linux/fs/btrfs/volumes.c
Chris Mason c8b978188c Btrfs: Add zlib compression support
This is a large change for adding compression on reading and writing,
both for inline and regular extents.  It does some fairly large
surgery to the writeback paths.

Compression is off by default and enabled by mount -o compress.  Even
when the -o compress mount option is not used, it is possible to read
compressed extents off the disk.

If compression for a given set of pages fails to make them smaller, the
file is flagged to avoid future compression attempts later.

* While finding delalloc extents, the pages are locked before being sent down
to the delalloc handler.  This allows the delalloc handler to do complex things
such as cleaning the pages, marking them writeback and starting IO on their
behalf.

* Inline extents are inserted at delalloc time now.  This allows us to compress
the data before inserting the inline extent, and it allows us to insert
an inline extent that spans multiple pages.

* All of the in-memory extent representations (extent_map.c, ordered-data.c etc)
are changed to record both an in-memory size and an on disk size, as well
as a flag for compression.

From a disk format point of view, the extent pointers in the file are changed
to record the on disk size of a given extent and some encoding flags.
Space in the disk format is allocated for compression encoding, as well
as encryption and a generic 'other' field.  Neither the encryption or the
'other' field are currently used.

In order to limit the amount of data read for a single random read in the
file, the size of a compressed extent is limited to 128k.  This is a
software only limit, the disk format supports u64 sized compressed extents.

In order to limit the ram consumed while processing extents, the uncompressed
size of a compressed extent is limited to 256k.  This is a software only limit
and will be subject to tuning later.

Checksumming is still done on compressed extents, and it is done on the
uncompressed version of the data.  This way additional encodings can be
layered on without having to figure out which encoding to checksum.

Compression happens at delalloc time, which is basically singled threaded because
it is usually done by a single pdflush thread.  This makes it tricky to
spread the compression load across all the cpus on the box.  We'll have to
look at parallel pdflush walks of dirty inodes at a later time.

Decompression is hooked into readpages and it does spread across CPUs nicely.

Signed-off-by: Chris Mason <chris.mason@oracle.com>
2008-10-29 14:49:59 -04:00

2552 lines
63 KiB
C

/*
* Copyright (C) 2007 Oracle. All rights reserved.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public
* License v2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public
* License along with this program; if not, write to the
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
* Boston, MA 021110-1307, USA.
*/
#include <linux/sched.h>
#include <linux/bio.h>
#include <linux/buffer_head.h>
#include <linux/blkdev.h>
#include <linux/random.h>
#include <asm/div64.h>
#include "ctree.h"
#include "extent_map.h"
#include "disk-io.h"
#include "transaction.h"
#include "print-tree.h"
#include "volumes.h"
#include "async-thread.h"
struct map_lookup {
u64 type;
int io_align;
int io_width;
int stripe_len;
int sector_size;
int num_stripes;
int sub_stripes;
struct btrfs_bio_stripe stripes[];
};
#define map_lookup_size(n) (sizeof(struct map_lookup) + \
(sizeof(struct btrfs_bio_stripe) * (n)))
static DEFINE_MUTEX(uuid_mutex);
static LIST_HEAD(fs_uuids);
void btrfs_lock_volumes(void)
{
mutex_lock(&uuid_mutex);
}
void btrfs_unlock_volumes(void)
{
mutex_unlock(&uuid_mutex);
}
static void lock_chunks(struct btrfs_root *root)
{
mutex_lock(&root->fs_info->alloc_mutex);
mutex_lock(&root->fs_info->chunk_mutex);
}
static void unlock_chunks(struct btrfs_root *root)
{
mutex_unlock(&root->fs_info->chunk_mutex);
mutex_unlock(&root->fs_info->alloc_mutex);
}
int btrfs_cleanup_fs_uuids(void)
{
struct btrfs_fs_devices *fs_devices;
struct list_head *uuid_cur;
struct list_head *devices_cur;
struct btrfs_device *dev;
list_for_each(uuid_cur, &fs_uuids) {
fs_devices = list_entry(uuid_cur, struct btrfs_fs_devices,
list);
while(!list_empty(&fs_devices->devices)) {
devices_cur = fs_devices->devices.next;
dev = list_entry(devices_cur, struct btrfs_device,
dev_list);
if (dev->bdev) {
close_bdev_excl(dev->bdev);
fs_devices->open_devices--;
}
list_del(&dev->dev_list);
kfree(dev->name);
kfree(dev);
}
}
return 0;
}
static noinline struct btrfs_device *__find_device(struct list_head *head,
u64 devid, u8 *uuid)
{
struct btrfs_device *dev;
struct list_head *cur;
list_for_each(cur, head) {
dev = list_entry(cur, struct btrfs_device, dev_list);
if (dev->devid == devid &&
(!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
return dev;
}
}
return NULL;
}
static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid)
{
struct list_head *cur;
struct btrfs_fs_devices *fs_devices;
list_for_each(cur, &fs_uuids) {
fs_devices = list_entry(cur, struct btrfs_fs_devices, list);
if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
return fs_devices;
}
return NULL;
}
/*
* we try to collect pending bios for a device so we don't get a large
* number of procs sending bios down to the same device. This greatly
* improves the schedulers ability to collect and merge the bios.
*
* But, it also turns into a long list of bios to process and that is sure
* to eventually make the worker thread block. The solution here is to
* make some progress and then put this work struct back at the end of
* the list if the block device is congested. This way, multiple devices
* can make progress from a single worker thread.
*/
static int noinline run_scheduled_bios(struct btrfs_device *device)
{
struct bio *pending;
struct backing_dev_info *bdi;
struct btrfs_fs_info *fs_info;
struct bio *tail;
struct bio *cur;
int again = 0;
unsigned long num_run = 0;
unsigned long limit;
bdi = device->bdev->bd_inode->i_mapping->backing_dev_info;
fs_info = device->dev_root->fs_info;
limit = btrfs_async_submit_limit(fs_info);
limit = limit * 2 / 3;
loop:
spin_lock(&device->io_lock);
/* take all the bios off the list at once and process them
* later on (without the lock held). But, remember the
* tail and other pointers so the bios can be properly reinserted
* into the list if we hit congestion
*/
pending = device->pending_bios;
tail = device->pending_bio_tail;
WARN_ON(pending && !tail);
device->pending_bios = NULL;
device->pending_bio_tail = NULL;
/*
* if pending was null this time around, no bios need processing
* at all and we can stop. Otherwise it'll loop back up again
* and do an additional check so no bios are missed.
*
* device->running_pending is used to synchronize with the
* schedule_bio code.
