sathyanarayanan.kuppuswamy@intel.com>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; version 2
* of the License.
*/
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/interrupt.h>
#include <linux/scatterlist.h>
#include <linux/sfi.h>
#include <linux/intel_pmic_gpio.h>
#include <linux/spi/spi.h>
#include <linux/i2c.h>
#include <linux/skbuff.h>
#include <linux/gpio.h>
#include <linux/gpio_keys.h>
#include <linux/input.h>
#include <linux/platform_device.h>
#include <linux/irq.h>
#include <linux/module.h>
#include <linux/notifier.h>
#include <linux/mmc/core.h>
#include <linux/mmc/card.h>
#include <linux/blkdev.h>
#include <asm/setup.h>
#include <asm/mpspec_def.h>
#include <asm/hw_irq.h>
#include <asm/apic.h>
#include <asm/io_apic.h>
#include <asm/intel-mid.h>
#include <asm/intel_mid_vrtc.h>
#include <asm/io.h>
#include <asm/i8259.h>
#include <asm/intel_scu_ipc.h>
#include <asm/apb_timer.h>
#include <asm/reboot.h>
#define SFI_SIG_OEM0 "OEM0"
#define MAX_IPCDEVS 24
#define MAX_SCU_SPI 24
#define MAX_SCU_I2C 24
static struct platform_device *ipc_devs[MAX_IPCDEVS];
static struct spi_board_info *spi_devs[MAX_SCU_SPI];
static struct i2c_board_info *i2c_devs[MAX_SCU_I2C];
static struct sfi_gpio_table_entry *gpio_table;
static struct sfi_timer_table_entry sfi_mtimer_array[SFI_MTMR_MAX_NUM];
static int ipc_next_dev;
static int spi_next_dev;
static int i2c_next_dev;
static int i2c_bus[MAX_SCU_I2C];
static int gpio_num_entry;
static u32 sfi_mtimer_usage[SFI_MTMR_MAX_NUM];
int sfi_mrtc_num;
int sfi_mtimer_num;
struct sfi_rtc_table_entry sfi_mrtc_array[SFI_MRTC_MAX];
EXPORT_SYMBOL_GPL(sfi_mrtc_array);
struct blocking_notifier_head intel_scu_notifier =
BLOCKING_NOTIFIER_INIT(intel_scu_notifier);
EXPORT_SYMBOL_GPL(intel_scu_notifier);
#define intel_mid_sfi_get_pdata(dev, priv) \
((dev)->get_platform_data ? (dev)->get_platform_data(priv) : NULL)
/* parse all the mtimer info to a static mtimer array */
int __init sfi_parse_mtmr(struct sfi_table_header *table)
{
struct sfi_table_simple *sb;
struct sfi_timer_table_entry *pentry;
struct mpc_intsrc mp_irq;
int totallen;
sb = (struct sfi_table_simple *)table;
if (!sfi_mtimer_num) {
sfi_mtimer_num = SFI_GET_NUM_ENTRIES(sb,
struct sfi_timer_table_entry);
pentry = (struct sfi_timer_table_entry *) sb->pentry;
totallen = sfi_mtimer_num * sizeof(*pentry);
memcpy(sfi_mtimer_array, pentry, totallen);
}
pr_debug("SFI MTIMER info (num = %d):\n", sfi_mtimer_num);
pentry = sfi_mtimer_array;
for (totallen = 0; totallen < sfi_mtimer_num; totallen++, pentry++) {
pr_debug("timer[%d]: paddr = 0x%08x, freq = %dHz, irq = %d\n",
totallen, (u32)pentry->phys_addr,
pentry->freq_hz, pentry->irq);
if (!pentry->irq)
continue;
mp_irq.type = MP_INTSRC;
mp_irq.irqtype = mp_INT;
/* triggering mode edge bit 2-3, active high polarity bit 0-1 */
mp_irq.irqflag = 5;
mp_irq.srcbus = MP_BUS_ISA;
mp_irq.srcbusirq = pentry->irq; /* IRQ */
mp_irq.dstapic = MP_APIC_ALL;
mp_irq.dstirq = pentry->irq;
mp_save_irq(&mp_irq);
mp_map_gsi_to_irq(pentry->irq, IOAPIC_MAP_ALLOC);
}
return 0;
}
