mirror of
https://github.com/torvalds/linux.git
synced 2024-11-16 09:02:00 +00:00
ab9f2faf8f
- "Checksum offload support in user space" enablement - Misc cxgb4 fixes, add T6 support - Misc usnic fixes - 32 bit build warning fixes - Misc ocrdma fixes - Multicast loopback prevention extension - Extend the GID cache to store and return attributes of GIDs - Misc iSER updates - iSER clustering update - Network NameSpace support for rdma CM - Work Request cleanup series - New Memory Registration API -----BEGIN PGP SIGNATURE----- Version: GnuPG v1 iQIcBAABAgAGBQJWPO5UAAoJELgmozMOVy/dSCQP/iX2ImMZOS3VkOYKhLR3dSv8 4vTEiYIoAT1JEXiPpiabuuACwotcZcMRk9kZ0dcWmBoFusTzKJmoDOkgAYd95XqY EsAyjqtzUGNNMjH5u5W+kdbaFdH9Ktq7IJvspRlJuvzC47Srax+qBxX01jrAkDgh 4PoA3hEa2KkvkDjY2Mhvk9EWd/uflO9Ky6o0D8jUQkWtEvKBRyDjQLk30oW6wHX9 pTWqww3dD0EXTrR+PDA88v2saKH1kZFU1Nt2eU8Bw+zlJM8hcX6U7PfRX0g3HT/J o+7ejTdLPWFDH35gJOU+KE519f1JbwfRjPJCqbOC9IttBB7iHSbhcpQLpWv4JV1x agdBeDA3TGQj3dHb2SkYMlWXCBp7q8UCbVGvvirTFzGSGU73sc6hhP+vCKvPQIlE Ah5tUqD7Y3mOBjvuDeIzKMLXILd5d3cH+m7Laytrf5e7fJPmBRZyOkcMh0QVElyl mKo+PFjghgeTFb405J7SDDw/vThVyN9HyIt7AGEzObaajzOOk9R1hkQr46XVy9TK yi58fl85yQ2n6TWV6NRnvkQoMy/N2HAEuXk/7HtO0PabV5w3Lo0zvXB9SnVrrVEm 58FWRBYCWorVSdSacuDnPm0iz45WSRIb9G9sBlhEC93eXRq2rSBoy4RvyLeliHFH hllyhNNolI6FJ64j07Xm =bBIY -----END PGP SIGNATURE----- Merge tag 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/dledford/rdma Pull rdma updates from Doug Ledford: "This is my initial round of 4.4 merge window patches. There are a few other things I wish to get in for 4.4 that aren't in this pull, as this represents what has gone through merge/build/run testing and not what is the last few items for which testing is not yet complete. - "Checksum offload support in user space" enablement - Misc cxgb4 fixes, add T6 support - Misc usnic fixes - 32 bit build warning fixes - Misc ocrdma fixes - Multicast loopback prevention extension - Extend the GID cache to store and return attributes of GIDs - Misc iSER updates - iSER clustering update - Network NameSpace support for rdma CM - Work Request cleanup series - New Memory Registration API" * tag 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/dledford/rdma: (76 commits) IB/core, cma: Make __attribute_const__ declarations sparse-friendly IB/core: Remove old fast registration API IB/ipath: Remove fast registration from the code IB/hfi1: Remove fast registration from the code RDMA/nes: Remove old FRWR API IB/qib: Remove old FRWR API iw_cxgb4: Remove old FRWR API RDMA/cxgb3: Remove old FRWR API RDMA/ocrdma: Remove old FRWR API IB/mlx4: Remove old FRWR API support IB/mlx5: Remove old FRWR API support IB/srp: Dont allocate a page vector when using fast_reg IB/srp: Remove srp_finish_mapping IB/srp: Convert to new registration API IB/srp: Split srp_map_sg RDS/IW: Convert to new memory registration API svcrdma: Port to new memory registration API xprtrdma: Port to new memory registration API iser-target: Port to new memory registration API IB/iser: Port to new fast registration API ...
838 lines
23 KiB
C
838 lines
23 KiB
C
/*
|
|
* Copyright (c) 2006 Oracle. All rights reserved.
|
|
*
|
|
* This software is available to you under a choice of one of two
|
|
* licenses. You may choose to be licensed under the terms of the GNU
|
|
* General Public License (GPL) Version 2, available from the file
|
|
* COPYING in the main directory of this source tree, or the
|
|
* OpenIB.org BSD license below:
|
|
*
|
|
* Redistribution and use in source and binary forms, with or
|
|
* without modification, are permitted provided that the following
|
|
* conditions are met:
|
|
*
|
|
* - Redistributions of source code must retain the above
|
|
* copyright notice, this list of conditions and the following
|
|
* disclaimer.
|
|
*
|
|
* - Redistributions in binary form must reproduce the above
|
|
* copyright notice, this list of conditions and the following
|
|
* disclaimer in the documentation and/or other materials
|
|
* provided with the distribution.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
|
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
|
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
|
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
|
|
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
|
|
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
|
|
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
* SOFTWARE.