*/
if (pending) {
again = 1;
device->running_pending = 1;
} else {
again = 0;
device->running_pending = 0;
}
spin_unlock(&device->io_lock);
while(pending) {
cur = pending;
pending = pending->bi_next;
cur->bi_next = NULL;
atomic_dec(&fs_info->nr_async_bios);
if (atomic_read(&fs_info->nr_async_bios) < limit &&
waitqueue_active(&fs_info->async_submit_wait))
wake_up(&fs_info->async_submit_wait);
BUG_ON(atomic_read(&cur->bi_cnt) == 0);
bio_get(cur);
submit_bio(cur->bi_rw, cur);
bio_put(cur);
num_run++;
/*
* we made progress, there is more work to do and the bdi
* is now congested. Back off and let other work structs
* run instead
*/
if (pending && bdi_write_congested(bdi)) {
struct bio *old_head;
spin_lock(&device->io_lock);
old_head = device->pending_bios;
device->pending_bios = pending;
if (device->pending_bio_tail)
tail->bi_next = old_head;
else
device->pending_bio_tail = tail;
spin_unlock(&device->io_lock);
btrfs_requeue_work(&device->work);
goto done;
}
}
if (again)
goto loop;
done:
return 0;
}
void pending_bios_fn(struct btrfs_work *work)
{
struct btrfs_device *device;
device = container_of(work, struct btrfs_device, work);
run_scheduled_bios(device);
}
static noinline int device_list_add(const char *path,
struct btrfs_super_block *disk_super,
u64 devid, struct btrfs_fs_devices **fs_devices_ret)
{
struct btrfs_device *device;
struct btrfs_fs_devices *fs_devices;
u64 found_transid = btrfs_super_generation(disk_super);
fs_devices = find_fsid(disk_super->fsid);
if (!fs_devices) {
fs_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS);
if (!fs_devices)
return -ENOMEM;
INIT_LIST_HEAD(&fs_devices->devices);
INIT_LIST_HEAD(&fs_devices->alloc_list);
list_add(&fs_devices->list, &fs_uuids);
memcpy(fs_devices->fsid, disk_super->fsid, BTRFS_FSID_SIZE);
fs_devices->latest_devid = devid;
fs_devices->latest_trans = found_transid;
device = NULL;
} else {
device = __find_device(&fs_devices->devices, devid,
disk_super->dev_item.uuid);
}
if (!device) {
device = kzalloc(sizeof(*device), GFP_NOFS);
if (!device) {
/* we can safely leave the fs_devices entry around */
return -ENOMEM;
}
device->devid = devid;
device->work.func = pending_bios_fn;
memcpy(device->uuid, disk_super->dev_item.uuid,
BTRFS_UUID_SIZE);
device->barriers = 1;
spin_lock_init(&device->io_lock);
device->name = kstrdup(path, GFP_NOFS);
if (!device->name) {
kfree(device);
return -ENOMEM;
}
list_add(&device->dev_list, &fs_devices->devices);
list_add(&device->dev_alloc_list, &fs_devices->alloc_list);
fs_devices->num_devices++;
}
if (found_transid > fs_devices->latest_trans) {
fs_devices->latest_devid = devid;
fs_devices->latest_trans = found_transid;
}
*fs_devices_ret = fs_devices;
return 0;
}
int btrfs_close_extra_devices(struct btrfs_fs_devices *fs_devices)
{
struct list_head *head = &fs_devices->devices;
struct list_head *cur;
struct btrfs_device *device;
mutex_lock(&uuid_mutex);
again:
list_for_each(cur, head) {
device = list_entry(cur, struct btrfs_device, dev_list);
if (!device->in_fs_metadata) {
struct block_device *bdev;
list_del(&device->dev_list);
list_del(&device->dev_alloc_list);
fs_devices->num_devices--;
if (device->bdev) {
bdev = device->bdev;
fs_devices->open_devices--;
mutex_unlock(&uuid_mutex);
close_bdev_excl(bdev);
mutex_lock(&uuid_mutex);
}
kfree(device->name);
kfree(device);
goto again;
}
}
mutex_unlock(&uuid_mutex);
return 0;
}
int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
{
struct list_head *head = &fs_devices->devices;
struct list_head *cur;
struct btrfs_device *device;
mutex_lock(&uuid_mutex);
list_for_each(cur, head) {
device = list_entry(cur, struct btrfs_device, dev_list);
if (device->bdev) {
close_bdev_excl(device->bdev);
fs_devices->open_devices--;
}
device->bdev = NULL;
device->in_fs_metadata = 0;
}
fs_devices->mounted = 0;
mutex_unlock(&uuid_mutex);
return 0;
}
int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
int flags, void *holder)
{
struct block_device *bdev;
struct list_head *head = &fs_devices->devices;
struct list_head *cur;
struct btrfs_device *device;
struct block_device *latest_bdev = NULL;
struct buffer_head *bh;
struct btrfs_super_block *disk_super;
u64 latest_devid = 0;
u64 latest_transid = 0;
u64 transid;
u64 devid;
int ret = 0;
mutex_lock(&uuid_mutex);
if (fs_devices->mounted)
goto out;
list_for_each(cur, head) {
device = list_entry(cur, struct btrfs_device, dev_list);
if (device->bdev)
continue;
if (!device->name)
continue;
bdev = open_bdev_excl(device->name, flags, holder);
if (IS_ERR(bdev)) {
printk("open %s failed\n", device->name);
goto error;
}
set_blocksize(bdev, 4096);
bh = __bread(bdev, BTRFS_SUPER_INFO_OFFSET / 4096, 4096);
if (!bh)
goto error_close;
disk_super = (struct btrfs_super_block *)bh->b_data;
if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
sizeof(disk_super->magic)))
goto error_brelse;
devid = le64_to_cpu(disk_super->dev_item.devid);
if (devid != device->devid)
goto error_brelse;
transid = btrfs_super_generation(disk_super);
if (!latest_transid || transid > latest_transid) {
latest_devid = devid;
latest_transid = transid;
latest_bdev = bdev;
}
device->bdev = bdev;
device->in_fs_metadata = 0;
fs_devices->open_devices++;
continue;
error_brelse:
brelse(bh);
error_close:
close_bdev_excl(bdev);
error:
continue;
}
if (fs_devices->open_devices == 0) {
ret = -EIO;
goto out;
}
fs_devices->mounted = 1;
fs_devices->latest_bdev = latest_bdev;
fs_devices->latest_devid = latest_devid;
fs_devices->latest_trans = latest_transid;
out:
mutex_unlock(&uuid_mutex);
return ret;
}
int btrfs_scan_one_device(const char *path, int flags, void *holder,
struct btrfs_fs_devices **fs_devices_ret)
{
struct btrfs_super_block *disk_super;
struct block_device *bdev;
struct buffer_head *bh;
int ret;
u64 devid;
u64 transid;
mutex_lock(&uuid_mutex);
bdev = open_bdev_excl(path, flags, holder);
if (IS_ERR(bdev)) {
ret = PTR_ERR(bdev);
goto error;
}
ret = set_blocksize(bdev, 4096);
if (ret)
goto error_close;
bh = __bread(bdev, BTRFS_SUPER_INFO_OFFSET / 4096, 4096);
if (!bh) {
ret = -EIO;
goto error_close;
}
disk_super = (struct btrfs_super_block *)bh->b_data;
if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
sizeof(disk_super->magic))) {
ret = -EINVAL;
goto error_brelse;
}
devid = le64_to_cpu(disk_super->dev_item.devid);
transid = btrfs_super_generation(disk_super);
if (disk_super->label[0])
printk("device label %s ", disk_super->label);
else {
/* FIXME, make a readl uuid parser */
printk("device fsid %llx-%llx ",
*(unsigned long long *)disk_super->fsid,
*(unsigned long long *)(disk_super->fsid + 8));
}
printk("devid %Lu transid %Lu %s\n", devid, transid, path);
ret = device_list_add(path, disk_super, devid, fs_devices_ret);
error_brelse:
brelse(bh);
error_close:
close_bdev_excl(bdev);
error:
mutex_unlock(&uuid_mutex);
return ret;
}
/*
* this uses a pretty simple search, the expectation is that it is
* called very infrequently and that a given device has a small number
* of extents
*/
static noinline int find_free_dev_extent(struct btrfs_trans_handle *trans,
struct btrfs_device *device,
struct btrfs_path *path,
u64 num_bytes, u64 *start)
{
struct btrfs_key key;
struct btrfs_root *root = device->dev_root;
struct btrfs_dev_extent *dev_extent = NULL;
u64 hole_size = 0;
u64 last_byte = 0;
u64 search_start = 0;
u64 search_end = device->total_bytes;
int ret;
int slot = 0;
int start_found;
struct extent_buffer *l;
start_found = 0;
path->reada = 2;
/* FIXME use last free of some kind */
/* we don't want to overwrite the superblock on the drive,
* so we make sure to start at an offset of at least 1MB
*/
search_start = max((u64)1024 * 1024, search_start);
if (root->fs_info->alloc_start + num_bytes <= device->total_bytes)
search_start = max(root->fs_info->alloc_start, search_start);
key.objectid = device->devid;
key.offset = search_start;
key.type = BTRFS_DEV_EXTENT_KEY;
ret = btrfs_search_slot(trans, root, &key, path, 0, 0);
if (ret < 0)
goto error;
ret = btrfs_previous_item(root, path, 0, key.type);
if (ret < 0)
goto error;
l = path->nodes[0];
btrfs_item_key_to_cpu(l, &key, path->slots[0]);
while (1) {
l = path->nodes[0];
slot = path->slots[0];
if (slot >= btrfs_header_nritems(l)) {
ret = btrfs_next_leaf(root, path);
if (ret == 0)
continue;
if (ret < 0)
goto error;
no_more_items:
if (!start_found) {
if (search_start >= search_end) {
ret = -ENOSPC;
goto error;
}
*start = search_start;
start_found = 1;
goto check_pending;
}
*start = last_byte > search_start ?