struct sfi_timer_table_entry *sfi_get_mtmr(int hint)
{
int i;
if (hint < sfi_mtimer_num) {
if (!sfi_mtimer_usage[hint]) {
pr_debug("hint taken for timer %d irq %d\n",
hint, sfi_mtimer_array[hint].irq);
sfi_mtimer_usage[hint] = 1;
return &sfi_mtimer_array[hint];
}
}
/* take the first timer available */
for (i = 0; i < sfi_mtimer_num;) {
if (!sfi_mtimer_usage[i]) {
sfi_mtimer_usage[i] = 1;
return &sfi_mtimer_array[i];
}
i++;
}
return NULL;
}
void sfi_free_mtmr(struct sfi_timer_table_entry *mtmr)
{
int i;
for (i = 0; i < sfi_mtimer_num;) {
if (mtmr->irq == sfi_mtimer_array[i].irq) {
sfi_mtimer_usage[i] = 0;
return;
}
i++;
}
}
/* parse all the mrtc info to a global mrtc array */
int __init sfi_parse_mrtc(struct sfi_table_header *table)
{
struct sfi_table_simple *sb;
struct sfi_rtc_table_entry *pentry;
struct mpc_intsrc mp_irq;
int totallen;
sb = (struct sfi_table_simple *)table;
if (!sfi_mrtc_num) {
sfi_mrtc_num = SFI_GET_NUM_ENTRIES(sb,
struct sfi_rtc_table_entry);
pentry = (struct sfi_rtc_table_entry *)sb->pentry;
totallen = sfi_mrtc_num * sizeof(*pentry);
memcpy(sfi_mrtc_array, pentry, totallen);
}
pr_debug("SFI RTC info (num = %d):\n", sfi_mrtc_num);
pentry = sfi_mrtc_array;
for (totallen = 0; totallen < sfi_mrtc_num; totallen++, pentry++) {
pr_debug("RTC[%d]: paddr = 0x%08x, irq = %d\n",
totallen, (u32)pentry->phys_addr, pentry->irq);
mp_irq.type = MP_INTSRC;
mp_irq.irqtype = mp_INT;
mp_irq.irqflag = 0xf; /* level trigger and active low */
mp_irq.srcbus = MP_BUS_ISA;
mp_irq.srcbusirq = pentry->irq; /* IRQ */
mp_irq.dstapic = MP_APIC_ALL;
mp_irq.dstirq = pentry->irq;
mp_save_irq(&mp_irq);
mp_map_gsi_to_irq(pentry->irq, IOAPIC_MAP_ALLOC);
}
return 0;
}
/*
* Parsing GPIO table first, since the DEVS table will need this table
* to map the pin name to the actual pin.
*/
static int __init sfi_parse_gpio(struct sfi_table_header *table)
{
struct sfi_table_simple *sb;
struct sfi_gpio_table_entry *pentry;
int num, i;
if (gpio_table)
return 0;
sb = (struct sfi_table_simple *)table;
num = SFI_GET_NUM_ENTRIES(sb, struct sfi_gpio_table_entry);
pentry = (struct sfi_gpio_table_entry *)sb->pentry;
gpio_table = kmalloc(num * sizeof(*pentry), GFP_KERNEL);
if (!gpio_table)
return -1;
memcpy(gpio_table, pentry, num * sizeof(*pentry));
gpio_num_entry = num;
pr_debug("GPIO pin info:\n");
for (i = 0; i < num; i++, pentry++)
pr_debug("info[%2d]: controller = %16.16s, pin_name = %16.16s,"
" pin = %d\n", i,
pentry->controller_name,
pentry->pin_name,
pentry->pin_no);
return 0;
}
int get_gpio_by_name(const char *name)
{
struct sfi_gpio_table_entry *pentry = gpio_table;
int i;
if (!pentry)
return -1;
for (i = 0; i < gpio_num_entry; i++, pentry++) {
if (!strncmp(name, pentry->pin_name, SFI_NAME_LEN))
return pentry->pin_no;
}
return -EINVAL;
}
void __init intel_scu_device_register(struct platform_device *pdev)
{
if (ipc_next_dev == MAX_IPCDEVS)
pr_err("too many SCU IPC devices");
else
ipc_devs[ipc_next_dev++] = pdev;
}
static void __init intel_scu_spi_device_register(struct spi_board_info *sdev)
{
struct spi_board_info *new_dev;
