linux/arch/mips/net/bpf_jit_comp32.c
Tiezhu Yang 431bfb9ee3 bpf, mips: Fix comment on tail call count limiting
In emit_tail_call() of bpf_jit_comp32.c, "blez t2" (t2 <= 0) is
not consistent with the comment "t2 < 0", update the comment to
keep consistency.

Signed-off-by: Tiezhu Yang <yangtiezhu@loongson.cn>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Johan Almbladh <johan.almbladh@anyfinetworks.com>
Link: https://lore.kernel.org/bpf/1633915150-13220-3-git-send-email-yangtiezhu@loongson.cn
2021-10-11 15:29:38 +02:00

1900 lines
53 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Just-In-Time compiler for eBPF bytecode on MIPS.
* Implementation of JIT functions for 32-bit CPUs.
*
* Copyright (c) 2021 Anyfi Networks AB.
* Author: Johan Almbladh <johan.almbladh@gmail.com>
*
* Based on code and ideas from
* Copyright (c) 2017 Cavium, Inc.
* Copyright (c) 2017 Shubham Bansal <illusionist.neo@gmail.com>
* Copyright (c) 2011 Mircea Gherzan <mgherzan@gmail.com>
*/
#include <linux/math64.h>
#include <linux/errno.h>
#include <linux/filter.h>
#include <linux/bpf.h>
#include <asm/cpu-features.h>
#include <asm/isa-rev.h>
#include <asm/uasm.h>
#include "bpf_jit_comp.h"
/* MIPS a4-a7 are not available in the o32 ABI */
#undef MIPS_R_A4
#undef MIPS_R_A5
#undef MIPS_R_A6
#undef MIPS_R_A7
/* Stack is 8-byte aligned in o32 ABI */
#define MIPS_STACK_ALIGNMENT 8
/*
* The top 16 bytes of a stack frame is reserved for the callee in O32 ABI.
* This corresponds to stack space for register arguments a0-a3.
*/
#define JIT_RESERVED_STACK 16
/* Temporary 64-bit register used by JIT */
#define JIT_REG_TMP MAX_BPF_JIT_REG
/*
* Number of prologue bytes to skip when doing a tail call.
* Tail call count (TCC) initialization (8 bytes) always, plus
* R0-to-v0 assignment (4 bytes) if big endian.
*/
#ifdef __BIG_ENDIAN
#define JIT_TCALL_SKIP 12
#else
#define JIT_TCALL_SKIP 8
#endif
/* CPU registers holding the callee return value */
#define JIT_RETURN_REGS \
(BIT(MIPS_R_V0) | \
BIT(MIPS_R_V1))
/* CPU registers arguments passed to callee directly */
#define JIT_ARG_REGS \
(BIT(MIPS_R_A0) | \
BIT(MIPS_R_A1) | \
BIT(MIPS_R_A2) | \
BIT(MIPS_R_A3))
/* CPU register arguments passed to callee on stack */
#define JIT_STACK_REGS \
(BIT(MIPS_R_T0) | \
BIT(MIPS_R_T1) | \
BIT(MIPS_R_T2) | \
BIT(MIPS_R_T3) | \
BIT(MIPS_R_T4) | \
BIT(MIPS_R_T5))
/* Caller-saved CPU registers */
#define JIT_CALLER_REGS \
(JIT_RETURN_REGS | \
JIT_ARG_REGS | \
JIT_STACK_REGS)
/* Callee-saved CPU registers */
#define JIT_CALLEE_REGS \
(BIT(MIPS_R_S0) | \
BIT(MIPS_R_S1) | \
BIT(MIPS_R_S2) | \
BIT(MIPS_R_S3) | \
BIT(MIPS_R_S4) | \
BIT(MIPS_R_S5) | \
BIT(MIPS_R_S6) | \
BIT(MIPS_R_S7) | \
BIT(MIPS_R_GP) | \
BIT(MIPS_R_FP) | \
BIT(MIPS_R_RA))
/*
* Mapping of 64-bit eBPF registers to 32-bit native MIPS registers.
*
* 1) Native register pairs are ordered according to CPU endiannes, following
* the MIPS convention for passing 64-bit arguments and return values.
* 2) The eBPF return value, arguments and callee-saved registers are mapped
* to their native MIPS equivalents.
* 3) Since the 32 highest bits in the eBPF FP register are always zero,
* only one general-purpose register is actually needed for the mapping.
* We use the fp register for this purpose, and map the highest bits to
* the MIPS register r0 (zero).
* 4) We use the MIPS gp and at registers as internal temporary registers
* for constant blinding. The gp register is callee-saved.
* 5) One 64-bit temporary register is mapped for use when sign-extending
* immediate operands. MIPS registers t6-t9 are available to the JIT
* for as temporaries when implementing complex 64-bit operations.
*
* With this scheme all eBPF registers are being mapped to native MIPS
* registers without having to use any stack scratch space. The direct
* register mapping (2) simplifies the handling of function calls.
*/
static const u8 bpf2mips32[][2] = {
/* Return value from in-kernel function, and exit value from eBPF */
[BPF_REG_0] = {MIPS_R_V1, MIPS_R_V0},
/* Arguments from eBPF program to in-kernel function */
[BPF_REG_1] = {MIPS_R_A1, MIPS_R_A0},
[BPF_REG_2] = {MIPS_R_A3, MIPS_R_A2},
/* Remaining arguments, to be passed on the stack per O32 ABI */
[BPF_REG_3] = {MIPS_R_T1, MIPS_R_T0},
[BPF_REG_4] = {MIPS_R_T3, MIPS_R_T2},
[BPF_REG_5] = {MIPS_R_T5, MIPS_R_T4},
/* Callee-saved registers that in-kernel function will preserve */
[BPF_REG_6] = {MIPS_R_S1, MIPS_R_S0},
[BPF_REG_7] = {MIPS_R_S3, MIPS_R_S2},
[BPF_REG_8] = {MIPS_R_S5, MIPS_R_S4},
[BPF_REG_9] = {MIPS_R_S7, MIPS_R_S6},
/* Read-only frame pointer to access the eBPF stack */
#ifdef __BIG_ENDIAN
[BPF_REG_FP] = {MIPS_R_FP, MIPS_R_ZERO},
#else
[BPF_REG_FP] = {MIPS_R_ZERO, MIPS_R_FP},
#endif
/* Temporary register for blinding constants */
[BPF_REG_AX] = {MIPS_R_GP, MIPS_R_AT},
/* Temporary register for internal JIT use */
[JIT_REG_TMP] = {MIPS_R_T7, MIPS_R_T6},
};
/* Get low CPU register for a 64-bit eBPF register mapping */
static inline u8 lo(const u8 reg[])
{
#ifdef __BIG_ENDIAN
return reg[0];
#else
return reg[1];
#endif
}
/* Get high CPU register for a 64-bit eBPF register mapping */
static inline u8 hi(const u8 reg[])
{
#ifdef __BIG_ENDIAN
return reg[1];
#else
return reg[0];
#endif
}
/*
* Mark a 64-bit CPU register pair as clobbered, it needs to be
* saved/restored by the program if callee-saved.