last_byte : search_start;
if (search_end <= *start) {
ret = -ENOSPC;
goto error;
}
goto check_pending;
}
btrfs_item_key_to_cpu(l, &key, slot);
if (key.objectid < device->devid)
goto next;
if (key.objectid > device->devid)
goto no_more_items;
if (key.offset >= search_start && key.offset > last_byte &&
start_found) {
if (last_byte < search_start)
last_byte = search_start;
hole_size = key.offset - last_byte;
if (key.offset > last_byte &&
hole_size >= num_bytes) {
*start = last_byte;
goto check_pending;
}
}
if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY) {
goto next;
}
start_found = 1;
dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
last_byte = key.offset + btrfs_dev_extent_length(l, dev_extent);
next:
path->slots[0]++;
cond_resched();
}
check_pending:
/* we have to make sure we didn't find an extent that has already
* been allocated by the map tree or the original allocation
*/
btrfs_release_path(root, path);
BUG_ON(*start < search_start);
if (*start + num_bytes > search_end) {
ret = -ENOSPC;
goto error;
}
/* check for pending inserts here */
return 0;
error:
btrfs_release_path(root, path);
return ret;
}
int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
struct btrfs_device *device,
u64 start)
{
int ret;
struct btrfs_path *path;
struct btrfs_root *root = device->dev_root;
struct btrfs_key key;
struct btrfs_key found_key;
struct extent_buffer *leaf = NULL;
struct btrfs_dev_extent *extent = NULL;
path = btrfs_alloc_path();
if (!path)
return -ENOMEM;
key.objectid = device->devid;
key.offset = start;
key.type = BTRFS_DEV_EXTENT_KEY;
ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
if (ret > 0) {
ret = btrfs_previous_item(root, path, key.objectid,
BTRFS_DEV_EXTENT_KEY);
BUG_ON(ret);
leaf = path->nodes[0];
btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
extent = btrfs_item_ptr(leaf, path->slots[0],
struct btrfs_dev_extent);
BUG_ON(found_key.offset > start || found_key.offset +
btrfs_dev_extent_length(leaf, extent) < start);
ret = 0;
} else if (ret == 0) {
leaf = path->nodes[0];
extent = btrfs_item_ptr(leaf, path->slots[0],
struct btrfs_dev_extent);
}
BUG_ON(ret);
if (device->bytes_used > 0)
device->bytes_used -= btrfs_dev_extent_length(leaf, extent);
ret = btrfs_del_item(trans, root, path);
BUG_ON(ret);
btrfs_free_path(path);
return ret;
}
int noinline btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
struct btrfs_device *device,
u64 chunk_tree, u64 chunk_objectid,
u64 chunk_offset,
u64 num_bytes, u64 *start)
{
int ret;
struct btrfs_path *path;
struct btrfs_root *root = device->dev_root;
struct btrfs_dev_extent *extent;
struct extent_buffer *leaf;
struct btrfs_key key;
WARN_ON(!device->in_fs_metadata);
path = btrfs_alloc_path();
if (!path)
return -ENOMEM;
ret = find_free_dev_extent(trans, device, path, num_bytes, start);
if (ret) {
goto err;
}
key.objectid = device->devid;
key.offset = *start;
key.type = BTRFS_DEV_EXTENT_KEY;
ret = btrfs_insert_empty_item(trans, root, path, &key,
sizeof(*extent));
BUG_ON(ret);
leaf = path->nodes[0];
extent = btrfs_item_ptr(leaf, path->slots[0],
struct btrfs_dev_extent);
btrfs_set_dev_extent_chunk_tree(leaf, extent, chunk_tree);
btrfs_set_dev_extent_chunk_objectid(leaf, extent, chunk_objectid);
btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
(unsigned long)btrfs_dev_extent_chunk_tree_uuid(extent),
BTRFS_UUID_SIZE);
btrfs_set_dev_extent_length(leaf, extent, num_bytes);
btrfs_mark_buffer_dirty(leaf);
err:
btrfs_free_path(path);
return ret;
}
static noinline int find_next_chunk(struct btrfs_root *root,
u64 objectid, u64 *offset)
{
struct btrfs_path *path;
int ret;
struct btrfs_key key;
struct btrfs_chunk *chunk;
struct btrfs_key found_key;
path = btrfs_alloc_path();
BUG_ON(!path);
key.objectid = objectid;
key.offset = (u64)-1;
key.type = BTRFS_CHUNK_ITEM_KEY;
ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
if (ret < 0)
goto error;
BUG_ON(ret == 0);
ret = btrfs_previous_item(root, path, 0, BTRFS_CHUNK_ITEM_KEY);
if (ret) {
*offset = 0;
} else {
btrfs_item_key_to_cpu(path->nodes[0], &found_key,
path->slots[0]);
if (found_key.objectid != objectid)
*offset = 0;
else {
chunk = btrfs_item_ptr(path->nodes[0], path->slots[0],
struct btrfs_chunk);
*offset = found_key.offset +
btrfs_chunk_length(path->nodes[0], chunk);
}
}
ret = 0;
error:
btrfs_free_path(path);
return ret;
}
static noinline int find_next_devid(struct btrfs_root *root,
struct btrfs_path *path, u64 *objectid)
{
int ret;
struct btrfs_key key;
struct btrfs_key found_key;
key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
key.type = BTRFS_DEV_ITEM_KEY;
key.offset = (u64)-1;
ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
if (ret < 0)
goto error;
BUG_ON(ret == 0);
ret = btrfs_previous_item(root, path, BTRFS_DEV_ITEMS_OBJECTID,
BTRFS_DEV_ITEM_KEY);
if (ret) {
*objectid = 1;
} else {
btrfs_item_key_to_cpu(path->nodes[0], &found_key,
path->slots[0]);
*objectid = found_key.offset + 1;
}
ret = 0;
error:
btrfs_release_path(root, path);
return ret;
}
/*
* the device information is stored in the chunk root
* the btrfs_device struct should be fully filled in
*/
int btrfs_add_device(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct btrfs_device *device)
{
int ret;
struct btrfs_path *path;
struct btrfs_dev_item *dev_item;
struct extent_buffer *leaf;
struct btrfs_key key;
unsigned long ptr;
u64 free_devid = 0;
root = root->fs_info->chunk_root;
path = btrfs_alloc_path();
if (!path)
return -ENOMEM;
ret = find_next_devid(root, path, &free_devid);
if (ret)
goto out;
key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
key.type = BTRFS_DEV_ITEM_KEY;
key.offset = free_devid;
ret = btrfs_insert_empty_item(trans, root, path, &key,
sizeof(*dev_item));
if (ret)
goto out;
leaf = path->nodes[0];
dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
device->devid = free_devid;
btrfs_set_device_id(leaf, dev_item, device->devid);
btrfs_set_device_type(leaf, dev_item, device->type);
btrfs_set_device_io_align(leaf, dev_item, device->io_align);
btrfs_set_device_io_width(leaf, dev_item, device->io_width);
btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
btrfs_set_device_total_bytes(leaf, dev_item, device->total_bytes);
btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
btrfs_set_device_group(leaf, dev_item, 0);
btrfs_set_device_seek_speed(leaf, dev_item, 0);
btrfs_set_device_bandwidth(leaf, dev_item, 0);
ptr = (unsigned long)btrfs_device_uuid(dev_item);
write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
btrfs_mark_buffer_dirty(leaf);
ret = 0;
out:
btrfs_free_path(path);
return ret;
}
static int btrfs_rm_dev_item(struct btrfs_root *root,
struct btrfs_device *device)
{
int ret;
struct btrfs_path *path;
struct block_device *bdev = device->bdev;
struct btrfs_device *next_dev;
struct btrfs_key key;
u64 total_bytes;
struct btrfs_fs_devices *fs_devices;
struct btrfs_trans_handle *trans;
root = root->fs_info->chunk_root;
path = btrfs_alloc_path();
if (!path)
return -ENOMEM;
trans = btrfs_start_transaction(root, 1);
key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
key.type = BTRFS_DEV_ITEM_KEY;
key.offset = device->devid;
lock_chunks(root);
ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
if (ret < 0)
goto out;
if (ret > 0) {
ret = -ENOENT;
goto out;
}
ret = btrfs_del_item(trans, root, path);
if (ret)
goto out;
/*
* at this point, the device is zero sized. We want to
* remove it from the devices list and zero out the old super
*/
list_del_init(&device->dev_list);
list_del_init(&device->dev_alloc_list);
fs_devices = root->fs_info->fs_devices;
next_dev = list_entry(fs_devices->devices.next, struct btrfs_device,
dev_list);
if (bdev == root->fs_info->sb->s_bdev)
root->fs_info->sb->s_bdev = next_dev->bdev;
if (bdev == fs_devices->latest_bdev)
fs_devices->latest_bdev = next_dev->bdev;
total_bytes = btrfs_super_num_devices(&root->fs_info->super_copy);