|
|
*
|
|
*/
|
|
#include <linux/kernel.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/ratelimit.h>
|
|
|
|
#include "rds.h"
|
|
#include "iw.h"
|
|
|
|
|
|
/*
|
|
* This is stored as mr->r_trans_private.
|
|
*/
|
|
struct rds_iw_mr {
|
|
struct rds_iw_device *device;
|
|
struct rds_iw_mr_pool *pool;
|
|
struct rdma_cm_id *cm_id;
|
|
|
|
struct ib_mr *mr;
|
|
|
|
struct rds_iw_mapping mapping;
|
|
unsigned char remap_count;
|
|
};
|
|
|
|
/*
|
|
* Our own little MR pool
|
|
*/
|
|
struct rds_iw_mr_pool {
|
|
struct rds_iw_device *device; /* back ptr to the device that owns us */
|
|
|
|
struct mutex flush_lock; /* serialize fmr invalidate */
|
|
struct work_struct flush_worker; /* flush worker */
|
|
|
|
spinlock_t list_lock; /* protect variables below */
|
|
atomic_t item_count; /* total # of MRs */
|
|
atomic_t dirty_count; /* # dirty of MRs */
|
|
struct list_head dirty_list; /* dirty mappings */
|
|
struct list_head clean_list; /* unused & unamapped MRs */
|
|
atomic_t free_pinned; /* memory pinned by free MRs */
|
|
unsigned long max_message_size; /* in pages */
|
|
unsigned long max_items;
|
|
unsigned long max_items_soft;
|
|
unsigned long max_free_pinned;
|
|
int max_pages;
|
|
};
|
|
|
|
static void rds_iw_flush_mr_pool(struct rds_iw_mr_pool *pool, int free_all);
|
|
static void rds_iw_mr_pool_flush_worker(struct work_struct *work);
|
|
static int rds_iw_init_reg(struct rds_iw_mr_pool *pool, struct rds_iw_mr *ibmr);
|
|
static int rds_iw_map_reg(struct rds_iw_mr_pool *pool,
|
|
struct rds_iw_mr *ibmr,
|
|
struct scatterlist *sg, unsigned int nents);
|
|
static void rds_iw_free_fastreg(struct rds_iw_mr_pool *pool, struct rds_iw_mr *ibmr);
|
|
static unsigned int rds_iw_unmap_fastreg_list(struct rds_iw_mr_pool *pool,
|
|
struct list_head *unmap_list,
|
|
struct list_head *kill_list,
|
|
int *unpinned);
|
|
static void rds_iw_destroy_fastreg(struct rds_iw_mr_pool *pool, struct rds_iw_mr *ibmr);
|
|
|
|
static int rds_iw_get_device(struct sockaddr_in *src, struct sockaddr_in *dst,
|
|
struct rds_iw_device **rds_iwdev,
|
|
struct rdma_cm_id **cm_id)
|
|
{
|
|
struct rds_iw_device *iwdev;
|
|
struct rds_iw_cm_id *i_cm_id;
|
|
|
|
*rds_iwdev = NULL;
|
|
*cm_id = NULL;
|
|
|
|
list_for_each_entry(iwdev, &rds_iw_devices, list) {
|
|
spin_lock_irq(&iwdev->spinlock);
|
|
list_for_each_entry(i_cm_id, &iwdev->cm_id_list, list) {
|
|
struct sockaddr_in *src_addr, *dst_addr;
|
|
|
|
src_addr = (struct sockaddr_in *)&i_cm_id->cm_id->route.addr.src_addr;
|
|
dst_addr = (struct sockaddr_in *)&i_cm_id->cm_id->route.addr.dst_addr;
|
|
|
|
rdsdebug("local ipaddr = %x port %d, "
|
|
"remote ipaddr = %x port %d"
|
|
"..looking for %x port %d, "
|
|
"remote ipaddr = %x port %d\n",
|
|
src_addr->sin_addr.s_addr,
|
|
src_addr->sin_port,
|
|
dst_addr->sin_addr.s_addr,
|
|
dst_addr->sin_port,
|
|
src->sin_addr.s_addr,
|
|
src->sin_port,
|
|
dst->sin_addr.s_addr,
|
|
dst->sin_port);
|
|
#ifdef WORKING_TUPLE_DETECTION
|
|
if (src_addr->sin_addr.s_addr == src->sin_addr.s_addr &&
|
|
src_addr->sin_port == src->sin_port &&
|
|
dst_addr->sin_addr.s_addr == dst->sin_addr.s_addr &&
|
|
dst_addr->sin_port == dst->sin_port) {
|
|
#else
|
|
/* FIXME - needs to compare the local and remote
|
|
* ipaddr/port tuple, but the ipaddr is the only
|
|
* available information in the rds_sock (as the rest are
|
|
* zero'ed. It doesn't appear to be properly populated
|
|
* during connection setup...