*/
static void clobber_reg64(struct jit_context *ctx, const u8 reg[])
{
clobber_reg(ctx, reg[0]);
clobber_reg(ctx, reg[1]);
}
/* dst = imm (sign-extended) */
static void emit_mov_se_i64(struct jit_context *ctx, const u8 dst[], s32 imm)
{
emit_mov_i(ctx, lo(dst), imm);
if (imm < 0)
emit(ctx, addiu, hi(dst), MIPS_R_ZERO, -1);
else
emit(ctx, move, hi(dst), MIPS_R_ZERO);
clobber_reg64(ctx, dst);
}
/* Zero extension, if verifier does not do it for us */
static void emit_zext_ver(struct jit_context *ctx, const u8 dst[])
{
if (!ctx->program->aux->verifier_zext) {
emit(ctx, move, hi(dst), MIPS_R_ZERO);
clobber_reg(ctx, hi(dst));
}
}
/* Load delay slot, if ISA mandates it */
static void emit_load_delay(struct jit_context *ctx)
{
if (!cpu_has_mips_2_3_4_5_r)
emit(ctx, nop);
}
/* ALU immediate operation (64-bit) */
static void emit_alu_i64(struct jit_context *ctx,
const u8 dst[], s32 imm, u8 op)
{
u8 src = MIPS_R_T6;
/*
* ADD/SUB with all but the max negative imm can be handled by
* inverting the operation and the imm value, saving one insn.
*/
if (imm > S32_MIN && imm < 0)
switch (op) {
case BPF_ADD:
op = BPF_SUB;
imm = -imm;
break;
case BPF_SUB:
op = BPF_ADD;
imm = -imm;
break;
}
/* Move immediate to temporary register */
emit_mov_i(ctx, src, imm);
switch (op) {
/* dst = dst + imm */
case BPF_ADD:
emit(ctx, addu, lo(dst), lo(dst), src);
emit(ctx, sltu, MIPS_R_T9, lo(dst), src);
emit(ctx, addu, hi(dst), hi(dst), MIPS_R_T9);
if (imm < 0)
emit(ctx, addiu, hi(dst), hi(dst), -1);
break;
/* dst = dst - imm */
case BPF_SUB:
emit(ctx, sltu, MIPS_R_T9, lo(dst), src);
emit(ctx, subu, lo(dst), lo(dst), src);
emit(ctx, subu, hi(dst), hi(dst), MIPS_R_T9);
if (imm < 0)
emit(ctx, addiu, hi(dst), hi(dst), 1);
break;
/* dst = dst | imm */
case BPF_OR:
emit(ctx, or, lo(dst), lo(dst), src);
if (imm < 0)
emit(ctx, addiu, hi(dst), MIPS_R_ZERO, -1);
break;
/* dst = dst & imm */
case BPF_AND:
emit(ctx, and, lo(dst), lo(dst), src);
if (imm >= 0)
emit(ctx, move, hi(dst), MIPS_R_ZERO);
break;
/* dst = dst ^ imm */
case BPF_XOR:
emit(ctx, xor, lo(dst), lo(dst), src);
if (imm < 0) {
emit(ctx, subu, hi(dst), MIPS_R_ZERO, hi(dst));
emit(ctx, addiu, hi(dst), hi(dst), -1);
}
break;
}
clobber_reg64(ctx, dst);
}
/* ALU register operation (64-bit) */
static void emit_alu_r64(struct jit_context *ctx,
const u8 dst[], const u8 src[], u8 op)
{
switch (BPF_OP(op)) {
/* dst = dst + src */
case BPF_ADD:
if (src == dst) {
emit(ctx, srl, MIPS_R_T9, lo(dst), 31);
emit(ctx, addu, lo(dst), lo(dst), lo(dst));
} else {
emit(ctx, addu, lo(dst), lo(dst), lo(src));
emit(ctx, sltu, MIPS_R_T9, lo(dst), lo(src));
}
emit(ctx, addu, hi(dst), hi(dst), hi(src));
emit(ctx, addu, hi(dst), hi(dst), MIPS_R_T9);
break;
/* dst = dst - src */
case BPF_SUB:
emit(ctx, sltu, MIPS_R_T9, lo(dst), lo(src));
emit(ctx, subu, lo(dst), lo(dst), lo(src));
emit(ctx, subu, hi(dst), hi(dst), hi(src));
emit(ctx, subu, hi(dst), hi(dst), MIPS_R_T9);
break;
/* dst = dst | src */
case BPF_OR:
emit(ctx, or, lo(dst), lo(dst), lo(src));
emit(ctx, or, hi(dst), hi(dst), hi(src));
break;
/* dst = dst & src */
case BPF_AND:
emit(ctx, and, lo(dst), lo(dst), lo(src));
emit(ctx, and, hi(dst), hi(dst), hi(src));
break;
/* dst = dst ^ src */
case BPF_XOR:
emit(ctx, xor, lo(dst), lo(dst), lo(src));
emit(ctx, xor, hi(dst), hi(dst), hi(src));
break;
}
clobber_reg64(ctx, dst);
}
/* ALU invert (64-bit) */
static void emit_neg_i64(struct jit_context *ctx, const u8 dst[])
{
emit(ctx, sltu, MIPS_R_T9, MIPS_R_ZERO, lo(dst));
emit(ctx, subu, lo(dst), MIPS_R_ZERO, lo(dst));
emit(ctx, subu, hi(dst), MIPS_R_ZERO, hi(dst));
emit(ctx, subu, hi(dst), hi(dst), MIPS_R_T9);
clobber_reg64(ctx, dst);
}
/* ALU shift immediate (64-bit) */
static void emit_shift_i64(struct jit_context *ctx,
const u8 dst[], u32 imm, u8 op)
{
switch (BPF_OP(op)) {
/* dst = dst << imm */
case BPF_LSH:
if (imm < 32) {
emit(ctx, srl, MIPS_R_T9, lo(dst), 32 - imm);
emit(ctx, sll, lo(dst), lo(dst), imm);
emit(ctx, sll, hi(dst), hi(dst), imm);
emit(ctx, or, hi(dst), hi(dst), MIPS_R_T9);
} else {
emit(ctx, sll, hi(dst), lo(dst), imm - 32);
emit(ctx, move, lo(dst), MIPS_R_ZERO);
}
break;
/* dst = dst >> imm */
case BPF_RSH:
if (imm < 32) {
emit(ctx, sll, MIPS_R_T9, hi(dst), 32 - imm);
emit(ctx, srl, lo(dst), lo(dst), imm);
emit(ctx, srl, hi(dst), hi(dst), imm);
emit(ctx, or, lo(dst), lo(dst), MIPS_R_T9);
} else {
emit(ctx, srl, lo(dst), hi(dst), imm - 32);
emit(ctx, move, hi(dst), MIPS_R_ZERO);
}
break;
/* dst = dst >> imm (arithmetic) */
case BPF_ARSH:
if (imm < 32) {
emit(ctx, sll, MIPS_R_T9, hi(dst), 32 - imm);
emit(ctx, srl, lo(dst), lo(dst), imm);
emit(ctx, sra, hi(dst), hi(dst), imm);
emit(ctx, or, lo(dst), lo(dst), MIPS_R_T9);
} else {
emit(ctx, sra, lo(dst), hi(dst), imm - 32);
emit(ctx, sra, hi(dst), hi(dst), 31);
}
break;
}
clobber_reg64(ctx, dst);
}
/* ALU shift register (64-bit) */
static void emit_shift_r64(struct jit_context *ctx,
const u8 dst[], u8 src, u8 op)