btrfs_set_super_num_devices(&root->fs_info->super_copy,
total_bytes - 1);
out:
btrfs_free_path(path);
unlock_chunks(root);
btrfs_commit_transaction(trans, root);
return ret;
}
int btrfs_rm_device(struct btrfs_root *root, char *device_path)
{
struct btrfs_device *device;
struct block_device *bdev;
struct buffer_head *bh = NULL;
struct btrfs_super_block *disk_super;
u64 all_avail;
u64 devid;
int ret = 0;
mutex_lock(&uuid_mutex);
mutex_lock(&root->fs_info->volume_mutex);
all_avail = root->fs_info->avail_data_alloc_bits |
root->fs_info->avail_system_alloc_bits |
root->fs_info->avail_metadata_alloc_bits;
if ((all_avail & BTRFS_BLOCK_GROUP_RAID10) &&
btrfs_super_num_devices(&root->fs_info->super_copy) <= 4) {
printk("btrfs: unable to go below four devices on raid10\n");
ret = -EINVAL;
goto out;
}
if ((all_avail & BTRFS_BLOCK_GROUP_RAID1) &&
btrfs_super_num_devices(&root->fs_info->super_copy) <= 2) {
printk("btrfs: unable to go below two devices on raid1\n");
ret = -EINVAL;
goto out;
}
if (strcmp(device_path, "missing") == 0) {
struct list_head *cur;
struct list_head *devices;
struct btrfs_device *tmp;
device = NULL;
devices = &root->fs_info->fs_devices->devices;
list_for_each(cur, devices) {
tmp = list_entry(cur, struct btrfs_device, dev_list);
if (tmp->in_fs_metadata && !tmp->bdev) {
device = tmp;
break;
}
}
bdev = NULL;
bh = NULL;
disk_super = NULL;
if (!device) {
printk("btrfs: no missing devices found to remove\n");
goto out;
}
} else {
bdev = open_bdev_excl(device_path, 0,
root->fs_info->bdev_holder);
if (IS_ERR(bdev)) {
ret = PTR_ERR(bdev);
goto out;
}
bh = __bread(bdev, BTRFS_SUPER_INFO_OFFSET / 4096, 4096);
if (!bh) {
ret = -EIO;
goto error_close;
}
disk_super = (struct btrfs_super_block *)bh->b_data;
if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
sizeof(disk_super->magic))) {
ret = -ENOENT;
goto error_brelse;
}
if (memcmp(disk_super->fsid, root->fs_info->fsid,
BTRFS_FSID_SIZE)) {
ret = -ENOENT;
goto error_brelse;
}
devid = le64_to_cpu(disk_super->dev_item.devid);
device = btrfs_find_device(root, devid, NULL);
if (!device) {
ret = -ENOENT;
goto error_brelse;
}
}
root->fs_info->fs_devices->num_devices--;
root->fs_info->fs_devices->open_devices--;
ret = btrfs_shrink_device(device, 0);
if (ret)
goto error_brelse;
ret = btrfs_rm_dev_item(root->fs_info->chunk_root, device);
if (ret)
goto error_brelse;
if (bh) {
/* make sure this device isn't detected as part of
* the FS anymore
*/
memset(&disk_super->magic, 0, sizeof(disk_super->magic));
set_buffer_dirty(bh);
sync_dirty_buffer(bh);
brelse(bh);
}
if (device->bdev) {
/* one close for the device struct or super_block */
close_bdev_excl(device->bdev);
}
if (bdev) {
/* one close for us */
close_bdev_excl(bdev);
}
kfree(device->name);
kfree(device);
ret = 0;
goto out;
error_brelse:
brelse(bh);
error_close:
if (bdev)
close_bdev_excl(bdev);
out:
mutex_unlock(&root->fs_info->volume_mutex);
mutex_unlock(&uuid_mutex);
return ret;
}
int btrfs_init_new_device(struct btrfs_root *root, char *device_path)
{
struct btrfs_trans_handle *trans;
struct btrfs_device *device;
struct block_device *bdev;
struct list_head *cur;
struct list_head *devices;
u64 total_bytes;
int ret = 0;
bdev = open_bdev_excl(device_path, 0, root->fs_info->bdev_holder);
if (!bdev) {
return -EIO;
}
filemap_write_and_wait(bdev->bd_inode->i_mapping);
mutex_lock(&root->fs_info->volume_mutex);
trans = btrfs_start_transaction(root, 1);
lock_chunks(root);
devices = &root->fs_info->fs_devices->devices;
list_for_each(cur, devices) {
device = list_entry(cur, struct btrfs_device, dev_list);
if (device->bdev == bdev) {
ret = -EEXIST;
goto out;
}
}
device = kzalloc(sizeof(*device), GFP_NOFS);
if (!device) {
/* we can safely leave the fs_devices entry around */
ret = -ENOMEM;
goto out_close_bdev;
}
device->barriers = 1;
device->work.func = pending_bios_fn;
generate_random_uuid(device->uuid);
spin_lock_init(&device->io_lock);
device->name = kstrdup(device_path, GFP_NOFS);
if (!device->name) {
kfree(device);
goto out_close_bdev;
}
device->io_width = root->sectorsize;
device->io_align = root->sectorsize;
device->sector_size = root->sectorsize;
device->total_bytes = i_size_read(bdev->bd_inode);
device->dev_root = root->fs_info->dev_root;
device->bdev = bdev;
device->in_fs_metadata = 1;
ret = btrfs_add_device(trans, root, device);
if (ret)
goto out_close_bdev;
set_blocksize(device->bdev, 4096);
total_bytes = btrfs_super_total_bytes(&root->fs_info->super_copy);
btrfs_set_super_total_bytes(&root->fs_info->super_copy,
total_bytes + device->total_bytes);
total_bytes = btrfs_super_num_devices(&root->fs_info->super_copy);
btrfs_set_super_num_devices(&root->fs_info->super_copy,
total_bytes + 1);
list_add(&device->dev_list, &root->fs_info->fs_devices->devices);
list_add(&device->dev_alloc_list,
&root->fs_info->fs_devices->alloc_list);
root->fs_info->fs_devices->num_devices++;
root->fs_info->fs_devices->open_devices++;
out:
unlock_chunks(root);
btrfs_end_transaction(trans, root);
mutex_unlock(&root->fs_info->volume_mutex);
return ret;
out_close_bdev:
close_bdev_excl(bdev);
goto out;
}
int noinline btrfs_update_device(struct btrfs_trans_handle *trans,
struct btrfs_device *device)
{
int ret;
struct btrfs_path *path;
struct btrfs_root *root;
struct btrfs_dev_item *dev_item;
struct extent_buffer *leaf;
struct btrfs_key key;
root = device->dev_root->fs_info->chunk_root;
path = btrfs_alloc_path();
if (!path)
return -ENOMEM;
key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
key.type = BTRFS_DEV_ITEM_KEY;
key.offset = device->devid;
ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
if (ret < 0)
goto out;
if (ret > 0) {
ret = -ENOENT;
goto out;
}
leaf = path->nodes[0];
dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
btrfs_set_device_id(leaf, dev_item, device->devid);
btrfs_set_device_type(leaf, dev_item, device->type);
btrfs_set_device_io_align(leaf, dev_item, device->io_align);
btrfs_set_device_io_width(leaf, dev_item, device->io_width);
btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
btrfs_set_device_total_bytes(leaf, dev_item, device->total_bytes);
btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
btrfs_mark_buffer_dirty(leaf);
out:
btrfs_free_path(path);
return ret;
}
static int __btrfs_grow_device(struct btrfs_trans_handle *trans,
struct btrfs_device *device, u64 new_size)
{
struct btrfs_super_block *super_copy =
&device->dev_root->fs_info->super_copy;
u64 old_total = btrfs_super_total_bytes(super_copy);
u64 diff = new_size - device->total_bytes;
btrfs_set_super_total_bytes(super_copy, old_total + diff);
return btrfs_update_device(trans, device);
}
int btrfs_grow_device(struct btrfs_trans_handle *trans,
struct btrfs_device *device, u64 new_size)
{
int ret;
lock_chunks(device->dev_root);
ret = __btrfs_grow_device(trans, device, new_size);
unlock_chunks(device->dev_root);
return ret;
}
static int btrfs_free_chunk(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
u64 chunk_tree, u64 chunk_objectid,
u64 chunk_offset)
{
int ret;
struct btrfs_path *path;
struct btrfs_key key;
root = root->fs_info->chunk_root;
path = btrfs_alloc_path();
if (!path)
return -ENOMEM;
key.objectid = chunk_objectid;
key.offset = chunk_offset;
key.type = BTRFS_CHUNK_ITEM_KEY;
ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
BUG_ON(ret);
ret = btrfs_del_item(trans, root, path);
BUG_ON(ret);
btrfs_free_path(path);
return 0;
}
int btrfs_del_sys_chunk(struct btrfs_root *root, u64 chunk_objectid, u64
chunk_offset)
{
struct btrfs_super_block *super_copy = &root->fs_info->super_copy;
struct btrfs_disk_key *disk_key;
struct btrfs_chunk *chunk;
u8 *ptr;
int ret = 0;
u32 num_stripes;
u32 array_size;
u32 len = 0;
u32 cur;
struct btrfs_key key;
array_size = btrfs_super_sys_array_size(super_copy);
ptr = super_copy->sys_chunk_array;
cur = 0;
while (cur < array_size) {
disk_key = (struct btrfs_disk_key *)ptr;
btrfs_disk_key_to_cpu(&key, disk_key);