if (spi_next_dev == MAX_SCU_SPI) {
pr_err("too many SCU SPI devices");
return;
}
new_dev = kzalloc(sizeof(*sdev), GFP_KERNEL);
if (!new_dev) {
pr_err("failed to alloc mem for delayed spi dev %s\n",
sdev->modalias);
return;
}
*new_dev = *sdev;
spi_devs[spi_next_dev++] = new_dev;
}
static void __init intel_scu_i2c_device_register(int bus,
struct i2c_board_info *idev)
{
struct i2c_board_info *new_dev;
if (i2c_next_dev == MAX_SCU_I2C) {
pr_err("too many SCU I2C devices");
return;
}
new_dev = kzalloc(sizeof(*idev), GFP_KERNEL);
if (!new_dev) {
pr_err("failed to alloc mem for delayed i2c dev %s\n",
idev->type);
return;
}
*new_dev = *idev;
i2c_bus[i2c_next_dev] = bus;
i2c_devs[i2c_next_dev++] = new_dev;
}
/* Called by IPC driver */
void intel_scu_devices_create(void)
{
int i;
for (i = 0; i < ipc_next_dev; i++)
platform_device_add(ipc_devs[i]);
for (i = 0; i < spi_next_dev; i++)
spi_register_board_info(spi_devs[i], 1);
for (i = 0; i < i2c_next_dev; i++) {
struct i2c_adapter *adapter;
struct i2c_client *client;
adapter = i2c_get_adapter(i2c_bus[i]);
if (adapter) {
client = i2c_new_device(adapter, i2c_devs[i]);
if (!client)
pr_err("can't create i2c device %s\n",
i2c_devs[i]->type);
} else
i2c_register_board_info(i2c_bus[i], i2c_devs[i], 1);
}
intel_scu_notifier_post(SCU_AVAILABLE, NULL);
}
EXPORT_SYMBOL_GPL(intel_scu_devices_create);
/* Called by IPC driver */
void intel_scu_devices_destroy(void)
{
int i;
intel_scu_notifier_post(SCU_DOWN, NULL);
for (i = 0; i < ipc_next_dev; i++)
platform_device_del(ipc_devs[i]);
}
EXPORT_SYMBOL_GPL(intel_scu_devices_destroy);
static void __init install_irq_resource(struct platform_device *pdev, int irq)
{
/* Single threaded */
static struct resource res __initdata = {
.name = "IRQ",
.flags = IORESOURCE_IRQ,
};
res.start = irq;
platform_device_add_resources(pdev, &res, 1);
}
static void __init sfi_handle_ipc_dev(struct sfi_device_table_entry *pentry,
struct devs_id *dev)
{
struct platform_device *pdev;
void *pdata = NULL;
pr_debug("IPC bus, name = %16.16s, irq = 0x%2x\n",
pentry->name, pentry->irq);
pdata = intel_mid_sfi_get_pdata(dev, pentry);
if (IS_ERR(pdata))
return;
pdev = platform_device_alloc(pentry->name, 0);
if (pdev == NULL) {
pr_err("out of memory for SFI platform device '%s'.\n",
pentry->name);
return;
}
install_irq_resource(pdev, pentry->irq);
pdev->dev.platform_data = pdata;
platform_device_add(pdev);
}
static void __init sfi_handle_spi_dev(struct sfi_device_table_entry *pentry,
struct devs_id *dev)
{
struct spi_board_info spi_info;
void *pdata = NULL;
memset(&spi_info, 0, sizeof(spi_info));
strncpy(spi_info.modalias, pentry->name, SFI_NAME_LEN);
spi_info.irq = ((pentry->irq == (u8)0xff) ? 0 : pentry->irq);
spi_info.bus_num = pentry->host_num;
spi_info.chip_select = pentry->addr;
spi_info.max_speed_hz = pentry->max_freq;
pr_debug("SPI bus=%d, name=%16.16s, irq=0x%2x, max_freq=%d, cs=%d\n",
spi_info.bus_num,
spi_info.modalias,
spi_info.irq,
spi_info.max_speed_hz,
spi_info.chip_select);
pdata = intel_mid_sfi_get_pdata(dev, &spi_info);
if (IS_ERR(pdata))
return;