{
u8 t1 = MIPS_R_T8;
u8 t2 = MIPS_R_T9;
emit(ctx, andi, t1, src, 32); /* t1 = src & 32 */
emit(ctx, beqz, t1, 16); /* PC += 16 if t1 == 0 */
emit(ctx, nor, t2, src, MIPS_R_ZERO); /* t2 = ~src (delay slot) */
switch (BPF_OP(op)) {
/* dst = dst << src */
case BPF_LSH:
/* Next: shift >= 32 */
emit(ctx, sllv, hi(dst), lo(dst), src); /* dh = dl << src */
emit(ctx, move, lo(dst), MIPS_R_ZERO); /* dl = 0 */
emit(ctx, b, 20); /* PC += 20 */
/* +16: shift < 32 */
emit(ctx, srl, t1, lo(dst), 1); /* t1 = dl >> 1 */
emit(ctx, srlv, t1, t1, t2); /* t1 = t1 >> t2 */
emit(ctx, sllv, lo(dst), lo(dst), src); /* dl = dl << src */
emit(ctx, sllv, hi(dst), hi(dst), src); /* dh = dh << src */
emit(ctx, or, hi(dst), hi(dst), t1); /* dh = dh | t1 */
break;
/* dst = dst >> src */
case BPF_RSH:
/* Next: shift >= 32 */
emit(ctx, srlv, lo(dst), hi(dst), src); /* dl = dh >> src */
emit(ctx, move, hi(dst), MIPS_R_ZERO); /* dh = 0 */
emit(ctx, b, 20); /* PC += 20 */
/* +16: shift < 32 */
emit(ctx, sll, t1, hi(dst), 1); /* t1 = dl << 1 */
emit(ctx, sllv, t1, t1, t2); /* t1 = t1 << t2 */
emit(ctx, srlv, lo(dst), lo(dst), src); /* dl = dl >> src */
emit(ctx, srlv, hi(dst), hi(dst), src); /* dh = dh >> src */
emit(ctx, or, lo(dst), lo(dst), t1); /* dl = dl | t1 */
break;
/* dst = dst >> src (arithmetic) */
case BPF_ARSH:
/* Next: shift >= 32 */
emit(ctx, srav, lo(dst), hi(dst), src); /* dl = dh >>a src */
emit(ctx, sra, hi(dst), hi(dst), 31); /* dh = dh >>a 31 */
emit(ctx, b, 20); /* PC += 20 */
/* +16: shift < 32 */
emit(ctx, sll, t1, hi(dst), 1); /* t1 = dl << 1 */
emit(ctx, sllv, t1, t1, t2); /* t1 = t1 << t2 */
emit(ctx, srlv, lo(dst), lo(dst), src); /* dl = dl >>a src */
emit(ctx, srav, hi(dst), hi(dst), src); /* dh = dh >> src */
emit(ctx, or, lo(dst), lo(dst), t1); /* dl = dl | t1 */
break;
}
/* +20: Done */
clobber_reg64(ctx, dst);
}
/* ALU mul immediate (64x32-bit) */
static void emit_mul_i64(struct jit_context *ctx, const u8 dst[], s32 imm)
{
u8 src = MIPS_R_T6;
u8 tmp = MIPS_R_T9;
switch (imm) {
/* dst = dst * 1 is a no-op */
case 1:
break;
/* dst = dst * -1 */
case -1:
emit_neg_i64(ctx, dst);
break;
case 0:
emit_mov_r(ctx, lo(dst), MIPS_R_ZERO);
emit_mov_r(ctx, hi(dst), MIPS_R_ZERO);
break;
/* Full 64x32 multiply */
default:
/* hi(dst) = hi(dst) * src(imm) */
emit_mov_i(ctx, src, imm);
if (cpu_has_mips32r1 || cpu_has_mips32r6) {
emit(ctx, mul, hi(dst), hi(dst), src);
} else {
emit(ctx, multu, hi(dst), src);
emit(ctx, mflo, hi(dst));
}
/* hi(dst) = hi(dst) - lo(dst) */
if (imm < 0)
emit(ctx, subu, hi(dst), hi(dst), lo(dst));
/* tmp = lo(dst) * src(imm) >> 32 */
/* lo(dst) = lo(dst) * src(imm) */
if (cpu_has_mips32r6) {
emit(ctx, muhu, tmp, lo(dst), src);
emit(ctx, mulu, lo(dst), lo(dst), src);
} else {
emit(ctx, multu, lo(dst), src);
emit(ctx, mflo, lo(dst));
emit(ctx, mfhi, tmp);
}
/* hi(dst) += tmp */
emit(ctx, addu, hi(dst), hi(dst), tmp);
clobber_reg64(ctx, dst);
break;
}
}
/* ALU mul register (64x64-bit) */
static void emit_mul_r64(struct jit_context *ctx,
const u8 dst[], const u8 src[])
{
u8 acc = MIPS_R_T8;
u8 tmp = MIPS_R_T9;
/* acc = hi(dst) * lo(src) */
if (cpu_has_mips32r1 || cpu_has_mips32r6) {
emit(ctx, mul, acc, hi(dst), lo(src));
} else {
emit(ctx, multu, hi(dst), lo(src));
emit(ctx, mflo, acc);
}
/* tmp = lo(dst) * hi(src) */
if (cpu_has_mips32r1 || cpu_has_mips32r6) {
emit(ctx, mul, tmp, lo(dst), hi(src));
} else {
emit(ctx, multu, lo(dst), hi(src));
emit(ctx, mflo, tmp);
}
/* acc += tmp */
emit(ctx, addu, acc, acc, tmp);
/* tmp = lo(dst) * lo(src) >> 32 */
/* lo(dst) = lo(dst) * lo(src) */
if (cpu_has_mips32r6) {
emit(ctx, muhu, tmp, lo(dst), lo(src));
emit(ctx, mulu, lo(dst), lo(dst), lo(src));
} else {
emit(ctx, multu, lo(dst), lo(src));
emit(ctx, mflo, lo(dst));
emit(ctx, mfhi, tmp);
}
/* hi(dst) = acc + tmp */
emit(ctx, addu, hi(dst), acc, tmp);
clobber_reg64(ctx, dst);
}
/* Helper function for 64-bit modulo */
static u64 jit_mod64(u64 a, u64 b)
{
u64 rem;
div64_u64_rem(a, b, &rem);
return rem;
}
/* ALU div/mod register (64-bit) */
static void emit_divmod_r64(struct jit_context *ctx,
const u8 dst[], const u8 src[], u8 op)
{
const u8 *r0 = bpf2mips32[BPF_REG_0]; /* Mapped to v0-v1 */
const u8 *r1 = bpf2mips32[BPF_REG_1]; /* Mapped to a0-a1 */
const u8 *r2 = bpf2mips32[BPF_REG_2]; /* Mapped to a2-a3 */
int exclude, k;
u32 addr = 0;
/* Push caller-saved registers on stack */
push_regs(ctx, ctx->clobbered & JIT_CALLER_REGS,
0, JIT_RESERVED_STACK);
/* Put 64-bit arguments 1 and 2 in registers a0-a3 */
for (k = 0; k < 2; k++) {
emit(ctx, move, MIPS_R_T9, src[k]);
emit(ctx, move, r1[k], dst[k]);
emit(ctx, move, r2[k], MIPS_R_T9);
}
/* Emit function call */
switch (BPF_OP(op)) {
/* dst = dst / src */
case BPF_DIV:
addr = (u32)&div64_u64;
break;
/* dst = dst % src */
case BPF_MOD:
addr = (u32)&jit_mod64;
break;
}
emit_mov_i(ctx, MIPS_R_T9, addr);
emit(ctx, jalr, MIPS_R_RA, MIPS_R_T9);
emit(ctx, nop); /* Delay slot */
