mirror of
https://github.com/torvalds/linux.git
synced 2024-11-10 14:11:52 +00:00
b24413180f
Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
438 lines
11 KiB
C
438 lines
11 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* bootmem - A boot-time physical memory allocator and configurator
|
|
*
|
|
* Copyright (C) 1999 Ingo Molnar
|
|
* 1999 Kanoj Sarcar, SGI
|
|
* 2008 Johannes Weiner
|
|
*
|
|
* Access to this subsystem has to be serialized externally (which is true
|
|
* for the boot process anyway).
|
|
*/
|
|
#include <linux/init.h>
|
|
#include <linux/pfn.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/export.h>
|
|
#include <linux/kmemleak.h>
|
|
#include <linux/range.h>
|
|
#include <linux/memblock.h>
|
|
#include <linux/bootmem.h>
|
|
|
|
#include <asm/bug.h>
|
|
#include <asm/io.h>
|
|
|
|
#include "internal.h"
|
|
|
|
#ifndef CONFIG_HAVE_MEMBLOCK
|
|
#error CONFIG_HAVE_MEMBLOCK not defined
|
|
#endif
|
|
|
|
#ifndef CONFIG_NEED_MULTIPLE_NODES
|
|
struct pglist_data __refdata contig_page_data;
|
|
EXPORT_SYMBOL(contig_page_data);
|
|
#endif
|
|
|
|
unsigned long max_low_pfn;
|
|
unsigned long min_low_pfn;
|
|
unsigned long max_pfn;
|
|
unsigned long long max_possible_pfn;
|
|
|
|
static void * __init __alloc_memory_core_early(int nid, u64 size, u64 align,
|
|
u64 goal, u64 limit)
|
|
{
|
|
void *ptr;
|
|
u64 addr;
|
|
ulong flags = choose_memblock_flags();
|
|
|
|
if (limit > memblock.current_limit)
|
|
limit = memblock.current_limit;
|
|
|
|
again:
|
|
addr = memblock_find_in_range_node(size, align, goal, limit, nid,
|
|
flags);
|
|
if (!addr && (flags & MEMBLOCK_MIRROR)) {
|
|
flags &= ~MEMBLOCK_MIRROR;
|
|
pr_warn("Could not allocate %pap bytes of mirrored memory\n",
|
|
&size);
|
|
goto again;
|
|
}
|
|
if (!addr)
|
|
return NULL;
|
|
|
|
if (memblock_reserve(addr, size))
|
|
return NULL;
|
|
|
|
ptr = phys_to_virt(addr);
|
|
memset(ptr, 0, size);
|
|
/*
|
|
* The min_count is set to 0 so that bootmem allocated blocks
|
|
* are never reported as leaks.
|
|
*/
|
|
kmemleak_alloc(ptr, size, 0, 0);
|
|
return ptr;
|
|
}
|
|
|
|
/*
|
|
* free_bootmem_late - free bootmem pages directly to page allocator
|
|
* @addr: starting address of the range
|
|
* @size: size of the range in bytes
|
|
*
|
|
* This is only useful when the bootmem allocator has already been torn
|
|
* down, but we are still initializing the system. Pages are given directly
|
|
* to the page allocator, no bootmem metadata is updated because it is gone.