len = sizeof(*disk_key);
if (key.type == BTRFS_CHUNK_ITEM_KEY) {
chunk = (struct btrfs_chunk *)(ptr + len);
num_stripes = btrfs_stack_chunk_num_stripes(chunk);
len += btrfs_chunk_item_size(num_stripes);
} else {
ret = -EIO;
break;
}
if (key.objectid == chunk_objectid &&
key.offset == chunk_offset) {
memmove(ptr, ptr + len, array_size - (cur + len));
array_size -= len;
btrfs_set_super_sys_array_size(super_copy, array_size);
} else {
ptr += len;
cur += len;
}
}
return ret;
}
int btrfs_relocate_chunk(struct btrfs_root *root,
u64 chunk_tree, u64 chunk_objectid,
u64 chunk_offset)
{
struct extent_map_tree *em_tree;
struct btrfs_root *extent_root;
struct btrfs_trans_handle *trans;
struct extent_map *em;
struct map_lookup *map;
int ret;
int i;
printk("btrfs relocating chunk %llu\n",
(unsigned long long)chunk_offset);
root = root->fs_info->chunk_root;
extent_root = root->fs_info->extent_root;
em_tree = &root->fs_info->mapping_tree.map_tree;
/* step one, relocate all the extents inside this chunk */
ret = btrfs_relocate_block_group(extent_root, chunk_offset);
BUG_ON(ret);
trans = btrfs_start_transaction(root, 1);
BUG_ON(!trans);
lock_chunks(root);
/*
* step two, delete the device extents and the
* chunk tree entries
*/
spin_lock(&em_tree->lock);
em = lookup_extent_mapping(em_tree, chunk_offset, 1);
spin_unlock(&em_tree->lock);
BUG_ON(em->start > chunk_offset ||
em->start + em->len < chunk_offset);
map = (struct map_lookup *)em->bdev;
for (i = 0; i < map->num_stripes; i++) {
ret = btrfs_free_dev_extent(trans, map->stripes[i].dev,
map->stripes[i].physical);
BUG_ON(ret);
if (map->stripes[i].dev) {
ret = btrfs_update_device(trans, map->stripes[i].dev);
BUG_ON(ret);
}
}
ret = btrfs_free_chunk(trans, root, chunk_tree, chunk_objectid,
chunk_offset);
BUG_ON(ret);
if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
ret = btrfs_del_sys_chunk(root, chunk_objectid, chunk_offset);
BUG_ON(ret);
}
ret = btrfs_remove_block_group(trans, extent_root, chunk_offset);
BUG_ON(ret);
spin_lock(&em_tree->lock);
remove_extent_mapping(em_tree, em);
spin_unlock(&em_tree->lock);
kfree(map);
em->bdev = NULL;
/* once for the tree */
free_extent_map(em);
/* once for us */
free_extent_map(em);
unlock_chunks(root);
btrfs_end_transaction(trans, root);
return 0;
}
static u64 div_factor(u64 num, int factor)
{
if (factor == 10)
return num;
num *= factor;
do_div(num, 10);
return num;
}
int btrfs_balance(struct btrfs_root *dev_root)
{
int ret;
struct list_head *cur;
struct list_head *devices = &dev_root->fs_info->fs_devices->devices;
struct btrfs_device *device;
u64 old_size;
u64 size_to_free;
struct btrfs_path *path;
struct btrfs_key key;
struct btrfs_chunk *chunk;
struct btrfs_root *chunk_root = dev_root->fs_info->chunk_root;
struct btrfs_trans_handle *trans;
struct btrfs_key found_key;
mutex_lock(&dev_root->fs_info->volume_mutex);
dev_root = dev_root->fs_info->dev_root;
/* step one make some room on all the devices */
list_for_each(cur, devices) {
device = list_entry(cur, struct btrfs_device, dev_list);
old_size = device->total_bytes;
size_to_free = div_factor(old_size, 1);
size_to_free = min(size_to_free, (u64)1 * 1024 * 1024);
if (device->total_bytes - device->bytes_used > size_to_free)
continue;
ret = btrfs_shrink_device(device, old_size - size_to_free);
BUG_ON(ret);
trans = btrfs_start_transaction(dev_root, 1);
BUG_ON(!trans);
ret = btrfs_grow_device(trans, device, old_size);
BUG_ON(ret);
btrfs_end_transaction(trans, dev_root);
}
/* step two, relocate all the chunks */
path = btrfs_alloc_path();
BUG_ON(!path);
key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
key.offset = (u64)-1;
key.type = BTRFS_CHUNK_ITEM_KEY;
while(1) {
ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
if (ret < 0)
goto error;
/*
* this shouldn't happen, it means the last relocate
* failed
*/
if (ret == 0)
break;
ret = btrfs_previous_item(chunk_root, path, 0,
BTRFS_CHUNK_ITEM_KEY);
if (ret)
break;
btrfs_item_key_to_cpu(path->nodes[0], &found_key,
path->slots[0]);
if (found_key.objectid != key.objectid)
break;
chunk = btrfs_item_ptr(path->nodes[0],
path->slots[0],
struct btrfs_chunk);
key.offset = found_key.offset;
/* chunk zero is special */
if (key.offset == 0)
break;
btrfs_release_path(chunk_root, path);
ret = btrfs_relocate_chunk(chunk_root,
chunk_root->root_key.objectid,
found_key.objectid,
found_key.offset);
BUG_ON(ret);
}
ret = 0;
error:
btrfs_free_path(path);
mutex_unlock(&dev_root->fs_info->volume_mutex);
return ret;
}
/*
* shrinking a device means finding all of the device extents past
* the new size, and then following the back refs to the chunks.
* The chunk relocation code actually frees the device extent
*/
int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
{
struct btrfs_trans_handle *trans;
struct btrfs_root *root = device->dev_root;
struct btrfs_dev_extent *dev_extent = NULL;
struct btrfs_path *path;
u64 length;
u64 chunk_tree;
u64 chunk_objectid;
u64 chunk_offset;
int ret;
int slot;
struct extent_buffer *l;
struct btrfs_key key;
struct btrfs_super_block *super_copy = &root->fs_info->super_copy;
u64 old_total = btrfs_super_total_bytes(super_copy);
u64 diff = device->total_bytes - new_size;
path = btrfs_alloc_path();
if (!path)
return -ENOMEM;
trans = btrfs_start_transaction(root, 1);
if (!trans) {
ret = -ENOMEM;
goto done;
}
path->reada = 2;
lock_chunks(root);
device->total_bytes = new_size;
ret = btrfs_update_device(trans, device);
if (ret) {
unlock_chunks(root);
btrfs_end_transaction(trans, root);
goto done;
}
WARN_ON(diff > old_total);
btrfs_set_super_total_bytes(super_copy, old_total - diff);
unlock_chunks(root);
btrfs_end_transaction(trans, root);
key.objectid = device->devid;
key.offset = (u64)-1;
key.type = BTRFS_DEV_EXTENT_KEY;
while (1) {
ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
if (ret < 0)
goto done;
ret = btrfs_previous_item(root, path, 0, key.type);
if (ret < 0)
goto done;
if (ret) {
ret = 0;
goto done;
}
l = path->nodes[0];
slot = path->slots[0];
btrfs_item_key_to_cpu(l, &key, path->slots[0]);
if (key.objectid != device->devid)
goto done;
dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
length = btrfs_dev_extent_length(l, dev_extent);
if (key.offset + length <= new_size)
goto done;
chunk_tree = btrfs_dev_extent_chunk_tree(l, dev_extent);
chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent);
chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
btrfs_release_path(root, path);
ret = btrfs_relocate_chunk(root, chunk_tree, chunk_objectid,
chunk_offset);
if (ret)
goto done;
}
done:
btrfs_free_path(path);
return ret;
}
int btrfs_add_system_chunk(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct btrfs_key *key,
struct btrfs_chunk *chunk, int item_size)
{
struct btrfs_super_block *super_copy = &root->fs_info->super_copy;
struct btrfs_disk_key disk_key;
u32 array_size;
u8 *ptr;
array_size = btrfs_super_sys_array_size(super_copy);
if (array_size + item_size > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE)
return -EFBIG;
ptr = super_copy->sys_chunk_array + array_size;
btrfs_cpu_key_to_disk(&disk_key, key);
memcpy(ptr, &disk_key, sizeof(disk_key));
ptr += sizeof(disk_key);
memcpy(ptr, chunk, item_size);
item_size += sizeof(disk_key);
btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
return 0;
}
static u64 noinline chunk_bytes_by_type(u64 type, u64 calc_size,
int num_stripes, int sub_stripes)
{
if (type & (BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_DUP))
return calc_size;
else if (type & BTRFS_BLOCK_GROUP_RAID10)
return calc_size * (num_stripes / sub_stripes);
else
return calc_size * num_stripes;
}
int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
struct btrfs_root *extent_root, u64 *start,
u64 *num_bytes, u64 type)
{
u64 dev_offset;
struct btrfs_fs_info *info = extent_root->fs_info;
struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
struct btrfs_path *path;