/* Store the 64-bit result in dst */
emit(ctx, move, dst[0], r0[0]);
emit(ctx, move, dst[1], r0[1]);
/* Restore caller-saved registers, excluding the computed result */
exclude = BIT(lo(dst)) | BIT(hi(dst));
pop_regs(ctx, ctx->clobbered & JIT_CALLER_REGS,
exclude, JIT_RESERVED_STACK);
emit_load_delay(ctx);
clobber_reg64(ctx, dst);
clobber_reg(ctx, MIPS_R_V0);
clobber_reg(ctx, MIPS_R_V1);
clobber_reg(ctx, MIPS_R_RA);
}
/* Swap bytes in a register word */
static void emit_swap8_r(struct jit_context *ctx, u8 dst, u8 src, u8 mask)
{
u8 tmp = MIPS_R_T9;
emit(ctx, and, tmp, src, mask); /* tmp = src & 0x00ff00ff */
emit(ctx, sll, tmp, tmp, 8); /* tmp = tmp << 8 */
emit(ctx, srl, dst, src, 8); /* dst = src >> 8 */
emit(ctx, and, dst, dst, mask); /* dst = dst & 0x00ff00ff */
emit(ctx, or, dst, dst, tmp); /* dst = dst | tmp */
}
/* Swap half words in a register word */
static void emit_swap16_r(struct jit_context *ctx, u8 dst, u8 src)
{
u8 tmp = MIPS_R_T9;
emit(ctx, sll, tmp, src, 16); /* tmp = src << 16 */
emit(ctx, srl, dst, src, 16); /* dst = src >> 16 */
emit(ctx, or, dst, dst, tmp); /* dst = dst | tmp */
}
/* Swap bytes and truncate a register double word, word or half word */
static void emit_bswap_r64(struct jit_context *ctx, const u8 dst[], u32 width)
{
u8 tmp = MIPS_R_T8;
switch (width) {
/* Swap bytes in a double word */
case 64:
if (cpu_has_mips32r2 || cpu_has_mips32r6) {
emit(ctx, rotr, tmp, hi(dst), 16);
emit(ctx, rotr, hi(dst), lo(dst), 16);
emit(ctx, wsbh, lo(dst), tmp);
emit(ctx, wsbh, hi(dst), hi(dst));
} else {
emit_swap16_r(ctx, tmp, lo(dst));
emit_swap16_r(ctx, lo(dst), hi(dst));
emit(ctx, move, hi(dst), tmp);
emit(ctx, lui, tmp, 0xff); /* tmp = 0x00ff0000 */
emit(ctx, ori, tmp, tmp, 0xff); /* tmp = 0x00ff00ff */
emit_swap8_r(ctx, lo(dst), lo(dst), tmp);
emit_swap8_r(ctx, hi(dst), hi(dst), tmp);
}
break;
/* Swap bytes in a word */
/* Swap bytes in a half word */
case 32:
case 16:
emit_bswap_r(ctx, lo(dst), width);
emit(ctx, move, hi(dst), MIPS_R_ZERO);
break;
}
clobber_reg64(ctx, dst);
}
/* Truncate a register double word, word or half word */
static void emit_trunc_r64(struct jit_context *ctx, const u8 dst[], u32 width)
{
switch (width) {
case 64:
break;
/* Zero-extend a word */
case 32:
emit(ctx, move, hi(dst), MIPS_R_ZERO);
clobber_reg(ctx, hi(dst));
break;
/* Zero-extend a half word */
case 16:
emit(ctx, move, hi(dst), MIPS_R_ZERO);
emit(ctx, andi, lo(dst), lo(dst), 0xffff);
clobber_reg64(ctx, dst);
break;
}
}
/* Load operation: dst = *(size*)(src + off) */
static void emit_ldx(struct jit_context *ctx,
const u8 dst[], u8 src, s16 off, u8 size)
{
switch (size) {
/* Load a byte */
case BPF_B:
emit(ctx, lbu, lo(dst), off, src);
emit(ctx, move, hi(dst), MIPS_R_ZERO);
break;
/* Load a half word */
case BPF_H:
emit(ctx, lhu, lo(dst), off, src);
emit(ctx, move, hi(dst), MIPS_R_ZERO);
break;
/* Load a word */
case BPF_W:
emit(ctx, lw, lo(dst), off, src);
emit(ctx, move, hi(dst), MIPS_R_ZERO);
break;
/* Load a double word */
case BPF_DW:
if (dst[1] == src) {
emit(ctx, lw, dst[0], off + 4, src);
emit(ctx, lw, dst[1], off, src);
} else {
emit(ctx, lw, dst[1], off, src);
emit(ctx, lw, dst[0], off + 4, src);
}
emit_load_delay(ctx);
break;
}
clobber_reg64(ctx, dst);
}
/* Store operation: *(size *)(dst + off) = src */
static void emit_stx(struct jit_context *ctx,
const u8 dst, const u8 src[], s16 off, u8 size)
{
switch (size) {
/* Store a byte */
case BPF_B:
emit(ctx, sb, lo(src), off, dst);
break;
/* Store a half word */
case BPF_H:
emit(ctx, sh, lo(src), off, dst);
break;
/* Store a word */
case BPF_W:
emit(ctx, sw, lo(src), off, dst);
break;
/* Store a double word */
case BPF_DW:
emit(ctx, sw, src[1], off, dst);
emit(ctx, sw, src[0], off + 4, dst);
break;
}
}
/* Atomic read-modify-write (32-bit, non-ll/sc fallback) */
static void emit_atomic_r32(struct jit_context *ctx,
u8 dst, u8 src, s16 off, u8 code)
{
u32 exclude = 0;
u32 addr = 0;
/* Push caller-saved registers on stack */
push_regs(ctx, ctx->clobbered & JIT_CALLER_REGS,
0, JIT_RESERVED_STACK);
/*
* Argument 1: dst+off if xchg, otherwise src, passed in register a0
* Argument 2: src if xchg, othersize dst+off, passed in register a1
*/
emit(ctx, move, MIPS_R_T9, dst);
if (code == BPF_XCHG) {
emit(ctx, move, MIPS_R_A1, src);
emit(ctx, addiu, MIPS_R_A0, MIPS_R_T9, off);
} else {
emit(ctx, move, MIPS_R_A0, src);
emit(ctx, addiu, MIPS_R_A1, MIPS_R_T9, off);
}
/* Emit function call */
switch (code) {
case BPF_ADD:
addr = (u32)&atomic_add;
break;
case BPF_ADD | BPF_FETCH:
addr = (u32)&atomic_fetch_add;
break;
case BPF_SUB:
addr = (u32)&atomic_sub;
break;
case BPF_SUB | BPF_FETCH:
addr = (u32)&atomic_fetch_sub;
break;
case BPF_OR:
addr = (u32)&atomic_or;
break;
case BPF_OR | BPF_FETCH:
addr = (u32)&atomic_fetch_or;
break;
case BPF_AND:
addr = (u32)&atomic_and;
break;
case BPF_AND | BPF_FETCH:
addr = (u32)&atomic_fetch_and;
break;
case BPF_XOR:
addr = (u32)&atomic_xor;
break;