|
|
*/
|
|
void __init free_bootmem_late(unsigned long addr, unsigned long size)
|
|
{
|
|
unsigned long cursor, end;
|
|
|
|
kmemleak_free_part_phys(addr, size);
|
|
|
|
cursor = PFN_UP(addr);
|
|
end = PFN_DOWN(addr + size);
|
|
|
|
for (; cursor < end; cursor++) {
|
|
__free_pages_bootmem(pfn_to_page(cursor), cursor, 0);
|
|
totalram_pages++;
|
|
}
|
|
}
|
|
|
|
static void __init __free_pages_memory(unsigned long start, unsigned long end)
|
|
{
|
|
int order;
|
|
|
|
while (start < end) {
|
|
order = min(MAX_ORDER - 1UL, __ffs(start));
|
|
|
|
while (start + (1UL << order) > end)
|
|
order--;
|
|
|
|
__free_pages_bootmem(pfn_to_page(start), start, order);
|
|
|
|
start += (1UL << order);
|
|
}
|
|
}
|
|
|
|
static unsigned long __init __free_memory_core(phys_addr_t start,
|
|
phys_addr_t end)
|
|
{
|
|
unsigned long start_pfn = PFN_UP(start);
|
|
unsigned long end_pfn = min_t(unsigned long,
|
|
PFN_DOWN(end), max_low_pfn);
|
|
|
|
if (start_pfn >= end_pfn)
|
|
return 0;
|
|
|
|
__free_pages_memory(start_pfn, end_pfn);
|
|
|
|
return end_pfn - start_pfn;
|
|
}
|
|
|
|
static unsigned long __init free_low_memory_core_early(void)
|
|
{
|
|
unsigned long count = 0;
|
|
phys_addr_t start, end;
|
|
u64 i;
|
|
|
|
memblock_clear_hotplug(0, -1);
|
|
|
|
for_each_reserved_mem_region(i, &start, &end)
|
|
reserve_bootmem_region(start, end);
|
|
|
|
/*
|
|
* We need to use NUMA_NO_NODE instead of NODE_DATA(0)->node_id
|
|
* because in some case like Node0 doesn't have RAM installed
|
|
* low ram will be on Node1
|
|
*/
|
|
for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end,
|
|
NULL)
|
|
count += __free_memory_core(start, end);
|
|
|
|
return count;
|
|
}
|
|
|
|
static int reset_managed_pages_done __initdata;
|
|
|
|
void reset_node_managed_pages(pg_data_t *pgdat)
|
|
{
|
|
struct zone *z;
|
|
|
|
for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++)
|
|
z->managed_pages = 0;
|
|
}
|
|
|
|
void __init reset_all_zones_managed_pages(void)
|
|
{
|
|
struct pglist_data *pgdat;
|
|
|
|
if (reset_managed_pages_done)
|
|
return;
|
|
|
|
for_each_online_pgdat(pgdat)
|
|
reset_node_managed_pages(pgdat);
|
|
|
|
reset_managed_pages_done = 1;
|
|
}
|
|
|
|
/**
|
|
* free_all_bootmem - release free pages to the buddy allocator
|
|
*
|
|
* Returns the number of pages actually released.
|
|
*/
|
|
unsigned long __init free_all_bootmem(void)
|
|
{
|
|
unsigned long pages;
|
|
|
|
reset_all_zones_managed_pages();
|
|
|
|
pages = free_low_memory_core_early();
|
|
totalram_pages += pages;
|
|
|
|
return pages;
|
|
}
|
|
|
|
/**
|
|
* free_bootmem_node - mark a page range as usable
|
|
* @pgdat: node the range resides on
|
|
* @physaddr: starting address of the range
|
|
* @size: size of the range in bytes
|
|
*
|
|
* Partial pages will be considered reserved and left as they are.
|
|
*
|
|
* The range must reside completely on the specified node.
|
|
*/
|
|
void __init free_bootmem_node(pg_data_t *pgdat, unsigned long physaddr,
|
|
unsigned long size)
|
|
{
|
|
memblock_free(physaddr, size);
|
|
}
|
|
|
|
/**
|
|
* free_bootmem - mark a page range as usable
|
|
* @addr: starting address of the range
|
|
* @size: size of the range in bytes
|
|
*
|
|
* Partial pages will be considered reserved and left as they are.
|
|
*
|
|
* The range must be contiguous but may span node boundaries.
