linux/drivers/isdn/hisax/hfc_2bds0.c
Karsten Keil 67eb5db587 [PATCH] hisax: fix usage of __init*
Fix the warnings about the section mismatches for __init* in the HiSax
driver.

Signed-off-by: Karsten Keil <kkeil@suse.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-07-10 13:24:15 -07:00

1077 lines
27 KiB
C

/* $Id: hfc_2bds0.c,v 1.18.2.6 2004/02/11 13:21:33 keil Exp $
*
* specific routines for CCD's HFC 2BDS0
*
* Author Karsten Keil
* Copyright by Karsten Keil <keil@isdn4linux.de>
*
* This software may be used and distributed according to the terms
* of the GNU General Public License, incorporated herein by reference.
*
*/
#include <linux/init.h>
#include "hisax.h"
#include "hfc_2bds0.h"
#include "isdnl1.h"
#include <linux/interrupt.h>
/*
#define KDEBUG_DEF
#include "kdebug.h"
*/
#define byteout(addr,val) outb(val,addr)
#define bytein(addr) inb(addr)
static void
dummyf(struct IsdnCardState *cs, u_char * data, int size)
{
printk(KERN_WARNING "HiSax: hfcd dummy fifo called\n");
}
static inline u_char
ReadReg(struct IsdnCardState *cs, int data, u_char reg)
{
register u_char ret;
if (data) {
if (cs->hw.hfcD.cip != reg) {
cs->hw.hfcD.cip = reg;
byteout(cs->hw.hfcD.addr | 1, reg);
}
ret = bytein(cs->hw.hfcD.addr);
#ifdef HFC_REG_DEBUG
if (cs->debug & L1_DEB_HSCX_FIFO && (data != 2))
debugl1(cs, "t3c RD %02x %02x", reg, ret);
#endif
} else
ret = bytein(cs->hw.hfcD.addr | 1);
return (ret);
}
static inline void
WriteReg(struct IsdnCardState *cs, int data, u_char reg, u_char value)
{
if (cs->hw.hfcD.cip != reg) {
cs->hw.hfcD.cip = reg;
byteout(cs->hw.hfcD.addr | 1, reg);
}
if (data)
byteout(cs->hw.hfcD.addr, value);
#ifdef HFC_REG_DEBUG
if (cs->debug & L1_DEB_HSCX_FIFO && (data != HFCD_DATA_NODEB))
debugl1(cs, "t3c W%c %02x %02x", data ? 'D' : 'C', reg, value);
#endif
}
/* Interface functions */
static u_char
readreghfcd(struct IsdnCardState *cs, u_char offset)
{
return(ReadReg(cs, HFCD_DATA, offset));
}
static void
writereghfcd(struct IsdnCardState *cs, u_char offset, u_char value)
{
WriteReg(cs, HFCD_DATA, offset, value);
}
static inline int
WaitForBusy(struct IsdnCardState *cs)
{
int to = 130;
while (!(ReadReg(cs, HFCD_DATA, HFCD_STAT) & HFCD_BUSY) && to) {
udelay(1);
to--;
}
if (!to)
printk(KERN_WARNING "HiSax: WaitForBusy timeout\n");
return (to);
}
static inline int
WaitNoBusy(struct IsdnCardState *cs)
{
int to = 130;
while ((ReadReg(cs, HFCD_STATUS, HFCD_STATUS) & HFCD_BUSY) && to) {
udelay(1);
to--;
}
if (!to)
printk(KERN_WARNING "HiSax: WaitNoBusy timeout\n");
return (to);
}
static int
SelFiFo(struct IsdnCardState *cs, u_char FiFo)
{
u_char cip;
if (cs->hw.hfcD.fifo == FiFo)
return(1);
switch(FiFo) {
case 0: cip = HFCB_FIFO | HFCB_Z1 | HFCB_SEND | HFCB_B1;
break;
case 1: cip = HFCB_FIFO | HFCB_Z1 | HFCB_REC | HFCB_B1;
break;
case 2: cip = HFCB_FIFO | HFCB_Z1 | HFCB_SEND | HFCB_B2;
break;
case 3: cip = HFCB_FIFO | HFCB_Z1 | HFCB_REC | HFCB_B2;
break;
case 4: cip = HFCD_FIFO | HFCD_Z1 | HFCD_SEND;
break;
case 5: cip = HFCD_FIFO | HFCD_Z1 | HFCD_REC;
break;
default:
debugl1(cs, "SelFiFo Error");
return(0);
}
cs->hw.hfcD.fifo = FiFo;