struct btrfs_stripe *stripes;
struct btrfs_device *device = NULL;
struct btrfs_chunk *chunk;
struct list_head private_devs;
struct list_head *dev_list;
struct list_head *cur;
struct extent_map_tree *em_tree;
struct map_lookup *map;
struct extent_map *em;
int min_stripe_size = 1 * 1024 * 1024;
u64 physical;
u64 calc_size = 1024 * 1024 * 1024;
u64 max_chunk_size = calc_size;
u64 min_free;
u64 avail;
u64 max_avail = 0;
u64 percent_max;
int num_stripes = 1;
int min_stripes = 1;
int sub_stripes = 0;
int looped = 0;
int ret;
int index;
int stripe_len = 64 * 1024;
struct btrfs_key key;
if ((type & BTRFS_BLOCK_GROUP_RAID1) &&
(type & BTRFS_BLOCK_GROUP_DUP)) {
WARN_ON(1);
type &= ~BTRFS_BLOCK_GROUP_DUP;
}
dev_list = &extent_root->fs_info->fs_devices->alloc_list;
if (list_empty(dev_list))
return -ENOSPC;
if (type & (BTRFS_BLOCK_GROUP_RAID0)) {
num_stripes = extent_root->fs_info->fs_devices->open_devices;
min_stripes = 2;
}
if (type & (BTRFS_BLOCK_GROUP_DUP)) {
num_stripes = 2;
min_stripes = 2;
}
if (type & (BTRFS_BLOCK_GROUP_RAID1)) {
num_stripes = min_t(u64, 2,
extent_root->fs_info->fs_devices->open_devices);
if (num_stripes < 2)
return -ENOSPC;
min_stripes = 2;
}
if (type & (BTRFS_BLOCK_GROUP_RAID10)) {
num_stripes = extent_root->fs_info->fs_devices->open_devices;
if (num_stripes < 4)
return -ENOSPC;
num_stripes &= ~(u32)1;
sub_stripes = 2;
min_stripes = 4;
}
if (type & BTRFS_BLOCK_GROUP_DATA) {
max_chunk_size = 10 * calc_size;
min_stripe_size = 64 * 1024 * 1024;
} else if (type & BTRFS_BLOCK_GROUP_METADATA) {
max_chunk_size = 4 * calc_size;
min_stripe_size = 32 * 1024 * 1024;
} else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
calc_size = 8 * 1024 * 1024;
max_chunk_size = calc_size * 2;
min_stripe_size = 1 * 1024 * 1024;
}
path = btrfs_alloc_path();
if (!path)
return -ENOMEM;
/* we don't want a chunk larger than 10% of the FS */
percent_max = div_factor(btrfs_super_total_bytes(&info->super_copy), 1);
max_chunk_size = min(percent_max, max_chunk_size);
again:
if (calc_size * num_stripes > max_chunk_size) {
calc_size = max_chunk_size;
do_div(calc_size, num_stripes);
do_div(calc_size, stripe_len);
calc_size *= stripe_len;
}
/* we don't want tiny stripes */
calc_size = max_t(u64, min_stripe_size, calc_size);
do_div(calc_size, stripe_len);
calc_size *= stripe_len;
INIT_LIST_HEAD(&private_devs);
cur = dev_list->next;
index = 0;
if (type & BTRFS_BLOCK_GROUP_DUP)
min_free = calc_size * 2;
else
min_free = calc_size;
/*
* we add 1MB because we never use the first 1MB of the device, unless
* we've looped, then we are likely allocating the maximum amount of
* space left already
*/
if (!looped)
min_free += 1024 * 1024;
/* build a private list of devices we will allocate from */
while(index < num_stripes) {
device = list_entry(cur, struct btrfs_device, dev_alloc_list);
if (device->total_bytes > device->bytes_used)
avail = device->total_bytes - device->bytes_used;
else
avail = 0;
cur = cur->next;
if (device->in_fs_metadata && avail >= min_free) {
u64 ignored_start = 0;
ret = find_free_dev_extent(trans, device, path,
min_free,
&ignored_start);
if (ret == 0) {
list_move_tail(&device->dev_alloc_list,
&private_devs);
index++;
if (type & BTRFS_BLOCK_GROUP_DUP)
index++;
}
} else if (device->in_fs_metadata && avail > max_avail)
max_avail = avail;
if (cur == dev_list)
break;
}
if (index < num_stripes) {
list_splice(&private_devs, dev_list);
if (index >= min_stripes) {
num_stripes = index;
if (type & (BTRFS_BLOCK_GROUP_RAID10)) {
num_stripes /= sub_stripes;
num_stripes *= sub_stripes;
}
looped = 1;
goto again;
}
if (!looped && max_avail > 0) {
looped = 1;
calc_size = max_avail;
goto again;
}
btrfs_free_path(path);
return -ENOSPC;
}
key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
key.type = BTRFS_CHUNK_ITEM_KEY;
ret = find_next_chunk(chunk_root, BTRFS_FIRST_CHUNK_TREE_OBJECTID,
&key.offset);
if (ret) {
btrfs_free_path(path);
return ret;
}
chunk = kmalloc(btrfs_chunk_item_size(num_stripes), GFP_NOFS);
if (!chunk) {
btrfs_free_path(path);
return -ENOMEM;
}
map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
if (!map) {
kfree(chunk);
btrfs_free_path(path);
return -ENOMEM;
}
btrfs_free_path(path);
path = NULL;
stripes = &chunk->stripe;
*num_bytes = chunk_bytes_by_type(type, calc_size,
num_stripes, sub_stripes);
index = 0;
while(index < num_stripes) {
struct btrfs_stripe *stripe;
BUG_ON(list_empty(&private_devs));
cur = private_devs.next;
device = list_entry(cur, struct btrfs_device, dev_alloc_list);
/* loop over this device again if we're doing a dup group */
if (!(type & BTRFS_BLOCK_GROUP_DUP) ||
(index == num_stripes - 1))
list_move_tail(&device->dev_alloc_list, dev_list);
ret = btrfs_alloc_dev_extent(trans, device,
info->chunk_root->root_key.objectid,
BTRFS_FIRST_CHUNK_TREE_OBJECTID, key.offset,
calc_size, &dev_offset);
BUG_ON(ret);
device->bytes_used += calc_size;
ret = btrfs_update_device(trans, device);
BUG_ON(ret);
map->stripes[index].dev = device;
map->stripes[index].physical = dev_offset;
stripe = stripes + index;
btrfs_set_stack_stripe_devid(stripe, device->devid);
btrfs_set_stack_stripe_offset(stripe, dev_offset);
memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
physical = dev_offset;
index++;
}
BUG_ON(!list_empty(&private_devs));
/* key was set above */
btrfs_set_stack_chunk_length(chunk, *num_bytes);
btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
btrfs_set_stack_chunk_stripe_len(chunk, stripe_len);
btrfs_set_stack_chunk_type(chunk, type);
btrfs_set_stack_chunk_num_stripes(chunk, num_stripes);
btrfs_set_stack_chunk_io_align(chunk, stripe_len);
btrfs_set_stack_chunk_io_width(chunk, stripe_len);
btrfs_set_stack_chunk_sector_size(chunk, extent_root->sectorsize);
btrfs_set_stack_chunk_sub_stripes(chunk, sub_stripes);
map->sector_size = extent_root->sectorsize;
map->stripe_len = stripe_len;
map->io_align = stripe_len;
map->io_width = stripe_len;
map->type = type;
map->num_stripes = num_stripes;
map->sub_stripes = sub_stripes;
ret = btrfs_insert_item(trans, chunk_root, &key, chunk,
btrfs_chunk_item_size(num_stripes));
BUG_ON(ret);
*start = key.offset;;
em = alloc_extent_map(GFP_NOFS);
if (!em)
return -ENOMEM;
em->bdev = (struct block_device *)map;
em->start = key.offset;
em->len = *num_bytes;
em->block_start = 0;
em->block_len = em->len;
if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
ret = btrfs_add_system_chunk(trans, chunk_root, &key,
chunk, btrfs_chunk_item_size(num_stripes));
BUG_ON(ret);
}
kfree(chunk);
em_tree = &extent_root->fs_info->mapping_tree.map_tree;
spin_lock(&em_tree->lock);
ret = add_extent_mapping(em_tree, em);
spin_unlock(&em_tree->lock);
BUG_ON(ret);
free_extent_map(em);
return ret;
}
void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
{
extent_map_tree_init(&tree->map_tree, GFP_NOFS);
}
void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
{
struct extent_map *em;
while(1) {
spin_lock(&tree->map_tree.lock);
em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
if (em)
remove_extent_mapping(&tree->map_tree, em);
spin_unlock(&tree->map_tree.lock);
if (!em)
break;
kfree(em->bdev);
/* once for us */
free_extent_map(em);
/* once for the tree */
free_extent_map(em);
}
}
int btrfs_num_copies(struct btrfs_mapping_tree *map_tree, u64 logical, u64 len)
{
struct extent_map *em;
struct map_lookup *map;
struct extent_map_tree *em_tree = &map_tree->map_tree;
int ret;
spin_lock(&em_tree->lock);
em = lookup_extent_mapping(em_tree, logical, len);
spin_unlock(&em_tree->lock);
BUG_ON(!em);
BUG_ON(em->start > logical || em->start + em->len < logical);
map = (struct map_lookup *)em->bdev;
if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
ret = map->num_stripes;
else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
ret = map->sub_stripes;
else
ret = 1;
free_extent_map(em);
return ret;
}
static int find_live_mirror(struct map_lookup *map, int first, int num,
int optimal)
{