|
|
*/
|
|
if (src_addr->sin_addr.s_addr == src->sin_addr.s_addr) {
|
|
#endif
|
|
spin_unlock_irq(&iwdev->spinlock);
|
|
*rds_iwdev = iwdev;
|
|
*cm_id = i_cm_id->cm_id;
|
|
return 0;
|
|
}
|
|
}
|
|
spin_unlock_irq(&iwdev->spinlock);
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
static int rds_iw_add_cm_id(struct rds_iw_device *rds_iwdev, struct rdma_cm_id *cm_id)
|
|
{
|
|
struct rds_iw_cm_id *i_cm_id;
|
|
|
|
i_cm_id = kmalloc(sizeof *i_cm_id, GFP_KERNEL);
|
|
if (!i_cm_id)
|
|
return -ENOMEM;
|
|
|
|
i_cm_id->cm_id = cm_id;
|
|
|
|
spin_lock_irq(&rds_iwdev->spinlock);
|
|
list_add_tail(&i_cm_id->list, &rds_iwdev->cm_id_list);
|
|
spin_unlock_irq(&rds_iwdev->spinlock);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void rds_iw_remove_cm_id(struct rds_iw_device *rds_iwdev,
|
|
struct rdma_cm_id *cm_id)
|
|
{
|
|
struct rds_iw_cm_id *i_cm_id;
|
|
|
|
spin_lock_irq(&rds_iwdev->spinlock);
|
|
list_for_each_entry(i_cm_id, &rds_iwdev->cm_id_list, list) {
|
|
if (i_cm_id->cm_id == cm_id) {
|
|
list_del(&i_cm_id->list);
|
|
kfree(i_cm_id);
|
|
break;
|
|
}
|
|
}
|
|
spin_unlock_irq(&rds_iwdev->spinlock);
|
|
}
|
|
|
|
|
|
int rds_iw_update_cm_id(struct rds_iw_device *rds_iwdev, struct rdma_cm_id *cm_id)
|
|
{
|
|
struct sockaddr_in *src_addr, *dst_addr;
|
|
struct rds_iw_device *rds_iwdev_old;
|
|
struct rdma_cm_id *pcm_id;
|
|
int rc;
|
|
|
|
src_addr = (struct sockaddr_in *)&cm_id->route.addr.src_addr;
|
|
dst_addr = (struct sockaddr_in *)&cm_id->route.addr.dst_addr;
|
|
|
|
rc = rds_iw_get_device(src_addr, dst_addr, &rds_iwdev_old, &pcm_id);
|
|
if (rc)
|
|
rds_iw_remove_cm_id(rds_iwdev, cm_id);
|
|
|
|
return rds_iw_add_cm_id(rds_iwdev, cm_id);
|
|
}
|
|
|
|
void rds_iw_add_conn(struct rds_iw_device *rds_iwdev, struct rds_connection *conn)
|
|
{
|
|
struct rds_iw_connection *ic = conn->c_transport_data;
|
|
|
|
/* conn was previously on the nodev_conns_list */
|
|
spin_lock_irq(&iw_nodev_conns_lock);
|
|
BUG_ON(list_empty(&iw_nodev_conns));
|
|
BUG_ON(list_empty(&ic->iw_node));
|
|
list_del(&ic->iw_node);
|
|
|
|
spin_lock(&rds_iwdev->spinlock);
|
|
list_add_tail(&ic->iw_node, &rds_iwdev->conn_list);
|
|
spin_unlock(&rds_iwdev->spinlock);
|
|
spin_unlock_irq(&iw_nodev_conns_lock);
|
|
|
|
ic->rds_iwdev = rds_iwdev;
|
|
}
|
|
|
|
void rds_iw_remove_conn(struct rds_iw_device *rds_iwdev, struct rds_connection *conn)
|
|
{
|
|
struct rds_iw_connection *ic = conn->c_transport_data;
|
|
|
|
/* place conn on nodev_conns_list */
|
|
spin_lock(&iw_nodev_conns_lock);
|
|
|
|
spin_lock_irq(&rds_iwdev->spinlock);
|
|
BUG_ON(list_empty(&ic->iw_node));
|
|
list_del(&ic->iw_node);
|
|
spin_unlock_irq(&rds_iwdev->spinlock);
|
|
|
|
list_add_tail(&ic->iw_node, &iw_nodev_conns);
|
|
|
|
spin_unlock(&iw_nodev_conns_lock);
|
|
|
|
rds_iw_remove_cm_id(ic->rds_iwdev, ic->i_cm_id);
|
|
ic->rds_iwdev = NULL;
|
|
}
|
|
|
|
void __rds_iw_destroy_conns(struct list_head *list, spinlock_t *list_lock)
|
|
{
|
|
struct rds_iw_connection *ic, *_ic;
|
|
LIST_HEAD(tmp_list);
|
|
|
|
/* avoid calling conn_destroy with irqs off */
|
|
spin_lock_irq(list_lock);
|
|
list_splice(list, &tmp_list);
|
|
INIT_LIST_HEAD(list);
|
|
spin_unlock_irq(list_lock);
|
|
|
|
list_for_each_entry_safe(ic, _ic, &tmp_list, iw_node)
|
|
rds_conn_destroy(ic->conn);
|
|
}
|
|
|
|
static void rds_iw_set_scatterlist(struct rds_iw_scatterlist *sg,
|
|
struct scatterlist *list, unsigned int sg_len)
|
|
{
|
|
sg->list = list;
|
|
sg->len = sg_len;
|
|
sg->dma_len = 0;
|
|
sg->dma_npages = 0;
|
|
sg->bytes = 0;
|
|
}
|
|
|
|
static int rds_iw_map_scatterlist(struct rds_iw_device *rds_iwdev,
|
|
struct rds_iw_scatterlist *sg)
|
|
{
|
|
struct ib_device *dev = rds_iwdev->dev;