WaitNoBusy(cs);
cs->BC_Write_Reg(cs, HFCD_DATA, cip, 0);
WaitForBusy(cs);
return(2);
}
static int
GetFreeFifoBytes_B(struct BCState *bcs)
{
int s;
if (bcs->hw.hfc.f1 == bcs->hw.hfc.f2)
return (bcs->cs->hw.hfcD.bfifosize);
s = bcs->hw.hfc.send[bcs->hw.hfc.f1] - bcs->hw.hfc.send[bcs->hw.hfc.f2];
if (s <= 0)
s += bcs->cs->hw.hfcD.bfifosize;
s = bcs->cs->hw.hfcD.bfifosize - s;
return (s);
}
static int
GetFreeFifoBytes_D(struct IsdnCardState *cs)
{
int s;
if (cs->hw.hfcD.f1 == cs->hw.hfcD.f2)
return (cs->hw.hfcD.dfifosize);
s = cs->hw.hfcD.send[cs->hw.hfcD.f1] - cs->hw.hfcD.send[cs->hw.hfcD.f2];
if (s <= 0)
s += cs->hw.hfcD.dfifosize;
s = cs->hw.hfcD.dfifosize - s;
return (s);
}
static int
ReadZReg(struct IsdnCardState *cs, u_char reg)
{
int val;
WaitNoBusy(cs);
val = 256 * ReadReg(cs, HFCD_DATA, reg | HFCB_Z_HIGH);
WaitNoBusy(cs);
val += ReadReg(cs, HFCD_DATA, reg | HFCB_Z_LOW);
return (val);
}
static struct sk_buff
*hfc_empty_fifo(struct BCState *bcs, int count)
{
u_char *ptr;
struct sk_buff *skb;
struct IsdnCardState *cs = bcs->cs;
int idx;
int chksum;
u_char stat, cip;
if ((cs->debug & L1_DEB_HSCX) && !(cs->debug & L1_DEB_HSCX_FIFO))
debugl1(cs, "hfc_empty_fifo");
idx = 0;
if (count > HSCX_BUFMAX + 3) {
if (cs->debug & L1_DEB_WARN)
debugl1(cs, "hfc_empty_fifo: incoming packet too large");
cip = HFCB_FIFO | HFCB_FIFO_OUT | HFCB_REC | HFCB_CHANNEL(bcs->channel);
while (idx++ < count) {
WaitNoBusy(cs);
ReadReg(cs, HFCD_DATA_NODEB, cip);
}
skb = NULL;
} else if (count < 4) {
if (cs->debug & L1_DEB_WARN)
debugl1(cs, "hfc_empty_fifo: incoming packet too small");
cip = HFCB_FIFO | HFCB_FIFO_OUT | HFCB_REC | HFCB_CHANNEL(bcs->channel);
#ifdef ERROR_STATISTIC
bcs->err_inv++;
#endif
while ((idx++ < count) && WaitNoBusy(cs))
ReadReg(cs, HFCD_DATA_NODEB, cip);
skb = NULL;
} else if (!(skb = dev_alloc_skb(count - 3)))
printk(KERN_WARNING "HFC: receive out of memory\n");
else {
ptr = skb_put(skb, count - 3);
idx = 0;
cip = HFCB_FIFO | HFCB_FIFO_OUT | HFCB_REC | HFCB_CHANNEL(bcs->channel);
while (idx < (count - 3)) {
if (!WaitNoBusy(cs))
break;
*ptr = ReadReg(cs, HFCD_DATA_NODEB, cip);
ptr++;
idx++;
}
if (idx != count - 3) {
debugl1(cs, "RFIFO BUSY error");
printk(KERN_WARNING "HFC FIFO channel %d BUSY Error\n", bcs->channel);
dev_kfree_skb_irq(skb);
skb = NULL;
} else {
WaitNoBusy(cs);
chksum = (ReadReg(cs, HFCD_DATA, cip) << 8);
WaitNoBusy(cs);
chksum += ReadReg(cs, HFCD_DATA, cip);
WaitNoBusy(cs);
stat = ReadReg(cs, HFCD_DATA, cip);
if (cs->debug & L1_DEB_HSCX)
debugl1(cs, "hfc_empty_fifo %d chksum %x stat %x",
bcs->channel, chksum, stat);
if (stat) {
debugl1(cs, "FIFO CRC error");
dev_kfree_skb_irq(skb);
skb = NULL;
#ifdef ERROR_STATISTIC
bcs->err_crc++;
#endif
}
}
}
WaitForBusy(cs);
WaitNoBusy(cs);
stat = ReadReg(cs, HFCD_DATA, HFCB_FIFO | HFCB_F2_INC |
HFCB_REC | HFCB_CHANNEL(bcs->channel));
WaitForBusy(cs);
return (skb);
}
static void
hfc_fill_fifo(struct BCState *bcs)
{
struct IsdnCardState *cs = bcs->cs;
int idx, fcnt;
int count;
u_char cip;
if (!bcs->tx_skb)
return;
if (bcs->tx_skb->len <= 0)
return;
SelFiFo(cs, HFCB_SEND | HFCB_CHANNEL(bcs->channel));