case BPF_XOR | BPF_FETCH:
addr = (u32)&atomic_fetch_xor;
break;
case BPF_XCHG:
addr = (u32)&atomic_xchg;
break;
}
emit_mov_i(ctx, MIPS_R_T9, addr);
emit(ctx, jalr, MIPS_R_RA, MIPS_R_T9);
emit(ctx, nop); /* Delay slot */
/* Update src register with old value, if specified */
if (code & BPF_FETCH) {
emit(ctx, move, src, MIPS_R_V0);
exclude = BIT(src);
clobber_reg(ctx, src);
}
/* Restore caller-saved registers, except any fetched value */
pop_regs(ctx, ctx->clobbered & JIT_CALLER_REGS,
exclude, JIT_RESERVED_STACK);
emit_load_delay(ctx);
clobber_reg(ctx, MIPS_R_RA);
}
/* Helper function for 64-bit atomic exchange */
static s64 jit_xchg64(s64 a, atomic64_t *v)
{
return atomic64_xchg(v, a);
}
/* Atomic read-modify-write (64-bit) */
static void emit_atomic_r64(struct jit_context *ctx,
u8 dst, const u8 src[], s16 off, u8 code)
{
const u8 *r0 = bpf2mips32[BPF_REG_0]; /* Mapped to v0-v1 */
const u8 *r1 = bpf2mips32[BPF_REG_1]; /* Mapped to a0-a1 */
u32 exclude = 0;
u32 addr = 0;
/* Push caller-saved registers on stack */
push_regs(ctx, ctx->clobbered & JIT_CALLER_REGS,
0, JIT_RESERVED_STACK);
/*
* Argument 1: 64-bit src, passed in registers a0-a1
* Argument 2: 32-bit dst+off, passed in register a2
*/
emit(ctx, move, MIPS_R_T9, dst);
emit(ctx, move, r1[0], src[0]);
emit(ctx, move, r1[1], src[1]);
emit(ctx, addiu, MIPS_R_A2, MIPS_R_T9, off);
/* Emit function call */
switch (code) {
case BPF_ADD:
addr = (u32)&atomic64_add;
break;
case BPF_ADD | BPF_FETCH:
addr = (u32)&atomic64_fetch_add;
break;
case BPF_SUB:
addr = (u32)&atomic64_sub;
break;
case BPF_SUB | BPF_FETCH:
addr = (u32)&atomic64_fetch_sub;
break;
case BPF_OR:
addr = (u32)&atomic64_or;
break;
case BPF_OR | BPF_FETCH:
addr = (u32)&atomic64_fetch_or;
break;
case BPF_AND:
addr = (u32)&atomic64_and;
break;
case BPF_AND | BPF_FETCH:
addr = (u32)&atomic64_fetch_and;
break;
case BPF_XOR:
addr = (u32)&atomic64_xor;
break;
case BPF_XOR | BPF_FETCH:
addr = (u32)&atomic64_fetch_xor;
break;
case BPF_XCHG:
addr = (u32)&jit_xchg64;
break;
}
emit_mov_i(ctx, MIPS_R_T9, addr);
emit(ctx, jalr, MIPS_R_RA, MIPS_R_T9);
emit(ctx, nop); /* Delay slot */
/* Update src register with old value, if specified */
if (code & BPF_FETCH) {
emit(ctx, move, lo(src), lo(r0));
emit(ctx, move, hi(src), hi(r0));
exclude = BIT(src[0]) | BIT(src[1]);
clobber_reg64(ctx, src);
}
/* Restore caller-saved registers, except any fetched value */
pop_regs(ctx, ctx->clobbered & JIT_CALLER_REGS,
exclude, JIT_RESERVED_STACK);
emit_load_delay(ctx);
clobber_reg(ctx, MIPS_R_RA);
}
/* Atomic compare-and-exchange (32-bit, non-ll/sc fallback) */
static void emit_cmpxchg_r32(struct jit_context *ctx, u8 dst, u8 src, s16 off)
{
const u8 *r0 = bpf2mips32[BPF_REG_0];
/* Push caller-saved registers on stack */
push_regs(ctx, ctx->clobbered & JIT_CALLER_REGS,
JIT_RETURN_REGS, JIT_RESERVED_STACK + 2 * sizeof(u32));
/*
* Argument 1: 32-bit dst+off, passed in register a0
* Argument 2: 32-bit r0, passed in register a1
* Argument 3: 32-bit src, passed in register a2
*/
emit(ctx, addiu, MIPS_R_T9, dst, off);
emit(ctx, move, MIPS_R_T8, src);
emit(ctx, move, MIPS_R_A1, lo(r0));
emit(ctx, move, MIPS_R_A0, MIPS_R_T9);
emit(ctx, move, MIPS_R_A2, MIPS_R_T8);
/* Emit function call */
emit_mov_i(ctx, MIPS_R_T9, (u32)&atomic_cmpxchg);
emit(ctx, jalr, MIPS_R_RA, MIPS_R_T9);
emit(ctx, nop); /* Delay slot */
#ifdef __BIG_ENDIAN
emit(ctx, move, lo(r0), MIPS_R_V0);
#endif
/* Restore caller-saved registers, except the return value */
pop_regs(ctx, ctx->clobbered & JIT_CALLER_REGS,
JIT_RETURN_REGS, JIT_RESERVED_STACK + 2 * sizeof(u32));
emit_load_delay(ctx);
clobber_reg(ctx, MIPS_R_V0);
clobber_reg(ctx, MIPS_R_V1);
clobber_reg(ctx, MIPS_R_RA);
}
/* Atomic compare-and-exchange (64-bit) */
static void emit_cmpxchg_r64(struct jit_context *ctx,
u8 dst, const u8 src[], s16 off)
{
const u8 *r0 = bpf2mips32[BPF_REG_0];
const u8 *r2 = bpf2mips32[BPF_REG_2];
/* Push caller-saved registers on stack */
push_regs(ctx, ctx->clobbered & JIT_CALLER_REGS,
JIT_RETURN_REGS, JIT_RESERVED_STACK + 2 * sizeof(u32));
/*
* Argument 1: 32-bit dst+off, passed in register a0 (a1 unused)
* Argument 2: 64-bit r0, passed in registers a2-a3
* Argument 3: 64-bit src, passed on stack
*/
push_regs(ctx, BIT(src[0]) | BIT(src[1]), 0, JIT_RESERVED_STACK);
emit(ctx, addiu, MIPS_R_T9, dst, off);
emit(ctx, move, r2[0], r0[0]);
emit(ctx, move, r2[1], r0[1]);
emit(ctx, move, MIPS_R_A0, MIPS_R_T9);
/* Emit function call */
emit_mov_i(ctx, MIPS_R_T9, (u32)&atomic64_cmpxchg);
emit(ctx, jalr, MIPS_R_RA, MIPS_R_T9);
emit(ctx, nop); /* Delay slot */
/* Restore caller-saved registers, except the return value */
pop_regs(ctx, ctx->clobbered & JIT_CALLER_REGS,
JIT_RETURN_REGS, JIT_RESERVED_STACK + 2 * sizeof(u32));
emit_load_delay(ctx);
clobber_reg(ctx, MIPS_R_V0);
clobber_reg(ctx, MIPS_R_V1);
clobber_reg(ctx, MIPS_R_RA);
}
/*
* Conditional movz or an emulated equivalent.
* Note that the rs register may be modified.