|
|
int i, ret;
|
|
|
|
WARN_ON(sg->dma_len);
|
|
|
|
sg->dma_len = ib_dma_map_sg(dev, sg->list, sg->len, DMA_BIDIRECTIONAL);
|
|
if (unlikely(!sg->dma_len)) {
|
|
printk(KERN_WARNING "RDS/IW: dma_map_sg failed!\n");
|
|
return -EBUSY;
|
|
}
|
|
|
|
sg->bytes = 0;
|
|
sg->dma_npages = 0;
|
|
|
|
ret = -EINVAL;
|
|
for (i = 0; i < sg->dma_len; ++i) {
|
|
unsigned int dma_len = ib_sg_dma_len(dev, &sg->list[i]);
|
|
u64 dma_addr = ib_sg_dma_address(dev, &sg->list[i]);
|
|
u64 end_addr;
|
|
|
|
sg->bytes += dma_len;
|
|
|
|
end_addr = dma_addr + dma_len;
|
|
if (dma_addr & PAGE_MASK) {
|
|
if (i > 0)
|
|
goto out_unmap;
|
|
dma_addr &= ~PAGE_MASK;
|
|
}
|
|
if (end_addr & PAGE_MASK) {
|
|
if (i < sg->dma_len - 1)
|
|
goto out_unmap;
|
|
end_addr = (end_addr + PAGE_MASK) & ~PAGE_MASK;
|
|
}
|
|
|
|
sg->dma_npages += (end_addr - dma_addr) >> PAGE_SHIFT;
|
|
}
|
|
|
|
/* Now gather the dma addrs into one list */
|
|
if (sg->dma_npages > fastreg_message_size)
|
|
goto out_unmap;
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
out_unmap:
|
|
ib_dma_unmap_sg(rds_iwdev->dev, sg->list, sg->len, DMA_BIDIRECTIONAL);
|
|
sg->dma_len = 0;
|
|
return ret;
|
|
}
|
|
|
|
|
|
struct rds_iw_mr_pool *rds_iw_create_mr_pool(struct rds_iw_device *rds_iwdev)
|
|
{
|
|
struct rds_iw_mr_pool *pool;
|
|
|
|
pool = kzalloc(sizeof(*pool), GFP_KERNEL);
|
|
if (!pool) {
|
|
printk(KERN_WARNING "RDS/IW: rds_iw_create_mr_pool alloc error\n");
|
|
return ERR_PTR(-ENOMEM);
|
|
}
|
|
|
|
pool->device = rds_iwdev;
|
|
INIT_LIST_HEAD(&pool->dirty_list);
|
|
INIT_LIST_HEAD(&pool->clean_list);
|
|
mutex_init(&pool->flush_lock);
|
|
spin_lock_init(&pool->list_lock);
|
|
INIT_WORK(&pool->flush_worker, rds_iw_mr_pool_flush_worker);
|
|
|
|
pool->max_message_size = fastreg_message_size;
|
|
pool->max_items = fastreg_pool_size;
|
|
pool->max_free_pinned = pool->max_items * pool->max_message_size / 4;
|
|
pool->max_pages = fastreg_message_size;
|
|
|
|
/* We never allow more than max_items MRs to be allocated.
|
|
* When we exceed more than max_items_soft, we start freeing
|
|
* items more aggressively.
|
|
* Make sure that max_items > max_items_soft > max_items / 2
|
|
*/
|
|
pool->max_items_soft = pool->max_items * 3 / 4;
|
|
|
|
return pool;
|
|
}
|
|
|
|
void rds_iw_get_mr_info(struct rds_iw_device *rds_iwdev, struct rds_info_rdma_connection *iinfo)
|
|
{
|
|
struct rds_iw_mr_pool *pool = rds_iwdev->mr_pool;
|
|
|
|
iinfo->rdma_mr_max = pool->max_items;
|
|
iinfo->rdma_mr_size = pool->max_pages;
|
|
}
|
|
|
|
void rds_iw_destroy_mr_pool(struct rds_iw_mr_pool *pool)
|
|
{
|
|
flush_workqueue(rds_wq);
|
|
rds_iw_flush_mr_pool(pool, 1);
|
|
BUG_ON(atomic_read(&pool->item_count));
|
|
BUG_ON(atomic_read(&pool->free_pinned));
|
|
kfree(pool);
|
|
}
|
|
|
|
static inline struct rds_iw_mr *rds_iw_reuse_fmr(struct rds_iw_mr_pool *pool)
|
|
{
|
|
struct rds_iw_mr *ibmr = NULL;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&pool->list_lock, flags);
|
|
if (!list_empty(&pool->clean_list)) {
|
|
ibmr = list_entry(pool->clean_list.next, struct rds_iw_mr, mapping.m_list);
|
|
list_del_init(&ibmr->mapping.m_list);
|
|
}
|
|
spin_unlock_irqrestore(&pool->list_lock, flags);
|
|
|
|
return ibmr;
|
|
}
|
|
|
|
static struct rds_iw_mr *rds_iw_alloc_mr(struct rds_iw_device *rds_iwdev)
|
|
{
|
|
struct rds_iw_mr_pool *pool = rds_iwdev->mr_pool;
|
|
struct rds_iw_mr *ibmr = NULL;
|
|
int err = 0, iter = 0;
|
|
|
|
while (1) {
|
|
ibmr = rds_iw_reuse_fmr(pool);
|
|
if (ibmr)
|
|
return ibmr;
|
|
|
|
/* No clean MRs - now we have the choice of either
|
|
* allocating a fresh MR up to the limit imposed by the
|
|
* driver, or flush any dirty unused MRs.