cip = HFCB_FIFO | HFCB_F1 | HFCB_SEND | HFCB_CHANNEL(bcs->channel);
WaitNoBusy(cs);
bcs->hw.hfc.f1 = ReadReg(cs, HFCD_DATA, cip);
WaitNoBusy(cs);
cip = HFCB_FIFO | HFCB_F2 | HFCB_SEND | HFCB_CHANNEL(bcs->channel);
WaitNoBusy(cs);
bcs->hw.hfc.f2 = ReadReg(cs, HFCD_DATA, cip);
bcs->hw.hfc.send[bcs->hw.hfc.f1] = ReadZReg(cs, HFCB_FIFO | HFCB_Z1 | HFCB_SEND | HFCB_CHANNEL(bcs->channel));
if (cs->debug & L1_DEB_HSCX)
debugl1(cs, "hfc_fill_fifo %d f1(%d) f2(%d) z1(%x)",
bcs->channel, bcs->hw.hfc.f1, bcs->hw.hfc.f2,
bcs->hw.hfc.send[bcs->hw.hfc.f1]);
fcnt = bcs->hw.hfc.f1 - bcs->hw.hfc.f2;
if (fcnt < 0)
fcnt += 32;
if (fcnt > 30) {
if (cs->debug & L1_DEB_HSCX)
debugl1(cs, "hfc_fill_fifo more as 30 frames");
return;
}
count = GetFreeFifoBytes_B(bcs);
if (cs->debug & L1_DEB_HSCX)
debugl1(cs, "hfc_fill_fifo %d count(%ld/%d),%lx",
bcs->channel, bcs->tx_skb->len,
count, current->state);
if (count < bcs->tx_skb->len) {
if (cs->debug & L1_DEB_HSCX)
debugl1(cs, "hfc_fill_fifo no fifo mem");
return;
}
cip = HFCB_FIFO | HFCB_FIFO_IN | HFCB_SEND | HFCB_CHANNEL(bcs->channel);
idx = 0;
WaitForBusy(cs);
WaitNoBusy(cs);
WriteReg(cs, HFCD_DATA_NODEB, cip, bcs->tx_skb->data[idx++]);
while (idx < bcs->tx_skb->len) {
if (!WaitNoBusy(cs))
break;
WriteReg(cs, HFCD_DATA_NODEB, cip, bcs->tx_skb->data[idx]);
idx++;
}
if (idx != bcs->tx_skb->len) {
debugl1(cs, "FIFO Send BUSY error");
printk(KERN_WARNING "HFC S FIFO channel %d BUSY Error\n", bcs->channel);
} else {
bcs->tx_cnt -= bcs->tx_skb->len;
if (test_bit(FLG_LLI_L1WAKEUP,&bcs->st->lli.flag) &&
(PACKET_NOACK != bcs->tx_skb->pkt_type)) {
u_long flags;
spin_lock_irqsave(&bcs->aclock, flags);
bcs->ackcnt += bcs->tx_skb->len;
spin_unlock_irqrestore(&bcs->aclock, flags);
schedule_event(bcs, B_ACKPENDING);
}
dev_kfree_skb_any(bcs->tx_skb);
bcs->tx_skb = NULL;
}
WaitForBusy(cs);
WaitNoBusy(cs);
ReadReg(cs, HFCD_DATA, HFCB_FIFO | HFCB_F1_INC | HFCB_SEND | HFCB_CHANNEL(bcs->channel));
WaitForBusy(cs);
test_and_clear_bit(BC_FLG_BUSY, &bcs->Flag);
return;
}
static void
hfc_send_data(struct BCState *bcs)
{
struct IsdnCardState *cs = bcs->cs;
if (!test_and_set_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags)) {
hfc_fill_fifo(bcs);
test_and_clear_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags);
} else
debugl1(cs,"send_data %d blocked", bcs->channel);
}
static void
main_rec_2bds0(struct BCState *bcs)
{
struct IsdnCardState *cs = bcs->cs;
int z1, z2, rcnt;
u_char f1, f2, cip;
int receive, count = 5;
struct sk_buff *skb;
Begin:
count--;
if (test_and_set_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags)) {
debugl1(cs,"rec_data %d blocked", bcs->channel);
return;
}
SelFiFo(cs, HFCB_REC | HFCB_CHANNEL(bcs->channel));
cip = HFCB_FIFO | HFCB_F1 | HFCB_REC | HFCB_CHANNEL(bcs->channel);
WaitNoBusy(cs);
f1 = ReadReg(cs, HFCD_DATA, cip);
cip = HFCB_FIFO | HFCB_F2 | HFCB_REC | HFCB_CHANNEL(bcs->channel);
WaitNoBusy(cs);
f2 = ReadReg(cs, HFCD_DATA, cip);
if (f1 != f2) {
if (cs->debug & L1_DEB_HSCX)
debugl1(cs, "hfc rec %d f1(%d) f2(%d)",
bcs->channel, f1, f2);
z1 = ReadZReg(cs, HFCB_FIFO | HFCB_Z1 | HFCB_REC | HFCB_CHANNEL(bcs->channel));