int i;
if (map->stripes[optimal].dev->bdev)
return optimal;
for (i = first; i < first + num; i++) {
if (map->stripes[i].dev->bdev)
return i;
}
/* we couldn't find one that doesn't fail. Just return something
* and the io error handling code will clean up eventually
*/
return optimal;
}
static int __btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw,
u64 logical, u64 *length,
struct btrfs_multi_bio **multi_ret,
int mirror_num, struct page *unplug_page)
{
struct extent_map *em;
struct map_lookup *map;
struct extent_map_tree *em_tree = &map_tree->map_tree;
u64 offset;
u64 stripe_offset;
u64 stripe_nr;
int stripes_allocated = 8;
int stripes_required = 1;
int stripe_index;
int i;
int num_stripes;
int max_errors = 0;
struct btrfs_multi_bio *multi = NULL;
if (multi_ret && !(rw & (1 << BIO_RW))) {
stripes_allocated = 1;
}
again:
if (multi_ret) {
multi = kzalloc(btrfs_multi_bio_size(stripes_allocated),
GFP_NOFS);
if (!multi)
return -ENOMEM;
atomic_set(&multi->error, 0);
}
spin_lock(&em_tree->lock);
em = lookup_extent_mapping(em_tree, logical, *length);
spin_unlock(&em_tree->lock);
if (!em && unplug_page)
return 0;
if (!em) {
printk("unable to find logical %Lu len %Lu\n", logical, *length);
BUG();
}
BUG_ON(em->start > logical || em->start + em->len < logical);
map = (struct map_lookup *)em->bdev;
offset = logical - em->start;
if (mirror_num > map->num_stripes)
mirror_num = 0;
/* if our multi bio struct is too small, back off and try again */
if (rw & (1 << BIO_RW)) {
if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
BTRFS_BLOCK_GROUP_DUP)) {
stripes_required = map->num_stripes;
max_errors = 1;
} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
stripes_required = map->sub_stripes;
max_errors = 1;
}
}
if (multi_ret && rw == WRITE &&
stripes_allocated < stripes_required) {
stripes_allocated = map->num_stripes;
free_extent_map(em);
kfree(multi);
goto again;
}
stripe_nr = offset;
/*
* stripe_nr counts the total number of stripes we have to stride
* to get to this block
*/
do_div(stripe_nr, map->stripe_len);
stripe_offset = stripe_nr * map->stripe_len;
BUG_ON(offset < stripe_offset);
/* stripe_offset is the offset of this block in its stripe*/
stripe_offset = offset - stripe_offset;
if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1 |
BTRFS_BLOCK_GROUP_RAID10 |
BTRFS_BLOCK_GROUP_DUP)) {
/* we limit the length of each bio to what fits in a stripe */
*length = min_t(u64, em->len - offset,
map->stripe_len - stripe_offset);
} else {
*length = em->len - offset;
}
if (!multi_ret && !unplug_page)
goto out;
num_stripes = 1;
stripe_index = 0;
if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
if (unplug_page || (rw & (1 << BIO_RW)))
num_stripes = map->num_stripes;
else if (mirror_num)
stripe_index = mirror_num - 1;
else {
stripe_index = find_live_mirror(map, 0,
map->num_stripes,
current->pid % map->num_stripes);
}
} else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
if (rw & (1 << BIO_RW))
num_stripes = map->num_stripes;
else if (mirror_num)
stripe_index = mirror_num - 1;
} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
int factor = map->num_stripes / map->sub_stripes;
stripe_index = do_div(stripe_nr, factor);
stripe_index *= map->sub_stripes;
if (unplug_page || (rw & (1 << BIO_RW)))
num_stripes = map->sub_stripes;
else if (mirror_num)
stripe_index += mirror_num - 1;
else {
stripe_index = find_live_mirror(map, stripe_index,
map->sub_stripes, stripe_index +
current->pid % map->sub_stripes);
}
} else {
/*
* after this do_div call, stripe_nr is the number of stripes
* on this device we have to walk to find the data, and
* stripe_index is the number of our device in the stripe array
*/
stripe_index = do_div(stripe_nr, map->num_stripes);
}
BUG_ON(stripe_index >= map->num_stripes);
for (i = 0; i < num_stripes; i++) {
if (unplug_page) {
struct btrfs_device *device;
struct backing_dev_info *bdi;
device = map->stripes[stripe_index].dev;
if (device->bdev) {
bdi = blk_get_backing_dev_info(device->bdev);
if (bdi->unplug_io_fn) {
bdi->unplug_io_fn(bdi, unplug_page);
}
}
} else {
multi->stripes[i].physical =
map->stripes[stripe_index].physical +
stripe_offset + stripe_nr * map->stripe_len;
multi->stripes[i].dev = map->stripes[stripe_index].dev;
}
stripe_index++;
}
if (multi_ret) {
*multi_ret = multi;
multi->num_stripes = num_stripes;
multi->max_errors = max_errors;
}
out:
free_extent_map(em);
return 0;
}
int btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw,
u64 logical, u64 *length,
struct btrfs_multi_bio **multi_ret, int mirror_num)
{
return __btrfs_map_block(map_tree, rw, logical, length, multi_ret,
mirror_num, NULL);
}
int btrfs_unplug_page(struct btrfs_mapping_tree *map_tree,
u64 logical, struct page *page)
{
u64 length = PAGE_CACHE_SIZE;
return __btrfs_map_block(map_tree, READ, logical, &length,
NULL, 0, page);
}
static void end_bio_multi_stripe(struct bio *bio, int err)
{
struct btrfs_multi_bio *multi = bio->bi_private;
int is_orig_bio = 0;
if (err)
atomic_inc(&multi->error);
if (bio == multi->orig_bio)
is_orig_bio = 1;
if (atomic_dec_and_test(&multi->stripes_pending)) {
if (!is_orig_bio) {
bio_put(bio);
bio = multi->orig_bio;
}
bio->bi_private = multi->private;
bio->bi_end_io = multi->end_io;
/* only send an error to the higher layers if it is
* beyond the tolerance of the multi-bio
*/
if (atomic_read(&multi->error) > multi->max_errors) {
err = -EIO;
} else if (err) {
/*
* this bio is actually up to date, we didn't
* go over the max number of errors
*/
set_bit(BIO_UPTODATE, &bio->bi_flags);
err = 0;
}
kfree(multi);
bio_endio(bio, err);
} else if (!is_orig_bio) {
bio_put(bio);
}
}
struct async_sched {
struct bio *bio;
int rw;
struct btrfs_fs_info *info;
struct btrfs_work work;
};
/*
* see run_scheduled_bios for a description of why bios are collected for
* async submit.
*
* This will add one bio to the pending list for a device and make sure
* the work struct is scheduled.
*/
static int noinline schedule_bio(struct btrfs_root *root,
struct btrfs_device *device,
int rw, struct bio *bio)
{
int should_queue = 1;
/* don't bother with additional async steps for reads, right now */
if (!(rw & (1 << BIO_RW))) {
bio_get(bio);
submit_bio(rw, bio);
bio_put(bio);
return 0;
}
/*
* nr_async_bios allows us to reliably return congestion to the
* higher layers. Otherwise, the async bio makes it appear we have
* made progress against dirty pages when we've really just put it
* on a queue for later
*/
atomic_inc(&root->fs_info->nr_async_bios);
WARN_ON(bio->bi_next);
bio->bi_next = NULL;
bio->bi_rw |= rw;
spin_lock(&device->io_lock);
if (device->pending_bio_tail)
device->pending_bio_tail->bi_next = bio;
device->pending_bio_tail = bio;
if (!device->pending_bios)
device->pending_bios = bio;
if (device->running_pending)
should_queue = 0;
spin_unlock(&device->io_lock);
if (should_queue)
btrfs_queue_worker(&root->fs_info->submit_workers,
&device->work);
return 0;
}
int btrfs_map_bio(struct btrfs_root *root, int rw, struct bio *bio,
int mirror_num, int async_submit)
{
struct btrfs_mapping_tree *map_tree;
struct btrfs_device *dev;
struct bio *first_bio = bio;
u64 logical = (u64)bio->bi_sector << 9;
u64 length = 0;
u64 map_length;
struct btrfs_multi_bio *multi = NULL;
int ret;
int dev_nr = 0;
int total_devs = 1;
length = bio->bi_size;
map_tree = &root->fs_info->mapping_tree;
map_length = length;
ret = btrfs_map_block(map_tree, rw, logical, &map_length, &multi,
mirror_num);
BUG_ON(ret);
total_devs = multi->num_stripes;
if (map_length < length) {
printk("mapping failed logical %Lu bio len %Lu "
"len %Lu\n", logical, length, map_length);
BUG();
}
multi->end_io = first_bio->bi_end_io;
multi->private = first_bio->bi_private;
multi->orig_bio = first_bio;
atomic_set(&multi->stripes_pending, multi->num_stripes);
while(dev_nr < total_devs) {
if (total_devs > 1) {
if (dev_nr < total_devs - 1) {
bio = bio_clone(first_bio, GFP_NOFS);