*/
static void emit_movz_r(struct jit_context *ctx, u8 rd, u8 rs, u8 rt)
{
if (cpu_has_mips_2) {
emit(ctx, movz, rd, rs, rt); /* rd = rt ? rd : rs */
} else if (cpu_has_mips32r6) {
if (rs != MIPS_R_ZERO)
emit(ctx, seleqz, rs, rs, rt); /* rs = 0 if rt == 0 */
emit(ctx, selnez, rd, rd, rt); /* rd = 0 if rt != 0 */
if (rs != MIPS_R_ZERO)
emit(ctx, or, rd, rd, rs); /* rd = rd | rs */
} else {
emit(ctx, bnez, rt, 8); /* PC += 8 if rd != 0 */
emit(ctx, nop); /* +0: delay slot */
emit(ctx, or, rd, rs, MIPS_R_ZERO); /* +4: rd = rs */
}
clobber_reg(ctx, rd);
clobber_reg(ctx, rs);
}
/*
* Conditional movn or an emulated equivalent.
* Note that the rs register may be modified.
*/
static void emit_movn_r(struct jit_context *ctx, u8 rd, u8 rs, u8 rt)
{
if (cpu_has_mips_2) {
emit(ctx, movn, rd, rs, rt); /* rd = rt ? rs : rd */
} else if (cpu_has_mips32r6) {
if (rs != MIPS_R_ZERO)
emit(ctx, selnez, rs, rs, rt); /* rs = 0 if rt == 0 */
emit(ctx, seleqz, rd, rd, rt); /* rd = 0 if rt != 0 */
if (rs != MIPS_R_ZERO)
emit(ctx, or, rd, rd, rs); /* rd = rd | rs */
} else {
emit(ctx, beqz, rt, 8); /* PC += 8 if rd == 0 */
emit(ctx, nop); /* +0: delay slot */
emit(ctx, or, rd, rs, MIPS_R_ZERO); /* +4: rd = rs */
}
clobber_reg(ctx, rd);
clobber_reg(ctx, rs);
}
/* Emulation of 64-bit sltiu rd, rs, imm, where imm may be S32_MAX + 1 */
static void emit_sltiu_r64(struct jit_context *ctx, u8 rd,
const u8 rs[], s64 imm)
{
u8 tmp = MIPS_R_T9;
if (imm < 0) {
emit_mov_i(ctx, rd, imm); /* rd = imm */
emit(ctx, sltu, rd, lo(rs), rd); /* rd = rsl < rd */
emit(ctx, sltiu, tmp, hi(rs), -1); /* tmp = rsh < ~0U */
emit(ctx, or, rd, rd, tmp); /* rd = rd | tmp */
} else { /* imm >= 0 */
if (imm > 0x7fff) {
emit_mov_i(ctx, rd, (s32)imm); /* rd = imm */
emit(ctx, sltu, rd, lo(rs), rd); /* rd = rsl < rd */
} else {
emit(ctx, sltiu, rd, lo(rs), imm); /* rd = rsl < imm */
}
emit_movn_r(ctx, rd, MIPS_R_ZERO, hi(rs)); /* rd = 0 if rsh */
}
}
/* Emulation of 64-bit sltu rd, rs, rt */
static void emit_sltu_r64(struct jit_context *ctx, u8 rd,
const u8 rs[], const u8 rt[])
{
u8 tmp = MIPS_R_T9;
emit(ctx, sltu, rd, lo(rs), lo(rt)); /* rd = rsl < rtl */
emit(ctx, subu, tmp, hi(rs), hi(rt)); /* tmp = rsh - rth */
emit_movn_r(ctx, rd, MIPS_R_ZERO, tmp); /* rd = 0 if tmp != 0 */
emit(ctx, sltu, tmp, hi(rs), hi(rt)); /* tmp = rsh < rth */
emit(ctx, or, rd, rd, tmp); /* rd = rd | tmp */
}
/* Emulation of 64-bit slti rd, rs, imm, where imm may be S32_MAX + 1 */
static void emit_slti_r64(struct jit_context *ctx, u8 rd,
const u8 rs[], s64 imm)
{
u8 t1 = MIPS_R_T8;
u8 t2 = MIPS_R_T9;
u8 cmp;
/*
* if ((rs < 0) ^ (imm < 0)) t1 = imm >u rsl
* else t1 = rsl <u imm
*/
emit_mov_i(ctx, rd, (s32)imm);
emit(ctx, sltu, t1, lo(rs), rd); /* t1 = rsl <u imm */
emit(ctx, sltu, t2, rd, lo(rs)); /* t2 = imm <u rsl */
emit(ctx, srl, rd, hi(rs), 31); /* rd = rsh >> 31 */
if (imm < 0)
emit_movz_r(ctx, t1, t2, rd); /* t1 = rd ? t1 : t2 */
else
emit_movn_r(ctx, t1, t2, rd); /* t1 = rd ? t2 : t1 */
/*
* if ((imm < 0 && rsh != 0xffffffff) ||
* (imm >= 0 && rsh != 0))
* t1 = 0
*/
if (imm < 0) {
emit(ctx, addiu, rd, hi(rs), 1); /* rd = rsh + 1 */
cmp = rd;
} else { /* imm >= 0 */
cmp = hi(rs);
}
emit_movn_r(ctx, t1, MIPS_R_ZERO, cmp); /* t1 = 0 if cmp != 0 */
/*
* if (imm < 0) rd = rsh < -1
* else rd = rsh != 0
* rd = rd | t1
*/
emit(ctx, slti, rd, hi(rs), imm < 0 ? -1 : 0); /* rd = rsh < hi(imm) */
emit(ctx, or, rd, rd, t1); /* rd = rd | t1 */
}
/* Emulation of 64-bit(slt rd, rs, rt) */
static void emit_slt_r64(struct jit_context *ctx, u8 rd,
const u8 rs[], const u8 rt[])
{
u8 t1 = MIPS_R_T7;
u8 t2 = MIPS_R_T8;
u8 t3 = MIPS_R_T9;
/*
* if ((rs < 0) ^ (rt < 0)) t1 = rtl <u rsl
* else t1 = rsl <u rtl
* if (rsh == rth) t1 = 0
*/
emit(ctx, sltu, t1, lo(rs), lo(rt)); /* t1 = rsl <u rtl */
emit(ctx, sltu, t2, lo(rt), lo(rs)); /* t2 = rtl <u rsl */
emit(ctx, xor, t3, hi(rs), hi(rt)); /* t3 = rlh ^ rth */
emit(ctx, srl, rd, t3, 31); /* rd = t3 >> 31 */
emit_movn_r(ctx, t1, t2, rd); /* t1 = rd ? t2 : t1 */
emit_movn_r(ctx, t1, MIPS_R_ZERO, t3); /* t1 = 0 if t3 != 0 */
/* rd = (rsh < rth) | t1 */
emit(ctx, slt, rd, hi(rs), hi(rt)); /* rd = rsh <s rth */
emit(ctx, or, rd, rd, t1); /* rd = rd | t1 */
}
/* Jump immediate (64-bit) */
static void emit_jmp_i64(struct jit_context *ctx,
const u8 dst[], s32 imm, s32 off, u8 op)
{
u8 tmp = MIPS_R_T6;
switch (op) {
/* No-op, used internally for branch optimization */
case JIT_JNOP:
break;
/* PC += off if dst == imm */
/* PC += off if dst != imm */
case BPF_JEQ:
case BPF_JNE:
if (imm >= -0x7fff && imm <= 0x8000) {
emit(ctx, addiu, tmp, lo(dst), -imm);
} else if ((u32)imm <= 0xffff) {
emit(ctx, xori, tmp, lo(dst), imm);
} else { /* Register fallback */
emit_mov_i(ctx, tmp, imm);
emit(ctx, xor, tmp, lo(dst), tmp);
}
if (imm < 0) { /* Compare sign extension */
emit(ctx, addu, MIPS_R_T9, hi(dst), 1);
emit(ctx, or, tmp, tmp, MIPS_R_T9);
} else { /* Compare zero extension */
emit(ctx, or, tmp, tmp, hi(dst));
}
if (op == BPF_JEQ)
emit(ctx, beqz, tmp, off);
else /* BPF_JNE */
emit(ctx, bnez, tmp, off);
break;
/* PC += off if dst & imm */
/* PC += off if (dst & imm) == 0 (not in BPF, used for long jumps) */
case BPF_JSET:
case JIT_JNSET:
if ((u32)imm <= 0xffff) {
emit(ctx, andi, tmp, lo(dst), imm);
} else { /* Register fallback */
emit_mov_i(ctx, tmp, imm);
emit(ctx, and, tmp, lo(dst), tmp);
}
if (imm < 0) /* Sign-extension pulls in high word */
emit(ctx, or, tmp, tmp, hi(dst));
if (op == BPF_JSET)