z2 = ReadZReg(cs, HFCB_FIFO | HFCB_Z2 | HFCB_REC | HFCB_CHANNEL(bcs->channel));
rcnt = z1 - z2;
if (rcnt < 0)
rcnt += cs->hw.hfcD.bfifosize;
rcnt++;
if (cs->debug & L1_DEB_HSCX)
debugl1(cs, "hfc rec %d z1(%x) z2(%x) cnt(%d)",
bcs->channel, z1, z2, rcnt);
if ((skb = hfc_empty_fifo(bcs, rcnt))) {
skb_queue_tail(&bcs->rqueue, skb);
schedule_event(bcs, B_RCVBUFREADY);
}
rcnt = f1 -f2;
if (rcnt<0)
rcnt += 32;
if (rcnt>1)
receive = 1;
else
receive = 0;
} else
receive = 0;
test_and_clear_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags);
if (count && receive)
goto Begin;
return;
}
static void
mode_2bs0(struct BCState *bcs, int mode, int bc)
{
struct IsdnCardState *cs = bcs->cs;
if (cs->debug & L1_DEB_HSCX)
debugl1(cs, "HFCD bchannel mode %d bchan %d/%d",
mode, bc, bcs->channel);
bcs->mode = mode;
bcs->channel = bc;
switch (mode) {
case (L1_MODE_NULL):
if (bc) {
cs->hw.hfcD.conn |= 0x18;
cs->hw.hfcD.sctrl &= ~SCTRL_B2_ENA;
} else {
cs->hw.hfcD.conn |= 0x3;
cs->hw.hfcD.sctrl &= ~SCTRL_B1_ENA;
}
break;
case (L1_MODE_TRANS):
if (bc) {
cs->hw.hfcD.ctmt |= 2;
cs->hw.hfcD.conn &= ~0x18;
cs->hw.hfcD.sctrl |= SCTRL_B2_ENA;
} else {
cs->hw.hfcD.ctmt |= 1;
cs->hw.hfcD.conn &= ~0x3;
cs->hw.hfcD.sctrl |= SCTRL_B1_ENA;
}
break;
case (L1_MODE_HDLC):
if (bc) {
cs->hw.hfcD.ctmt &= ~2;
cs->hw.hfcD.conn &= ~0x18;
cs->hw.hfcD.sctrl |= SCTRL_B2_ENA;
} else {
cs->hw.hfcD.ctmt &= ~1;
cs->hw.hfcD.conn &= ~0x3;
cs->hw.hfcD.sctrl |= SCTRL_B1_ENA;
}
break;
}
WriteReg(cs, HFCD_DATA, HFCD_SCTRL, cs->hw.hfcD.sctrl);
WriteReg(cs, HFCD_DATA, HFCD_CTMT, cs->hw.hfcD.ctmt);
WriteReg(cs, HFCD_DATA, HFCD_CONN, cs->hw.hfcD.conn);
}
static void
hfc_l2l1(struct PStack *st, int pr, void *arg)
{
struct BCState *bcs = st->l1.bcs;
struct sk_buff *skb = arg;
u_long flags;
switch (pr) {
case (PH_DATA | REQUEST):
spin_lock_irqsave(&bcs->cs->lock, flags);
if (bcs->tx_skb) {
skb_queue_tail(&bcs->squeue, skb);
} else {
bcs->tx_skb = skb;
// test_and_set_bit(BC_FLG_BUSY, &bcs->Flag);
bcs->cs->BC_Send_Data(bcs);
}
spin_unlock_irqrestore(&bcs->cs->lock, flags);
break;
case (PH_PULL | INDICATION):
spin_lock_irqsave(&bcs->cs->lock, flags);
if (bcs->tx_skb) {
printk(KERN_WARNING "hfc_l2l1: this shouldn't happen\n");
} else {
// test_and_set_bit(BC_FLG_BUSY, &bcs->Flag);
bcs->tx_skb = skb;
bcs->cs->BC_Send_Data(bcs);
}
spin_unlock_irqrestore(&bcs->cs->lock, flags);
break;
case (PH_PULL | REQUEST):
if (!bcs->tx_skb) {
test_and_clear_bit(FLG_L1_PULL_REQ, &st->l1.Flags);
st->l1.l1l2(st, PH_PULL | CONFIRM, NULL);
} else
test_and_set_bit(FLG_L1_PULL_REQ, &st->l1.Flags);
break;
case (PH_ACTIVATE | REQUEST):
spin_lock_irqsave(&bcs->cs->lock, flags);
test_and_set_bit(BC_FLG_ACTIV, &bcs->Flag);
mode_2bs0(bcs, st->l1.mode, st->l1.bc);
spin_unlock_irqrestore(&bcs->cs->lock, flags);
l1_msg_b(st, pr, arg);
break;
case (PH_DEACTIVATE | REQUEST):
l1_msg_b(st, pr, arg);
break;
case (PH_DEACTIVATE | CONFIRM):
spin_lock_irqsave(&bcs->cs->lock, flags);
test_and_clear_bit(BC_FLG_ACTIV, &bcs->Flag);
test_and_clear_bit(BC_FLG_BUSY, &bcs->Flag);
mode_2bs0(bcs, 0, st->l1.bc);