|
|
*/
|
|
void __init free_bootmem(unsigned long addr, unsigned long size)
|
|
{
|
|
memblock_free(addr, size);
|
|
}
|
|
|
|
static void * __init ___alloc_bootmem_nopanic(unsigned long size,
|
|
unsigned long align,
|
|
unsigned long goal,
|
|
unsigned long limit)
|
|
{
|
|
void *ptr;
|
|
|
|
if (WARN_ON_ONCE(slab_is_available()))
|
|
return kzalloc(size, GFP_NOWAIT);
|
|
|
|
restart:
|
|
|
|
ptr = __alloc_memory_core_early(NUMA_NO_NODE, size, align, goal, limit);
|
|
|
|
if (ptr)
|
|
return ptr;
|
|
|
|
if (goal != 0) {
|
|
goal = 0;
|
|
goto restart;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/**
|
|
* __alloc_bootmem_nopanic - allocate boot memory without panicking
|
|
* @size: size of the request in bytes
|
|
* @align: alignment of the region
|
|
* @goal: preferred starting address of the region
|
|
*
|
|
* The goal is dropped if it can not be satisfied and the allocation will
|
|
* fall back to memory below @goal.
|
|
*
|
|
* Allocation may happen on any node in the system.
|
|
*
|
|
* Returns NULL on failure.
|
|
*/
|
|
void * __init __alloc_bootmem_nopanic(unsigned long size, unsigned long align,
|
|
unsigned long goal)
|
|
{
|
|
unsigned long limit = -1UL;
|
|
|
|
return ___alloc_bootmem_nopanic(size, align, goal, limit);
|
|
}
|
|
|
|
static void * __init ___alloc_bootmem(unsigned long size, unsigned long align,
|
|
unsigned long goal, unsigned long limit)
|
|
{
|
|
void *mem = ___alloc_bootmem_nopanic(size, align, goal, limit);
|
|
|
|
if (mem)
|
|
return mem;
|
|
/*
|
|
* Whoops, we cannot satisfy the allocation request.
|
|
*/
|
|
pr_alert("bootmem alloc of %lu bytes failed!\n", size);
|
|
panic("Out of memory");
|
|
return NULL;
|
|
}
|
|
|
|
/**
|
|
* __alloc_bootmem - allocate boot memory
|
|
* @size: size of the request in bytes
|
|
* @align: alignment of the region
|
|
* @goal: preferred starting address of the region
|
|
*
|
|
* The goal is dropped if it can not be satisfied and the allocation will
|
|
* fall back to memory below @goal.
|
|
*
|
|
* Allocation may happen on any node in the system.
|
|
*
|
|
* The function panics if the request can not be satisfied.
|
|
*/
|
|
void * __init __alloc_bootmem(unsigned long size, unsigned long align,
|
|
unsigned long goal)
|
|
{
|
|
unsigned long limit = -1UL;
|
|
|
|
return ___alloc_bootmem(size, align, goal, limit);
|
|
}
|
|
|
|
void * __init ___alloc_bootmem_node_nopanic(pg_data_t *pgdat,
|
|
unsigned long size,
|
|
unsigned long align,
|
|
unsigned long goal,
|
|
unsigned long limit)
|
|
{
|
|
void *ptr;
|
|
|
|
again:
|
|
ptr = __alloc_memory_core_early(pgdat->node_id, size, align,
|
|
goal, limit);
|
|
if (ptr)
|
|
return ptr;
|
|
|
|
ptr = __alloc_memory_core_early(NUMA_NO_NODE, size, align,
|
|
goal, limit);
|
|
if (ptr)
|
|
return ptr;
|
|
|
|
if (goal) {
|
|
goal = 0;
|
|
goto again;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
void * __init __alloc_bootmem_node_nopanic(pg_data_t *pgdat, unsigned long size,
|
|
unsigned long align, unsigned long goal)
|
|
{
|
|
if (WARN_ON_ONCE(slab_is_available()))
|
|
return kzalloc_node(size, GFP_NOWAIT, pgdat->node_id);
|
|
|
|
return ___alloc_bootmem_node_nopanic(pgdat, size, align, goal, 0);
|
|
}
|
|
|
|
static void * __init ___alloc_bootmem_node(pg_data_t *pgdat, unsigned long size,
|
|
unsigned long align, unsigned long goal,
|
|
unsigned long limit)
|
|
{
|
|
void *ptr;
|
|
|
|
ptr = ___alloc_bootmem_node_nopanic(pgdat, size, align, goal, limit);
|
|
if (ptr)
|
|
return ptr;
|
|
|
|
pr_alert("bootmem alloc of %lu bytes failed!\n", size);
|
|
panic("Out of memory");
|
|
return NULL;
|
|
}
|
|
|
|
/**
|
|
* __alloc_bootmem_node - allocate boot memory from a specific node
|
|
* @pgdat: node to allocate from
|
|
* @size: size of the request in bytes
|
|
* @align: alignment of the region
|
|
* @goal: preferred starting address of the region
|
|
*
|
|
* The goal is dropped if it can not be satisfied and the allocation will
|
|
* fall back to memory below @goal.