|
|
* We try to avoid stalling in the send path if possible,
|
|
* so we allocate as long as we're allowed to.
|
|
*
|
|
* We're fussy with enforcing the FMR limit, though. If the driver
|
|
* tells us we can't use more than N fmrs, we shouldn't start
|
|
* arguing with it */
|
|
if (atomic_inc_return(&pool->item_count) <= pool->max_items)
|
|
break;
|
|
|
|
atomic_dec(&pool->item_count);
|
|
|
|
if (++iter > 2) {
|
|
rds_iw_stats_inc(s_iw_rdma_mr_pool_depleted);
|
|
return ERR_PTR(-EAGAIN);
|
|
}
|
|
|
|
/* We do have some empty MRs. Flush them out. */
|
|
rds_iw_stats_inc(s_iw_rdma_mr_pool_wait);
|
|
rds_iw_flush_mr_pool(pool, 0);
|
|
}
|
|
|
|
ibmr = kzalloc(sizeof(*ibmr), GFP_KERNEL);
|
|
if (!ibmr) {
|
|
err = -ENOMEM;
|
|
goto out_no_cigar;
|
|
}
|
|
|
|
spin_lock_init(&ibmr->mapping.m_lock);
|
|
INIT_LIST_HEAD(&ibmr->mapping.m_list);
|
|
ibmr->mapping.m_mr = ibmr;
|
|
|
|
err = rds_iw_init_reg(pool, ibmr);
|
|
if (err)
|
|
goto out_no_cigar;
|
|
|
|
rds_iw_stats_inc(s_iw_rdma_mr_alloc);
|
|
return ibmr;
|
|
|
|
out_no_cigar:
|
|
if (ibmr) {
|
|
rds_iw_destroy_fastreg(pool, ibmr);
|
|
kfree(ibmr);
|
|
}
|
|
atomic_dec(&pool->item_count);
|
|
return ERR_PTR(err);
|
|
}
|
|
|
|
void rds_iw_sync_mr(void *trans_private, int direction)
|
|
{
|
|
struct rds_iw_mr *ibmr = trans_private;
|
|
struct rds_iw_device *rds_iwdev = ibmr->device;
|
|
|
|
switch (direction) {
|
|
case DMA_FROM_DEVICE:
|
|
ib_dma_sync_sg_for_cpu(rds_iwdev->dev, ibmr->mapping.m_sg.list,
|
|
ibmr->mapping.m_sg.dma_len, DMA_BIDIRECTIONAL);
|
|
break;
|
|
case DMA_TO_DEVICE:
|
|
ib_dma_sync_sg_for_device(rds_iwdev->dev, ibmr->mapping.m_sg.list,
|
|
ibmr->mapping.m_sg.dma_len, DMA_BIDIRECTIONAL);
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Flush our pool of MRs.
|
|
* At a minimum, all currently unused MRs are unmapped.
|
|
* If the number of MRs allocated exceeds the limit, we also try
|
|
* to free as many MRs as needed to get back to this limit.
|
|
*/
|
|
static void rds_iw_flush_mr_pool(struct rds_iw_mr_pool *pool, int free_all)
|
|
{
|
|
struct rds_iw_mr *ibmr, *next;
|
|
LIST_HEAD(unmap_list);
|
|
LIST_HEAD(kill_list);
|
|
unsigned long flags;
|
|
unsigned int nfreed = 0, ncleaned = 0, unpinned = 0;
|
|
|
|
rds_iw_stats_inc(s_iw_rdma_mr_pool_flush);
|
|
|
|
mutex_lock(&pool->flush_lock);
|
|
|
|
spin_lock_irqsave(&pool->list_lock, flags);
|
|
/* Get the list of all mappings to be destroyed */
|
|
list_splice_init(&pool->dirty_list, &unmap_list);
|
|
if (free_all)
|
|
list_splice_init(&pool->clean_list, &kill_list);
|
|
spin_unlock_irqrestore(&pool->list_lock, flags);
|
|
|
|
/* Batched invalidate of dirty MRs.
|
|
* For FMR based MRs, the mappings on the unmap list are
|
|
* actually members of an ibmr (ibmr->mapping). They either
|
|
* migrate to the kill_list, or have been cleaned and should be
|
|
* moved to the clean_list.