spin_unlock_irqrestore(&bcs->cs->lock, flags);
st->l1.l1l2(st, PH_DEACTIVATE | CONFIRM, NULL);
break;
}
}
static void
close_2bs0(struct BCState *bcs)
{
mode_2bs0(bcs, 0, bcs->channel);
if (test_and_clear_bit(BC_FLG_INIT, &bcs->Flag)) {
skb_queue_purge(&bcs->rqueue);
skb_queue_purge(&bcs->squeue);
if (bcs->tx_skb) {
dev_kfree_skb_any(bcs->tx_skb);
bcs->tx_skb = NULL;
test_and_clear_bit(BC_FLG_BUSY, &bcs->Flag);
}
}
}
static int
open_hfcstate(struct IsdnCardState *cs, struct BCState *bcs)
{
if (!test_and_set_bit(BC_FLG_INIT, &bcs->Flag)) {
skb_queue_head_init(&bcs->rqueue);
skb_queue_head_init(&bcs->squeue);
}
bcs->tx_skb = NULL;
test_and_clear_bit(BC_FLG_BUSY, &bcs->Flag);
bcs->event = 0;
bcs->tx_cnt = 0;
return (0);
}
static int
setstack_2b(struct PStack *st, struct BCState *bcs)
{
bcs->channel = st->l1.bc;
if (open_hfcstate(st->l1.hardware, bcs))
return (-1);
st->l1.bcs = bcs;
st->l2.l2l1 = hfc_l2l1;
setstack_manager(st);
bcs->st = st;
setstack_l1_B(st);
return (0);
}
static void
hfcd_bh(struct IsdnCardState *cs)
{
if (!cs)
return;
if (test_and_clear_bit(D_L1STATECHANGE, &cs->event)) {
switch (cs->dc.hfcd.ph_state) {
case (0):
l1_msg(cs, HW_RESET | INDICATION, NULL);
break;
case (3):
l1_msg(cs, HW_DEACTIVATE | INDICATION, NULL);
break;
case (8):
l1_msg(cs, HW_RSYNC | INDICATION, NULL);
break;
case (6):
l1_msg(cs, HW_INFO2 | INDICATION, NULL);
break;
case (7):
l1_msg(cs, HW_INFO4_P8 | INDICATION, NULL);
break;
default:
break;
}
}
if (test_and_clear_bit(D_RCVBUFREADY, &cs->event))
DChannel_proc_rcv(cs);
if (test_and_clear_bit(D_XMTBUFREADY, &cs->event))
DChannel_proc_xmt(cs);
}
static
int receive_dmsg(struct IsdnCardState *cs)
{
struct sk_buff *skb;
int idx;
int rcnt, z1, z2;
u_char stat, cip, f1, f2;
int chksum;
int count=5;
u_char *ptr;
if (test_and_set_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags)) {
debugl1(cs, "rec_dmsg blocked");
return(1);
}
SelFiFo(cs, 4 | HFCD_REC);
cip = HFCD_FIFO | HFCD_F1 | HFCD_REC;
WaitNoBusy(cs);
f1 = cs->readisac(cs, cip) & 0xf;
cip = HFCD_FIFO | HFCD_F2 | HFCD_REC;
WaitNoBusy(cs);
f2 = cs->readisac(cs, cip) & 0xf;
while ((f1 != f2) && count--) {
z1 = ReadZReg(cs, HFCD_FIFO | HFCD_Z1 | HFCD_REC);
z2 = ReadZReg(cs, HFCD_FIFO | HFCD_Z2 | HFCD_REC);
rcnt = z1 - z2;
if (rcnt < 0)
rcnt += cs->hw.hfcD.dfifosize;
rcnt++;
if (cs->debug & L1_DEB_ISAC)
debugl1(cs, "hfcd recd f1(%d) f2(%d) z1(%x) z2(%x) cnt(%d)",
f1, f2, z1, z2, rcnt);
idx = 0;
cip = HFCD_FIFO | HFCD_FIFO_OUT | HFCD_REC;
if (rcnt > MAX_DFRAME_LEN + 3) {
if (cs->debug & L1_DEB_WARN)
debugl1(cs, "empty_fifo d: incoming packet too large");
while (idx < rcnt) {
if (!(WaitNoBusy(cs)))
break;
ReadReg(cs, HFCD_DATA_NODEB, cip);
idx++;
}
} else if (rcnt < 4) {
if (cs->debug & L1_DEB_WARN)
debugl1(cs, "empty_fifo d: incoming packet too small");
while ((idx++ < rcnt) && WaitNoBusy(cs))
ReadReg(cs, HFCD_DATA_NODEB, cip);
} else if ((skb = dev_alloc_skb(rcnt - 3))) {
ptr = skb_put(skb, rcnt - 3);
while (idx < (rcnt - 3)) {
if (!(WaitNoBusy(cs)))
break;
*ptr = ReadReg(cs, HFCD_DATA_NODEB, cip);
idx++;
ptr++;
}
if (idx != (rcnt - 3)) {
debugl1(cs, "RFIFO D BUSY error");