emit(ctx, bnez, tmp, off);
else /* JIT_JNSET */
emit(ctx, beqz, tmp, off);
break;
/* PC += off if dst > imm */
case BPF_JGT:
emit_sltiu_r64(ctx, tmp, dst, (s64)imm + 1);
emit(ctx, beqz, tmp, off);
break;
/* PC += off if dst >= imm */
case BPF_JGE:
emit_sltiu_r64(ctx, tmp, dst, imm);
emit(ctx, beqz, tmp, off);
break;
/* PC += off if dst < imm */
case BPF_JLT:
emit_sltiu_r64(ctx, tmp, dst, imm);
emit(ctx, bnez, tmp, off);
break;
/* PC += off if dst <= imm */
case BPF_JLE:
emit_sltiu_r64(ctx, tmp, dst, (s64)imm + 1);
emit(ctx, bnez, tmp, off);
break;
/* PC += off if dst > imm (signed) */
case BPF_JSGT:
emit_slti_r64(ctx, tmp, dst, (s64)imm + 1);
emit(ctx, beqz, tmp, off);
break;
/* PC += off if dst >= imm (signed) */
case BPF_JSGE:
emit_slti_r64(ctx, tmp, dst, imm);
emit(ctx, beqz, tmp, off);
break;
/* PC += off if dst < imm (signed) */
case BPF_JSLT:
emit_slti_r64(ctx, tmp, dst, imm);
emit(ctx, bnez, tmp, off);
break;
/* PC += off if dst <= imm (signed) */
case BPF_JSLE:
emit_slti_r64(ctx, tmp, dst, (s64)imm + 1);
emit(ctx, bnez, tmp, off);
break;
}
}
/* Jump register (64-bit) */
static void emit_jmp_r64(struct jit_context *ctx,
const u8 dst[], const u8 src[], s32 off, u8 op)
{
u8 t1 = MIPS_R_T6;
u8 t2 = MIPS_R_T7;
switch (op) {
/* No-op, used internally for branch optimization */
case JIT_JNOP:
break;
/* PC += off if dst == src */
/* PC += off if dst != src */
case BPF_JEQ:
case BPF_JNE:
emit(ctx, subu, t1, lo(dst), lo(src));
emit(ctx, subu, t2, hi(dst), hi(src));
emit(ctx, or, t1, t1, t2);
if (op == BPF_JEQ)
emit(ctx, beqz, t1, off);
else /* BPF_JNE */
emit(ctx, bnez, t1, off);
break;
/* PC += off if dst & src */
/* PC += off if (dst & imm) == 0 (not in BPF, used for long jumps) */
case BPF_JSET:
case JIT_JNSET:
emit(ctx, and, t1, lo(dst), lo(src));
emit(ctx, and, t2, hi(dst), hi(src));
emit(ctx, or, t1, t1, t2);
if (op == BPF_JSET)
emit(ctx, bnez, t1, off);
else /* JIT_JNSET */
emit(ctx, beqz, t1, off);
break;
/* PC += off if dst > src */
case BPF_JGT:
emit_sltu_r64(ctx, t1, src, dst);
emit(ctx, bnez, t1, off);
break;
/* PC += off if dst >= src */
case BPF_JGE:
emit_sltu_r64(ctx, t1, dst, src);
emit(ctx, beqz, t1, off);
break;
/* PC += off if dst < src */
case BPF_JLT:
emit_sltu_r64(ctx, t1, dst, src);
emit(ctx, bnez, t1, off);
break;
/* PC += off if dst <= src */
case BPF_JLE:
emit_sltu_r64(ctx, t1, src, dst);
emit(ctx, beqz, t1, off);
break;
/* PC += off if dst > src (signed) */
case BPF_JSGT:
emit_slt_r64(ctx, t1, src, dst);
emit(ctx, bnez, t1, off);
break;
/* PC += off if dst >= src (signed) */
case BPF_JSGE:
emit_slt_r64(ctx, t1, dst, src);
emit(ctx, beqz, t1, off);
break;
/* PC += off if dst < src (signed) */
case BPF_JSLT:
emit_slt_r64(ctx, t1, dst, src);
emit(ctx, bnez, t1, off);
break;
/* PC += off if dst <= src (signed) */
case BPF_JSLE:
emit_slt_r64(ctx, t1, src, dst);
emit(ctx, beqz, t1, off);
break;
}
}
/* Function call */
static int emit_call(struct jit_context *ctx, const struct bpf_insn *insn)
{
bool fixed;
u64 addr;
/* Decode the call address */
if (bpf_jit_get_func_addr(ctx->program, insn, false,
&addr, &fixed) < 0)
return -1;
if (!fixed)
return -1;
/* Push stack arguments */
push_regs(ctx, JIT_STACK_REGS, 0, JIT_RESERVED_STACK);
/* Emit function call */
emit_mov_i(ctx, MIPS_R_T9, addr);
emit(ctx, jalr, MIPS_R_RA, MIPS_R_T9);
emit(ctx, nop); /* Delay slot */
clobber_reg(ctx, MIPS_R_RA);
clobber_reg(ctx, MIPS_R_V0);
clobber_reg(ctx, MIPS_R_V1);
return 0;
}
/* Function tail call */
static int emit_tail_call(struct jit_context *ctx)
{
u8 ary = lo(bpf2mips32[BPF_REG_2]);
u8 ind = lo(bpf2mips32[BPF_REG_3]);
u8 t1 = MIPS_R_T8;
u8 t2 = MIPS_R_T9;
int off;
/*
* Tail call:
* eBPF R1 - function argument (context ptr), passed in a0-a1
* eBPF R2 - ptr to object with array of function entry points
* eBPF R3 - array index of function to be called
* stack[sz] - remaining tail call count, initialized in prologue
*/
/* if (ind >= ary->map.max_entries) goto out */
off = offsetof(struct bpf_array, map.max_entries);
if (off > 0x7fff)
return -1;
emit(ctx, lw, t1, off, ary); /* t1 = ary->map.max_entries*/
emit_load_delay(ctx); /* Load delay slot */
emit(ctx, sltu, t1, ind, t1); /* t1 = ind < t1 */
emit(ctx, beqz, t1, get_offset(ctx, 1)); /* PC += off(1) if t1 == 0 */
/* (next insn delay slot) */
/* if (TCC-- <= 0) goto out */
emit(ctx, lw, t2, ctx->stack_size, MIPS_R_SP); /* t2 = *(SP + size) */
emit_load_delay(ctx); /* Load delay slot */
emit(ctx, blez, t2, get_offset(ctx, 1)); /* PC += off(1) if t2 <= 0 */
emit(ctx, addiu, t2, t2, -1); /* t2-- (delay slot) */
emit(ctx, sw, t2, ctx->stack_size, MIPS_R_SP); /* *(SP + size) = t2 */
/* prog = ary->ptrs[ind] */
off = offsetof(struct bpf_array, ptrs);
if (off > 0x7fff)
return -1;
emit(ctx, sll, t1, ind, 2); /* t1 = ind << 2 */
emit(ctx, addu, t1, t1, ary); /* t1 += ary */
emit(ctx, lw, t2, off, t1); /* t2 = *(t1 + off) */
emit_load_delay(ctx); /* Load delay slot */
/* if (prog == 0) goto out */
emit(ctx, beqz, t2, get_offset(ctx, 1)); /* PC += off(1) if t2 == 0 */
emit(ctx, nop); /* Delay slot */
/* func = prog->bpf_func + 8 (prologue skip offset) */
off = offsetof(struct bpf_prog, bpf_func);
if (off > 0x7fff)
return -1;
emit(ctx, lw, t1, off, t2); /* t1 = *(t2 + off) */
emit_load_delay(ctx); /* Load delay slot */
emit(ctx, addiu, t1, t1, JIT_TCALL_SKIP); /* t1 += skip (8 or 12) */
/* goto func */
build_epilogue(ctx, t1);
return 0;
}
/*
* Stack frame layout for a JITed program (stack grows down).