spi_info.platform_data = pdata;
if (dev->delay)
intel_scu_spi_device_register(&spi_info);
else
spi_register_board_info(&spi_info, 1);
}
static void __init sfi_handle_i2c_dev(struct sfi_device_table_entry *pentry,
struct devs_id *dev)
{
struct i2c_board_info i2c_info;
void *pdata = NULL;
memset(&i2c_info, 0, sizeof(i2c_info));
strncpy(i2c_info.type, pentry->name, SFI_NAME_LEN);
i2c_info.irq = ((pentry->irq == (u8)0xff) ? 0 : pentry->irq);
i2c_info.addr = pentry->addr;
pr_debug("I2C bus = %d, name = %16.16s, irq = 0x%2x, addr = 0x%x\n",
pentry->host_num,
i2c_info.type,
i2c_info.irq,
i2c_info.addr);
pdata = intel_mid_sfi_get_pdata(dev, &i2c_info);
i2c_info.platform_data = pdata;
if (IS_ERR(pdata))
return;
if (dev->delay)
intel_scu_i2c_device_register(pentry->host_num, &i2c_info);
else
i2c_register_board_info(pentry->host_num, &i2c_info, 1);
}
extern struct devs_id *const __x86_intel_mid_dev_start[],
*const __x86_intel_mid_dev_end[];
static struct devs_id __init *get_device_id(u8 type, char *name)
{
struct devs_id *const *dev_table;
for (dev_table = __x86_intel_mid_dev_start;
dev_table < __x86_intel_mid_dev_end; dev_table++) {
struct devs_id *dev = *dev_table;
if (dev->type == type &&
!strncmp(dev->name, name, SFI_NAME_LEN)) {
return dev;
}
}
return NULL;
}
static int __init sfi_parse_devs(struct sfi_table_header *table)
{
struct sfi_table_simple *sb;
struct sfi_device_table_entry *pentry;
struct devs_id *dev = NULL;
int num, i, ret;
int polarity;
sb = (struct sfi_table_simple *)table;
num = SFI_GET_NUM_ENTRIES(sb, struct sfi_device_table_entry);
pentry = (struct sfi_device_table_entry *)sb->pentry;
for (i = 0; i < num; i++, pentry++) {
int irq = pentry->irq;
if (irq != (u8)0xff) { /* native RTE case */
/* these SPI2 devices are not exposed to system as PCI
* devices, but they have separate RTE entry in IOAPIC
* so we have to enable them one by one here
*/
if (intel_mid_identify_cpu() ==
INTEL_MID_CPU_CHIP_TANGIER) {
if (!strncmp(pentry->name, "r69001-ts-i2c", 13))
/* active low */
polarity = 1;
else if (!strncmp(pentry->name,
"synaptics_3202", 14))
/* active low */
polarity = 1;
else if (irq == 41)
/* fast_int_1 */
polarity = 1;
else
/* active high */
polarity = 0;
} else {
/* PNW and CLV go with active low */
polarity = 1;
}
ret = mp_set_gsi_attr(irq, 1, polarity, NUMA_NO_NODE);
if (ret == 0)
ret = mp_map_gsi_to_irq(irq, IOAPIC_MAP_ALLOC);
WARN_ON(ret < 0);
}
dev = get_device_id(pentry->type, pentry->name);
if (!dev)
continue;
if (dev->device_handler) {
dev->device_handler(pentry, dev);
} else {
switch (pentry->type) {
case SFI_DEV_TYPE_IPC:
sfi_handle_ipc_dev(pentry, dev);
break;
case SFI_DEV_TYPE_SPI:
sfi_handle_spi_dev(pentry, dev);
break;
case SFI_DEV_TYPE_I2C:
sfi_handle_i2c_dev(pentry, dev);
break;
case SFI_DEV_TYPE_UART:
case SFI_DEV_TYPE_HSI:
default:
break;
}
}
}
return 0;
}
static int __init intel_mid_platform_init(void)
{
sfi_table_parse(SFI_SIG_GPIO, NULL, NULL, sfi_parse_gpio);
sfi_table_parse(SFI_SIG_DEVS, NULL, NULL, sfi_parse_devs);
return 0;
}
arch_initcall(intel_mid_platform_init);