|
|
* For fastregs, they will be dynamically allocated, and
|
|
* will be destroyed by the unmap function.
|
|
*/
|
|
if (!list_empty(&unmap_list)) {
|
|
ncleaned = rds_iw_unmap_fastreg_list(pool, &unmap_list,
|
|
&kill_list, &unpinned);
|
|
/* If we've been asked to destroy all MRs, move those
|
|
* that were simply cleaned to the kill list */
|
|
if (free_all)
|
|
list_splice_init(&unmap_list, &kill_list);
|
|
}
|
|
|
|
/* Destroy any MRs that are past their best before date */
|
|
list_for_each_entry_safe(ibmr, next, &kill_list, mapping.m_list) {
|
|
rds_iw_stats_inc(s_iw_rdma_mr_free);
|
|
list_del(&ibmr->mapping.m_list);
|
|
rds_iw_destroy_fastreg(pool, ibmr);
|
|
kfree(ibmr);
|
|
nfreed++;
|
|
}
|
|
|
|
/* Anything that remains are laundered ibmrs, which we can add
|
|
* back to the clean list. */
|
|
if (!list_empty(&unmap_list)) {
|
|
spin_lock_irqsave(&pool->list_lock, flags);
|
|
list_splice(&unmap_list, &pool->clean_list);
|
|
spin_unlock_irqrestore(&pool->list_lock, flags);
|
|
}
|
|
|
|
atomic_sub(unpinned, &pool->free_pinned);
|
|
atomic_sub(ncleaned, &pool->dirty_count);
|
|
atomic_sub(nfreed, &pool->item_count);
|
|
|
|
mutex_unlock(&pool->flush_lock);
|
|
}
|
|
|
|
static void rds_iw_mr_pool_flush_worker(struct work_struct *work)
|
|
{
|
|
struct rds_iw_mr_pool *pool = container_of(work, struct rds_iw_mr_pool, flush_worker);
|
|
|
|
rds_iw_flush_mr_pool(pool, 0);
|
|
}
|
|
|
|
void rds_iw_free_mr(void *trans_private, int invalidate)
|
|
{
|
|
struct rds_iw_mr *ibmr = trans_private;
|
|
struct rds_iw_mr_pool *pool = ibmr->device->mr_pool;
|
|
|
|
rdsdebug("RDS/IW: free_mr nents %u\n", ibmr->mapping.m_sg.len);
|
|
if (!pool)
|
|
return;
|
|
|
|
/* Return it to the pool's free list */
|
|
rds_iw_free_fastreg(pool, ibmr);
|
|
|
|
/* If we've pinned too many pages, request a flush */
|
|
if (atomic_read(&pool->free_pinned) >= pool->max_free_pinned ||
|
|
atomic_read(&pool->dirty_count) >= pool->max_items / 10)
|
|
queue_work(rds_wq, &pool->flush_worker);
|
|
|
|
if (invalidate) {
|
|
if (likely(!in_interrupt())) {
|
|
rds_iw_flush_mr_pool(pool, 0);
|
|
} else {
|
|
/* We get here if the user created a MR marked
|
|
* as use_once and invalidate at the same time. */
|
|
queue_work(rds_wq, &pool->flush_worker);
|
|
}
|
|
}
|
|
}
|
|
|
|
void rds_iw_flush_mrs(void)
|
|
{
|
|
struct rds_iw_device *rds_iwdev;
|
|
|
|
list_for_each_entry(rds_iwdev, &rds_iw_devices, list) {
|
|
struct rds_iw_mr_pool *pool = rds_iwdev->mr_pool;
|
|
|
|
if (pool)
|
|
rds_iw_flush_mr_pool(pool, 0);
|
|
}
|
|
}
|
|
|
|
void *rds_iw_get_mr(struct scatterlist *sg, unsigned long nents,
|
|
struct rds_sock *rs, u32 *key_ret)
|
|
{
|
|
struct rds_iw_device *rds_iwdev;
|
|
struct rds_iw_mr *ibmr = NULL;
|
|
struct rdma_cm_id *cm_id;
|
|
struct sockaddr_in src = {
|
|
.sin_addr.s_addr = rs->rs_bound_addr,
|
|
.sin_port = rs->rs_bound_port,
|
|
};
|
|
struct sockaddr_in dst = {
|
|
.sin_addr.s_addr = rs->rs_conn_addr,
|
|
.sin_port = rs->rs_conn_port,
|
|
};
|
|
int ret;
|
|
|
|
ret = rds_iw_get_device(&src, &dst, &rds_iwdev, &cm_id);
|
|
if (ret || !cm_id) {
|
|
ret = -ENODEV;
|
|
goto out;
|
|
}
|
|
|
|
if (!rds_iwdev->mr_pool) {
|
|
ret = -ENODEV;
|
|
goto out;
|
|
}
|
|
|
|
ibmr = rds_iw_alloc_mr(rds_iwdev);
|
|
if (IS_ERR(ibmr))
|
|
return ibmr;
|
|
|
|
ibmr->cm_id = cm_id;
|
|
ibmr->device = rds_iwdev;
|
|
|
|
ret = rds_iw_map_reg(rds_iwdev->mr_pool, ibmr, sg, nents);
|
|
if (ret == 0)
|
|
*key_ret = ibmr->mr->rkey;
|
|
else
|
|
printk(KERN_WARNING "RDS/IW: failed to map mr (errno=%d)\n", ret);
|
|
|
|
out:
|
|
if (ret) {
|
|
if (ibmr)
|
|
rds_iw_free_mr(ibmr, 0);
|
|
ibmr = ERR_PTR(ret);
|
|
}
|
|
return ibmr;
|
|
}
|
|
|
|
/*
|
|
* iWARP reg handling
|
|
*
|
|
* The life cycle of a fastreg registration is a bit different from
|
|
* FMRs.