printk(KERN_WARNING "HFC DFIFO channel BUSY Error\n");
dev_kfree_skb_irq(skb);
skb = NULL;
#ifdef ERROR_STATISTIC
cs->err_rx++;
#endif
} else {
WaitNoBusy(cs);
chksum = (ReadReg(cs, HFCD_DATA, cip) << 8);
WaitNoBusy(cs);
chksum += ReadReg(cs, HFCD_DATA, cip);
WaitNoBusy(cs);
stat = ReadReg(cs, HFCD_DATA, cip);
if (cs->debug & L1_DEB_ISAC)
debugl1(cs, "empty_dfifo chksum %x stat %x",
chksum, stat);
if (stat) {
debugl1(cs, "FIFO CRC error");
dev_kfree_skb_irq(skb);
skb = NULL;
#ifdef ERROR_STATISTIC
cs->err_crc++;
#endif
} else {
skb_queue_tail(&cs->rq, skb);
schedule_event(cs, D_RCVBUFREADY);
}
}
} else
printk(KERN_WARNING "HFC: D receive out of memory\n");
WaitForBusy(cs);
cip = HFCD_FIFO | HFCD_F2_INC | HFCD_REC;
WaitNoBusy(cs);
stat = ReadReg(cs, HFCD_DATA, cip);
WaitForBusy(cs);
cip = HFCD_FIFO | HFCD_F2 | HFCD_REC;
WaitNoBusy(cs);
f2 = cs->readisac(cs, cip) & 0xf;
}
test_and_clear_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags);
return(1);
}
static void
hfc_fill_dfifo(struct IsdnCardState *cs)
{
int idx, fcnt;
int count;
u_char cip;
if (!cs->tx_skb)
return;
if (cs->tx_skb->len <= 0)
return;
SelFiFo(cs, 4 | HFCD_SEND);
cip = HFCD_FIFO | HFCD_F1 | HFCD_SEND;
WaitNoBusy(cs);
cs->hw.hfcD.f1 = ReadReg(cs, HFCD_DATA, cip) & 0xf;
WaitNoBusy(cs);
cip = HFCD_FIFO | HFCD_F2 | HFCD_SEND;
cs->hw.hfcD.f2 = ReadReg(cs, HFCD_DATA, cip) & 0xf;
cs->hw.hfcD.send[cs->hw.hfcD.f1] = ReadZReg(cs, HFCD_FIFO | HFCD_Z1 | HFCD_SEND);
if (cs->debug & L1_DEB_ISAC)
debugl1(cs, "hfc_fill_Dfifo f1(%d) f2(%d) z1(%x)",
cs->hw.hfcD.f1, cs->hw.hfcD.f2,
cs->hw.hfcD.send[cs->hw.hfcD.f1]);
fcnt = cs->hw.hfcD.f1 - cs->hw.hfcD.f2;
if (fcnt < 0)
fcnt += 16;
if (fcnt > 14) {
if (cs->debug & L1_DEB_HSCX)
debugl1(cs, "hfc_fill_Dfifo more as 14 frames");
return;
}
count = GetFreeFifoBytes_D(cs);
if (cs->debug & L1_DEB_ISAC)
debugl1(cs, "hfc_fill_Dfifo count(%ld/%d)",
cs->tx_skb->len, count);
if (count < cs->tx_skb->len) {
if (cs->debug & L1_DEB_ISAC)
debugl1(cs, "hfc_fill_Dfifo no fifo mem");
return;
}
cip = HFCD_FIFO | HFCD_FIFO_IN | HFCD_SEND;
idx = 0;
WaitForBusy(cs);
WaitNoBusy(cs);
WriteReg(cs, HFCD_DATA_NODEB, cip, cs->tx_skb->data[idx++]);
while (idx < cs->tx_skb->len) {
if (!(WaitNoBusy(cs)))
break;
WriteReg(cs, HFCD_DATA_NODEB, cip, cs->tx_skb->data[idx]);
idx++;
}
if (idx != cs->tx_skb->len) {
debugl1(cs, "DFIFO Send BUSY error");
printk(KERN_WARNING "HFC S DFIFO channel BUSY Error\n");
}
WaitForBusy(cs);
WaitNoBusy(cs);
ReadReg(cs, HFCD_DATA, HFCD_FIFO | HFCD_F1_INC | HFCD_SEND);
dev_kfree_skb_any(cs->tx_skb);
cs->tx_skb = NULL;
WaitForBusy(cs);
return;
}
static
struct BCState *Sel_BCS(struct IsdnCardState *cs, int channel)
{
if (cs->bcs[0].mode && (cs->bcs[0].channel == channel))
return(&cs->bcs[0]);
else if (cs->bcs[1].mode && (cs->bcs[1].channel == channel))
return(&cs->bcs[1]);
else
return(NULL);
}
void
hfc2bds0_interrupt(struct IsdnCardState *cs, u_char val)
{
u_char exval;
struct BCState *bcs;
int count=15;
if (cs->debug & L1_DEB_ISAC)
debugl1(cs, "HFCD irq %x %s", val,
test_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags) ?