BUG_ON(!bio);
} else {
bio = first_bio;
}
bio->bi_private = multi;
bio->bi_end_io = end_bio_multi_stripe;
}
bio->bi_sector = multi->stripes[dev_nr].physical >> 9;
dev = multi->stripes[dev_nr].dev;
if (dev && dev->bdev) {
bio->bi_bdev = dev->bdev;
if (async_submit)
schedule_bio(root, dev, rw, bio);
else
submit_bio(rw, bio);
} else {
bio->bi_bdev = root->fs_info->fs_devices->latest_bdev;
bio->bi_sector = logical >> 9;
bio_endio(bio, -EIO);
}
dev_nr++;
}
if (total_devs == 1)
kfree(multi);
return 0;
}
struct btrfs_device *btrfs_find_device(struct btrfs_root *root, u64 devid,
u8 *uuid)
{
struct list_head *head = &root->fs_info->fs_devices->devices;
return __find_device(head, devid, uuid);
}
static struct btrfs_device *add_missing_dev(struct btrfs_root *root,
u64 devid, u8 *dev_uuid)
{
struct btrfs_device *device;
struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
device = kzalloc(sizeof(*device), GFP_NOFS);
list_add(&device->dev_list,
&fs_devices->devices);
list_add(&device->dev_alloc_list,
&fs_devices->alloc_list);
device->barriers = 1;
device->dev_root = root->fs_info->dev_root;
device->devid = devid;
device->work.func = pending_bios_fn;
fs_devices->num_devices++;
spin_lock_init(&device->io_lock);
memcpy(device->uuid, dev_uuid, BTRFS_UUID_SIZE);
return device;
}
static int read_one_chunk(struct btrfs_root *root, struct btrfs_key *key,
struct extent_buffer *leaf,
struct btrfs_chunk *chunk)
{
struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
struct map_lookup *map;
struct extent_map *em;
u64 logical;
u64 length;
u64 devid;
u8 uuid[BTRFS_UUID_SIZE];
int num_stripes;
int ret;
int i;
logical = key->offset;
length = btrfs_chunk_length(leaf, chunk);
spin_lock(&map_tree->map_tree.lock);
em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
spin_unlock(&map_tree->map_tree.lock);
/* already mapped? */
if (em && em->start <= logical && em->start + em->len > logical) {
free_extent_map(em);
return 0;
} else if (em) {
free_extent_map(em);
}
map = kzalloc(sizeof(*map), GFP_NOFS);
if (!map)
return -ENOMEM;
em = alloc_extent_map(GFP_NOFS);
if (!em)
return -ENOMEM;
num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
if (!map) {
free_extent_map(em);
return -ENOMEM;
}
em->bdev = (struct block_device *)map;
em->start = logical;
em->len = length;
em->block_start = 0;
em->block_len = em->len;
map->num_stripes = num_stripes;
map->io_width = btrfs_chunk_io_width(leaf, chunk);
map->io_align = btrfs_chunk_io_align(leaf, chunk);
map->sector_size = btrfs_chunk_sector_size(leaf, chunk);
map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
map->type = btrfs_chunk_type(leaf, chunk);
map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
for (i = 0; i < num_stripes; i++) {
map->stripes[i].physical =
btrfs_stripe_offset_nr(leaf, chunk, i);
devid = btrfs_stripe_devid_nr(leaf, chunk, i);
read_extent_buffer(leaf, uuid, (unsigned long)
btrfs_stripe_dev_uuid_nr(chunk, i),
BTRFS_UUID_SIZE);
map->stripes[i].dev = btrfs_find_device(root, devid, uuid);
if (!map->stripes[i].dev && !btrfs_test_opt(root, DEGRADED)) {
kfree(map);
free_extent_map(em);
return -EIO;
}
if (!map->stripes[i].dev) {
map->stripes[i].dev =
add_missing_dev(root, devid, uuid);
if (!map->stripes[i].dev) {
kfree(map);
free_extent_map(em);
return -EIO;
}
}
map->stripes[i].dev->in_fs_metadata = 1;
}
spin_lock(&map_tree->map_tree.lock);
ret = add_extent_mapping(&map_tree->map_tree, em);
spin_unlock(&map_tree->map_tree.lock);
BUG_ON(ret);
free_extent_map(em);
return 0;
}
static int fill_device_from_item(struct extent_buffer *leaf,
struct btrfs_dev_item *dev_item,
struct btrfs_device *device)
{
unsigned long ptr;
device->devid = btrfs_device_id(leaf, dev_item);
device->total_bytes = btrfs_device_total_bytes(leaf, dev_item);
device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
device->type = btrfs_device_type(leaf, dev_item);
device->io_align = btrfs_device_io_align(leaf, dev_item);
device->io_width = btrfs_device_io_width(leaf, dev_item);
device->sector_size = btrfs_device_sector_size(leaf, dev_item);
ptr = (unsigned long)btrfs_device_uuid(dev_item);
read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
return 0;
}
static int read_one_dev(struct btrfs_root *root,
struct extent_buffer *leaf,
struct btrfs_dev_item *dev_item)
{
struct btrfs_device *device;
u64 devid;
int ret;
u8 dev_uuid[BTRFS_UUID_SIZE];
devid = btrfs_device_id(leaf, dev_item);
read_extent_buffer(leaf, dev_uuid,
(unsigned long)btrfs_device_uuid(dev_item),
BTRFS_UUID_SIZE);
device = btrfs_find_device(root, devid, dev_uuid);
if (!device) {
printk("warning devid %Lu missing\n", devid);
device = add_missing_dev(root, devid, dev_uuid);
if (!device)
return -ENOMEM;
}
fill_device_from_item(leaf, dev_item, device);
device->dev_root = root->fs_info->dev_root;
device->in_fs_metadata = 1;
ret = 0;
#if 0
ret = btrfs_open_device(device);
if (ret) {
kfree(device);
}
#endif
return ret;
}
int btrfs_read_super_device(struct btrfs_root *root, struct extent_buffer *buf)
{
struct btrfs_dev_item *dev_item;
dev_item = (struct btrfs_dev_item *)offsetof(struct btrfs_super_block,
dev_item);
return read_one_dev(root, buf, dev_item);
}
int btrfs_read_sys_array(struct btrfs_root *root)
{
struct btrfs_super_block *super_copy = &root->fs_info->super_copy;
struct extent_buffer *sb;
struct btrfs_disk_key *disk_key;
struct btrfs_chunk *chunk;
u8 *ptr;
unsigned long sb_ptr;
int ret = 0;
u32 num_stripes;
u32 array_size;
u32 len = 0;
u32 cur;
struct btrfs_key key;
sb = btrfs_find_create_tree_block(root, BTRFS_SUPER_INFO_OFFSET,
BTRFS_SUPER_INFO_SIZE);
if (!sb)
return -ENOMEM;
btrfs_set_buffer_uptodate(sb);
write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
array_size = btrfs_super_sys_array_size(super_copy);
ptr = super_copy->sys_chunk_array;
sb_ptr = offsetof(struct btrfs_super_block, sys_chunk_array);
cur = 0;
while (cur < array_size) {
disk_key = (struct btrfs_disk_key *)ptr;
btrfs_disk_key_to_cpu(&key, disk_key);
len = sizeof(*disk_key); ptr += len;
sb_ptr += len;
cur += len;
if (key.type == BTRFS_CHUNK_ITEM_KEY) {
chunk = (struct btrfs_chunk *)sb_ptr;
ret = read_one_chunk(root, &key, sb, chunk);
if (ret)
break;
num_stripes = btrfs_chunk_num_stripes(sb, chunk);
len = btrfs_chunk_item_size(num_stripes);
} else {
ret = -EIO;
break;
}
ptr += len;
sb_ptr += len;
cur += len;
}
free_extent_buffer(sb);
return ret;
}
int btrfs_read_chunk_tree(struct btrfs_root *root)
{
struct btrfs_path *path;
struct extent_buffer *leaf;
struct btrfs_key key;
struct btrfs_key found_key;
int ret;
int slot;
root = root->fs_info->chunk_root;
path = btrfs_alloc_path();
if (!path)
return -ENOMEM;
/* first we search for all of the device items, and then we
* read in all of the chunk items. This way we can create chunk
* mappings that reference all of the devices that are afound
*/
key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
key.offset = 0;
key.type = 0;
again:
ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
while(1) {
leaf = path->nodes[0];
slot = path->slots[0];
if (slot >= btrfs_header_nritems(leaf)) {
ret = btrfs_next_leaf(root, path);
if (ret == 0)
continue;
if (ret < 0)
goto error;
break;
}
btrfs_item_key_to_cpu(leaf, &found_key, slot);
if (key.objectid == BTRFS_DEV_ITEMS_OBJECTID) {
if (found_key.objectid != BTRFS_DEV_ITEMS_OBJECTID)
break;
if (found_key.type == BTRFS_DEV_ITEM_KEY) {
struct btrfs_dev_item *dev_item;
dev_item = btrfs_item_ptr(leaf, slot,
struct btrfs_dev_item);
ret = read_one_dev(root, leaf, dev_item);
BUG_ON(ret);
}
} else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
struct btrfs_chunk *chunk;
chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
ret = read_one_chunk(root, &found_key, leaf, chunk);
}
path->slots[0]++;
}
if (key.objectid == BTRFS_DEV_ITEMS_OBJECTID) {
key.objectid = 0;
btrfs_release_path(root, path);
goto again;
}
btrfs_free_path(path);
ret = 0;
error:
return ret;
}