|
|
* The idea behind fastreg is to have one MR, to which we bind different
|
|
* mappings over time. To avoid stalling on the expensive map and invalidate
|
|
* operations, these operations are pipelined on the same send queue on
|
|
* which we want to send the message containing the r_key.
|
|
*
|
|
* This creates a bit of a problem for us, as we do not have the destination
|
|
* IP in GET_MR, so the connection must be setup prior to the GET_MR call for
|
|
* RDMA to be correctly setup. If a fastreg request is present, rds_iw_xmit
|
|
* will try to queue a LOCAL_INV (if needed) and a REG_MR work request
|
|
* before queuing the SEND. When completions for these arrive, they are
|
|
* dispatched to the MR has a bit set showing that RDMa can be performed.
|
|
*
|
|
* There is another interesting aspect that's related to invalidation.
|
|
* The application can request that a mapping is invalidated in FREE_MR.
|
|
* The expectation there is that this invalidation step includes ALL
|
|
* PREVIOUSLY FREED MRs.
|
|
*/
|
|
static int rds_iw_init_reg(struct rds_iw_mr_pool *pool,
|
|
struct rds_iw_mr *ibmr)
|
|
{
|
|
struct rds_iw_device *rds_iwdev = pool->device;
|
|
struct ib_mr *mr;
|
|
int err;
|
|
|
|
mr = ib_alloc_mr(rds_iwdev->pd, IB_MR_TYPE_MEM_REG,
|
|
pool->max_message_size);
|
|
if (IS_ERR(mr)) {
|
|
err = PTR_ERR(mr);
|
|
|
|
printk(KERN_WARNING "RDS/IW: ib_alloc_mr failed (err=%d)\n", err);
|
|
return err;
|
|
}
|
|
|
|
ibmr->mr = mr;
|
|
return 0;
|
|
}
|
|
|
|
static int rds_iw_rdma_reg_mr(struct rds_iw_mapping *mapping)
|
|
{
|
|
struct rds_iw_mr *ibmr = mapping->m_mr;
|
|
struct rds_iw_scatterlist *m_sg = &mapping->m_sg;
|
|
struct ib_reg_wr reg_wr;
|
|
struct ib_send_wr *failed_wr;
|
|
int ret, n;
|
|
|
|
n = ib_map_mr_sg_zbva(ibmr->mr, m_sg->list, m_sg->len, PAGE_SIZE);
|
|
if (unlikely(n != m_sg->len))
|
|
return n < 0 ? n : -EINVAL;
|
|
|
|
reg_wr.wr.next = NULL;
|
|
reg_wr.wr.opcode = IB_WR_REG_MR;
|
|
reg_wr.wr.wr_id = RDS_IW_REG_WR_ID;
|
|
reg_wr.wr.num_sge = 0;
|
|
reg_wr.mr = ibmr->mr;
|
|
reg_wr.key = mapping->m_rkey;
|
|
reg_wr.access = IB_ACCESS_LOCAL_WRITE |
|
|
IB_ACCESS_REMOTE_READ |
|
|
IB_ACCESS_REMOTE_WRITE;
|
|
|
|
/*
|
|
* Perform a WR for the reg_mr. Each individual page
|
|
* in the sg list is added to the fast reg page list and placed
|
|
* inside the reg_mr WR. The key used is a rolling 8bit
|
|
* counter, which should guarantee uniqueness.