"locked" : "unlocked");
val &= cs->hw.hfcD.int_m1;
if (val & 0x40) { /* TE state machine irq */
exval = cs->readisac(cs, HFCD_STATES) & 0xf;
if (cs->debug & L1_DEB_ISAC)
debugl1(cs, "ph_state chg %d->%d", cs->dc.hfcd.ph_state,
exval);
cs->dc.hfcd.ph_state = exval;
schedule_event(cs, D_L1STATECHANGE);
val &= ~0x40;
}
while (val) {
if (test_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags)) {
cs->hw.hfcD.int_s1 |= val;
return;
}
if (cs->hw.hfcD.int_s1 & 0x18) {
exval = val;
val = cs->hw.hfcD.int_s1;
cs->hw.hfcD.int_s1 = exval;
}
if (val & 0x08) {
if (!(bcs=Sel_BCS(cs, 0))) {
if (cs->debug)
debugl1(cs, "hfcd spurious 0x08 IRQ");
} else
main_rec_2bds0(bcs);
}
if (val & 0x10) {
if (!(bcs=Sel_BCS(cs, 1))) {
if (cs->debug)
debugl1(cs, "hfcd spurious 0x10 IRQ");
} else
main_rec_2bds0(bcs);
}
if (val & 0x01) {
if (!(bcs=Sel_BCS(cs, 0))) {
if (cs->debug)
debugl1(cs, "hfcd spurious 0x01 IRQ");
} else {
if (bcs->tx_skb) {
if (!test_and_set_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags)) {
hfc_fill_fifo(bcs);
test_and_clear_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags);
} else
debugl1(cs,"fill_data %d blocked", bcs->channel);
} else {
if ((bcs->tx_skb = skb_dequeue(&bcs->squeue))) {
if (!test_and_set_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags)) {
hfc_fill_fifo(bcs);
test_and_clear_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags);
} else
debugl1(cs,"fill_data %d blocked", bcs->channel);
} else {
schedule_event(bcs, B_XMTBUFREADY);
}
}
}
}
if (val & 0x02) {
if (!(bcs=Sel_BCS(cs, 1))) {
if (cs->debug)
debugl1(cs, "hfcd spurious 0x02 IRQ");
} else {
if (bcs->tx_skb) {
if (!test_and_set_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags)) {
hfc_fill_fifo(bcs);
test_and_clear_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags);
} else
debugl1(cs,"fill_data %d blocked", bcs->channel);
} else {
if ((bcs->tx_skb = skb_dequeue(&bcs->squeue))) {
if (!test_and_set_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags)) {
hfc_fill_fifo(bcs);
test_and_clear_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags);
} else
debugl1(cs,"fill_data %d blocked", bcs->channel);
} else {
schedule_event(bcs, B_XMTBUFREADY);
}
}
}
}
if (val & 0x20) { /* receive dframe */
receive_dmsg(cs);
}
if (val & 0x04) { /* dframe transmitted */
if (test_and_clear_bit(FLG_DBUSY_TIMER, &cs->HW_Flags))
del_timer(&cs->dbusytimer);
if (test_and_clear_bit(FLG_L1_DBUSY, &cs->HW_Flags))
schedule_event(cs, D_CLEARBUSY);
if (cs->tx_skb) {
if (cs->tx_skb->len) {
if (!test_and_set_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags)) {
hfc_fill_dfifo(cs);
test_and_clear_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags);
} else {
debugl1(cs, "hfc_fill_dfifo irq blocked");
}
goto afterXPR;
} else {
dev_kfree_skb_irq(cs->tx_skb);
cs->tx_cnt = 0;
cs->tx_skb = NULL;
}
}
if ((cs->tx_skb = skb_dequeue(&cs->sq))) {
cs->tx_cnt = 0;
if (!test_and_set_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags)) {
hfc_fill_dfifo(cs);
test_and_clear_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags);
} else {
debugl1(cs, "hfc_fill_dfifo irq blocked");
}
} else
schedule_event(cs, D_XMTBUFREADY);
}
afterXPR:
if (cs->hw.hfcD.int_s1 && count--) {
val = cs->hw.hfcD.int_s1;
cs->hw.hfcD.int_s1 = 0;
if (cs->debug & L1_DEB_ISAC)
debugl1(cs, "HFCD irq %x loop %d", val, 15-count);
} else
val = 0;
}
}
static void
HFCD_l1hw(struct PStack *st, int pr, void *arg)
{
struct IsdnCardState *cs = (struct IsdnCardState *) st->l1.hardware;
struct sk_buff *skb = arg;
u_long flags;
switch (pr) {
case (PH_DATA | REQUEST):
if (cs->debug & DEB_DLOG_HEX)
LogFrame(cs, skb->data, skb->len);
if (cs->debug & DEB_DLOG_VERBOSE)
dlogframe(cs, skb, 0);
spin_lock_irqsave(&cs->lock, flags);
if (cs->tx_skb) {
skb_queue_tail(&cs->sq, skb);
#ifdef L2FRAME_DEBUG /* psa */
if (cs->debug & L1_DEB_LAPD)
Logl2Frame(cs, skb, "PH_DATA Queued", 0);
#endif
} else {
cs->tx_skb = skb;
cs->tx_cnt = 0;
#ifdef L2FRAME_DEBUG /* psa */
if (cs->debug & L1_DEB_LAPD)
Logl2Frame(cs, skb, "PH_DATA", 0);