|
|
*
|
|
* Allocation may fall back to any node in the system if the specified node
|
|
* can not hold the requested memory.
|
|
*
|
|
* The function panics if the request can not be satisfied.
|
|
*/
|
|
void * __init __alloc_bootmem_node(pg_data_t *pgdat, unsigned long size,
|
|
unsigned long align, unsigned long goal)
|
|
{
|
|
if (WARN_ON_ONCE(slab_is_available()))
|
|
return kzalloc_node(size, GFP_NOWAIT, pgdat->node_id);
|
|
|
|
return ___alloc_bootmem_node(pgdat, size, align, goal, 0);
|
|
}
|
|
|
|
void * __init __alloc_bootmem_node_high(pg_data_t *pgdat, unsigned long size,
|
|
unsigned long align, unsigned long goal)
|
|
{
|
|
return __alloc_bootmem_node(pgdat, size, align, goal);
|
|
}
|
|
|
|
|
|
/**
|
|
* __alloc_bootmem_low - allocate low boot memory
|
|
* @size: size of the request in bytes
|
|
* @align: alignment of the region
|
|
* @goal: preferred starting address of the region
|
|
*
|
|
* The goal is dropped if it can not be satisfied and the allocation will
|
|
* fall back to memory below @goal.
|
|
*
|
|
* Allocation may happen on any node in the system.
|
|
*
|
|
* The function panics if the request can not be satisfied.
|
|
*/
|
|
void * __init __alloc_bootmem_low(unsigned long size, unsigned long align,
|
|
unsigned long goal)
|
|
{
|
|
return ___alloc_bootmem(size, align, goal, ARCH_LOW_ADDRESS_LIMIT);
|
|
}
|
|
|
|
void * __init __alloc_bootmem_low_nopanic(unsigned long size,
|
|
unsigned long align,
|
|
unsigned long goal)
|
|
{
|
|
return ___alloc_bootmem_nopanic(size, align, goal,
|
|
ARCH_LOW_ADDRESS_LIMIT);
|
|
}
|
|
|
|
/**
|
|
* __alloc_bootmem_low_node - allocate low boot memory from a specific node
|
|
* @pgdat: node to allocate from
|
|
* @size: size of the request in bytes
|
|
* @align: alignment of the region
|
|
* @goal: preferred starting address of the region
|
|
*
|
|
* The goal is dropped if it can not be satisfied and the allocation will
|
|
* fall back to memory below @goal.
|
|
*
|
|
* Allocation may fall back to any node in the system if the specified node
|
|
* can not hold the requested memory.
|
|
*
|
|
* The function panics if the request can not be satisfied.
|
|
*/
|
|
void * __init __alloc_bootmem_low_node(pg_data_t *pgdat, unsigned long size,
|
|
unsigned long align, unsigned long goal)
|
|
{
|
|
if (WARN_ON_ONCE(slab_is_available()))
|
|
return kzalloc_node(size, GFP_NOWAIT, pgdat->node_id);
|
|
|
|
return ___alloc_bootmem_node(pgdat, size, align, goal,
|
|
ARCH_LOW_ADDRESS_LIMIT);
|
|
}
|