|
|
*/
|
|
ib_update_fast_reg_key(ibmr->mr, ibmr->remap_count++);
|
|
mapping->m_rkey = ibmr->mr->rkey;
|
|
|
|
failed_wr = ®_wr.wr;
|
|
ret = ib_post_send(ibmr->cm_id->qp, ®_wr.wr, &failed_wr);
|
|
BUG_ON(failed_wr != ®_wr.wr);
|
|
if (ret)
|
|
printk_ratelimited(KERN_WARNING "RDS/IW: %s:%d ib_post_send returned %d\n",
|
|
__func__, __LINE__, ret);
|
|
return ret;
|
|
}
|
|
|
|
static int rds_iw_rdma_fastreg_inv(struct rds_iw_mr *ibmr)
|
|
{
|
|
struct ib_send_wr s_wr, *failed_wr;
|
|
int ret = 0;
|
|
|
|
if (!ibmr->cm_id->qp || !ibmr->mr)
|
|
goto out;
|
|
|
|
memset(&s_wr, 0, sizeof(s_wr));
|
|
s_wr.wr_id = RDS_IW_LOCAL_INV_WR_ID;
|
|
s_wr.opcode = IB_WR_LOCAL_INV;
|
|
s_wr.ex.invalidate_rkey = ibmr->mr->rkey;
|
|
s_wr.send_flags = IB_SEND_SIGNALED;
|
|
|
|
failed_wr = &s_wr;
|
|
ret = ib_post_send(ibmr->cm_id->qp, &s_wr, &failed_wr);
|
|
if (ret) {
|
|
printk_ratelimited(KERN_WARNING "RDS/IW: %s:%d ib_post_send returned %d\n",
|
|
__func__, __LINE__, ret);
|
|
goto out;
|
|
}
|
|
out:
|
|
return ret;
|
|
}
|
|
|
|
static int rds_iw_map_reg(struct rds_iw_mr_pool *pool,
|
|
struct rds_iw_mr *ibmr,
|
|
struct scatterlist *sg,
|
|
unsigned int sg_len)
|
|
{
|
|
struct rds_iw_device *rds_iwdev = pool->device;
|
|
struct rds_iw_mapping *mapping = &ibmr->mapping;
|
|
u64 *dma_pages;
|
|
int ret = 0;
|
|
|
|
rds_iw_set_scatterlist(&mapping->m_sg, sg, sg_len);
|
|
|
|
ret = rds_iw_map_scatterlist(rds_iwdev, &mapping->m_sg);
|
|
if (ret) {
|
|
dma_pages = NULL;
|
|
goto out;
|
|
}
|
|
|
|
if (mapping->m_sg.dma_len > pool->max_message_size) {
|
|
ret = -EMSGSIZE;
|
|
goto out;
|
|
}
|
|
|
|
ret = rds_iw_rdma_reg_mr(mapping);
|
|
if (ret)
|
|
goto out;
|
|
|
|
rds_iw_stats_inc(s_iw_rdma_mr_used);
|
|
|
|
out:
|
|
kfree(dma_pages);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* "Free" a fastreg MR.
|
|
*/
|
|
static void rds_iw_free_fastreg(struct rds_iw_mr_pool *pool,
|
|
struct rds_iw_mr *ibmr)
|
|
{
|
|
unsigned long flags;
|
|
int ret;
|
|
|
|
if (!ibmr->mapping.m_sg.dma_len)
|
|
return;
|
|
|
|
ret = rds_iw_rdma_fastreg_inv(ibmr);
|
|
if (ret)
|
|
return;
|
|
|
|
/* Try to post the LOCAL_INV WR to the queue. */
|
|
spin_lock_irqsave(&pool->list_lock, flags);
|
|
|
|
list_add_tail(&ibmr->mapping.m_list, &pool->dirty_list);
|
|
atomic_add(ibmr->mapping.m_sg.len, &pool->free_pinned);
|
|
atomic_inc(&pool->dirty_count);
|
|
|
|
spin_unlock_irqrestore(&pool->list_lock, flags);
|
|
}
|
|
|
|
static unsigned int rds_iw_unmap_fastreg_list(struct rds_iw_mr_pool *pool,
|
|
struct list_head *unmap_list,
|
|
struct list_head *kill_list,
|
|
int *unpinned)
|
|
{
|
|
struct rds_iw_mapping *mapping, *next;
|
|
unsigned int ncleaned = 0;
|
|
LIST_HEAD(laundered);
|
|
|
|
/* Batched invalidation of fastreg MRs.
|
|
* Why do we do it this way, even though we could pipeline unmap
|
|
* and remap? The reason is the application semantics - when the
|
|
* application requests an invalidation of MRs, it expects all
|
|
* previously released R_Keys to become invalid.
|
|
*
|
|
* If we implement MR reuse naively, we risk memory corruption
|
|
* (this has actually been observed). So the default behavior
|
|
* requires that a MR goes through an explicit unmap operation before
|
|
* we can reuse it again.
|
|
*
|
|
* We could probably improve on this a little, by allowing immediate
|
|
* reuse of a MR on the same socket (eg you could add small
|
|
* cache of unused MRs to strct rds_socket - GET_MR could grab one
|
|
* of these without requiring an explicit invalidate).
|
|
*/
|
|
while (!list_empty(unmap_list)) {
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&pool->list_lock, flags);
|
|
list_for_each_entry_safe(mapping, next, unmap_list, m_list) {
|
|
*unpinned += mapping->m_sg.len;
|
|
list_move(&mapping->m_list, &laundered);
|
|
ncleaned++;
|
|
}
|
|
spin_unlock_irqrestore(&pool->list_lock, flags);
|
|
}
|
|
|
|
/* Move all laundered mappings back to the unmap list.
|
|
* We do not kill any WRs right now - it doesn't seem the
|
|
* fastreg API has a max_remap limit. */
|
|
list_splice_init(&laundered, unmap_list);
|
|
|
|
return ncleaned;
|
|
}
|
|
|
|
static void rds_iw_destroy_fastreg(struct rds_iw_mr_pool *pool,
|
|
struct rds_iw_mr *ibmr)
|
|
{
|
|
if (ibmr->mr)
|
|
ib_dereg_mr(ibmr->mr);
|
|
}
|