#endif
if (!test_and_set_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags)) {
hfc_fill_dfifo(cs);
test_and_clear_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags);
} else
debugl1(cs, "hfc_fill_dfifo blocked");
}
spin_unlock_irqrestore(&cs->lock, flags);
break;
case (PH_PULL | INDICATION):
spin_lock_irqsave(&cs->lock, flags);
if (cs->tx_skb) {
if (cs->debug & L1_DEB_WARN)
debugl1(cs, " l2l1 tx_skb exist this shouldn't happen");
skb_queue_tail(&cs->sq, skb);
spin_unlock_irqrestore(&cs->lock, flags);
break;
}
if (cs->debug & DEB_DLOG_HEX)
LogFrame(cs, skb->data, skb->len);
if (cs->debug & DEB_DLOG_VERBOSE)
dlogframe(cs, skb, 0);
cs->tx_skb = skb;
cs->tx_cnt = 0;
#ifdef L2FRAME_DEBUG /* psa */
if (cs->debug & L1_DEB_LAPD)
Logl2Frame(cs, skb, "PH_DATA_PULLED", 0);
#endif
if (!test_and_set_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags)) {
hfc_fill_dfifo(cs);
test_and_clear_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags);
} else
debugl1(cs, "hfc_fill_dfifo blocked");
spin_unlock_irqrestore(&cs->lock, flags);
break;
case (PH_PULL | REQUEST):
#ifdef L2FRAME_DEBUG /* psa */
if (cs->debug & L1_DEB_LAPD)
debugl1(cs, "-> PH_REQUEST_PULL");
#endif
if (!cs->tx_skb) {
test_and_clear_bit(FLG_L1_PULL_REQ, &st->l1.Flags);
st->l1.l1l2(st, PH_PULL | CONFIRM, NULL);
} else
test_and_set_bit(FLG_L1_PULL_REQ, &st->l1.Flags);
break;
case (HW_RESET | REQUEST):
spin_lock_irqsave(&cs->lock, flags);
cs->writeisac(cs, HFCD_STATES, HFCD_LOAD_STATE | 3); /* HFC ST 3 */
udelay(6);
cs->writeisac(cs, HFCD_STATES, 3); /* HFC ST 2 */
cs->hw.hfcD.mst_m |= HFCD_MASTER;
cs->writeisac(cs, HFCD_MST_MODE, cs->hw.hfcD.mst_m);
cs->writeisac(cs, HFCD_STATES, HFCD_ACTIVATE | HFCD_DO_ACTION);
spin_unlock_irqrestore(&cs->lock, flags);
l1_msg(cs, HW_POWERUP | CONFIRM, NULL);
break;
case (HW_ENABLE | REQUEST):
spin_lock_irqsave(&cs->lock, flags);
cs->writeisac(cs, HFCD_STATES, HFCD_ACTIVATE | HFCD_DO_ACTION);
spin_unlock_irqrestore(&cs->lock, flags);
break;
case (HW_DEACTIVATE | REQUEST):
spin_lock_irqsave(&cs->lock, flags);
cs->hw.hfcD.mst_m &= ~HFCD_MASTER;
cs->writeisac(cs, HFCD_MST_MODE, cs->hw.hfcD.mst_m);
spin_unlock_irqrestore(&cs->lock, flags);
break;
case (HW_INFO3 | REQUEST):
spin_lock_irqsave(&cs->lock, flags);
cs->hw.hfcD.mst_m |= HFCD_MASTER;
cs->writeisac(cs, HFCD_MST_MODE, cs->hw.hfcD.mst_m);
spin_unlock_irqrestore(&cs->lock, flags);
break;
default:
if (cs->debug & L1_DEB_WARN)
debugl1(cs, "hfcd_l1hw unknown pr %4x", pr);
break;
}
}
static void
setstack_hfcd(struct PStack *st, struct IsdnCardState *cs)
{
st->l1.l1hw = HFCD_l1hw;
}
static void
hfc_dbusy_timer(struct IsdnCardState *cs)
{
}
static unsigned int
*init_send_hfcd(int cnt)
{
int i, *send;
if (!(send = kmalloc(cnt * sizeof(unsigned int), GFP_ATOMIC))) {
printk(KERN_WARNING
"HiSax: No memory for hfcd.send\n");
return(NULL);
}
for (i = 0; i < cnt; i++)
send[i] = 0x1fff;
return(send);
}
void
init2bds0(struct IsdnCardState *cs)
{
cs->setstack_d = setstack_hfcd;
if (!cs->hw.hfcD.send)
cs->hw.hfcD.send = init_send_hfcd(16);
if (!cs->bcs[0].hw.hfc.send)
cs->bcs[0].hw.hfc.send = init_send_hfcd(32);
if (!cs->bcs[1].hw.hfc.send)
cs->bcs[1].hw.hfc.send = init_send_hfcd(32);
cs->BC_Send_Data = &hfc_send_data;
cs->bcs[0].BC_SetStack = setstack_2b;
cs->bcs[1].BC_SetStack = setstack_2b;
cs->bcs[0].BC_Close = close_2bs0;
cs->bcs[1].BC_Close = close_2bs0;
mode_2bs0(cs->bcs, 0, 0);
mode_2bs0(cs->bcs + 1, 0, 1);
}
void
release2bds0(struct IsdnCardState *cs)
{
kfree(cs->bcs[0].hw.hfc.send);
cs->bcs[0].hw.hfc.send = NULL;
kfree(cs->bcs[1].hw.hfc.send);
cs->bcs[1].hw.hfc.send = NULL;
kfree(cs->hw.hfcD.send);
cs->hw.hfcD.send = NULL;
}
void
set_cs_func(struct IsdnCardState *cs)
{
cs->readisac = &readreghfcd;
cs->writeisac = &writereghfcd;
cs->readisacfifo = &dummyf;
cs->writeisacfifo = &dummyf;
cs->BC_Read_Reg = &ReadReg;
cs->BC_Write_Reg = &WriteReg;
cs->dbusytimer.function = (void *) hfc_dbusy_timer;
cs->dbusytimer.data = (long) cs;
init_timer(&cs->dbusytimer);
INIT_WORK(&cs->tqueue, (void *)(void *) hfcd_bh, cs);
}