*
* Higher address : Caller's stack frame :
* :----------------------------:
* : 64-bit eBPF args r3-r5 :
* :----------------------------:
* : Reserved / tail call count :
* +============================+ <--- MIPS sp before call
* | Callee-saved registers, |
* | including RA and FP |
* +----------------------------+ <--- eBPF FP (MIPS zero,fp)
* | Local eBPF variables |
* | allocated by program |
* +----------------------------+
* | Reserved for caller-saved |
* | registers |
* +----------------------------+
* | Reserved for 64-bit eBPF |
* | args r3-r5 & args passed |
* | on stack in kernel calls |
* Lower address +============================+ <--- MIPS sp
*/
/* Build program prologue to set up the stack and registers */
void build_prologue(struct jit_context *ctx)
{
const u8 *r1 = bpf2mips32[BPF_REG_1];
const u8 *fp = bpf2mips32[BPF_REG_FP];
int stack, saved, locals, reserved;
/*
* The first two instructions initialize TCC in the reserved (for us)
* 16-byte area in the parent's stack frame. On a tail call, the
* calling function jumps into the prologue after these instructions.
*/
emit(ctx, ori, MIPS_R_T9, MIPS_R_ZERO,
min(MAX_TAIL_CALL_CNT + 1, 0xffff));
emit(ctx, sw, MIPS_R_T9, 0, MIPS_R_SP);
/*
* Register eBPF R1 contains the 32-bit context pointer argument.
* A 32-bit argument is always passed in MIPS register a0, regardless
* of CPU endianness. Initialize R1 accordingly and zero-extend.
*/
#ifdef __BIG_ENDIAN
emit(ctx, move, lo(r1), MIPS_R_A0);
#endif
/* === Entry-point for tail calls === */
/* Zero-extend the 32-bit argument */
emit(ctx, move, hi(r1), MIPS_R_ZERO);
/* If the eBPF frame pointer was accessed it must be saved */
if (ctx->accessed & BIT(BPF_REG_FP))
clobber_reg64(ctx, fp);
/* Compute the stack space needed for callee-saved registers */
saved = hweight32(ctx->clobbered & JIT_CALLEE_REGS) * sizeof(u32);
saved = ALIGN(saved, MIPS_STACK_ALIGNMENT);
/* Stack space used by eBPF program local data */
locals = ALIGN(ctx->program->aux->stack_depth, MIPS_STACK_ALIGNMENT);
/*
* If we are emitting function calls, reserve extra stack space for
* caller-saved registers and function arguments passed on the stack.
* The required space is computed automatically during resource
* usage discovery (pass 1).
*/
reserved = ctx->stack_used;
/* Allocate the stack frame */
stack = ALIGN(saved + locals + reserved, MIPS_STACK_ALIGNMENT);
emit(ctx, addiu, MIPS_R_SP, MIPS_R_SP, -stack);
/* Store callee-saved registers on stack */
push_regs(ctx, ctx->clobbered & JIT_CALLEE_REGS, 0, stack - saved);
/* Initialize the eBPF frame pointer if accessed */
if (ctx->accessed & BIT(BPF_REG_FP))
emit(ctx, addiu, lo(fp), MIPS_R_SP, stack - saved);
ctx->saved_size = saved;
ctx->stack_size = stack;
}
/* Build the program epilogue to restore the stack and registers */
void build_epilogue(struct jit_context *ctx, int dest_reg)
{
/* Restore callee-saved registers from stack */
pop_regs(ctx, ctx->clobbered & JIT_CALLEE_REGS, 0,
ctx->stack_size - ctx->saved_size);
/*
* A 32-bit return value is always passed in MIPS register v0,
* but on big-endian targets the low part of R0 is mapped to v1.
*/
#ifdef __BIG_ENDIAN
emit(ctx, move, MIPS_R_V0, MIPS_R_V1);
#endif
/* Jump to the return address and adjust the stack pointer */
emit(ctx, jr, dest_reg);
emit(ctx, addiu, MIPS_R_SP, MIPS_R_SP, ctx->stack_size);
}
/* Build one eBPF instruction */
int build_insn(const struct bpf_insn *insn, struct jit_context *ctx)
{
const u8 *dst = bpf2mips32[insn->dst_reg];
const u8 *src = bpf2mips32[insn->src_reg];
const u8 *res = bpf2mips32[BPF_REG_0];
const u8 *tmp = bpf2mips32[JIT_REG_TMP];
u8 code = insn->code;
s16 off = insn->off;
s32 imm = insn->imm;
s32 val, rel;
u8 alu, jmp;
switch (code) {
/* ALU operations */
/* dst = imm */
case BPF_ALU | BPF_MOV | BPF_K:
emit_mov_i(ctx, lo(dst), imm);
emit_zext_ver(ctx, dst);
break;
/* dst = src */
case BPF_ALU | BPF_MOV | BPF_X:
if (imm == 1) {
/* Special mov32 for zext */
emit_mov_i(ctx, hi(dst), 0);
} else {
emit_mov_r(ctx, lo(dst), lo(src));
emit_zext_ver(ctx, dst);
}
break;
/* dst = -dst */
case BPF_ALU | BPF_NEG:
emit_alu_i(ctx, lo(dst), 0, BPF_NEG);
emit_zext_ver(ctx, dst);
break;
/* dst = dst & imm */
/* dst = dst | imm */
/* dst = dst ^ imm */
/* dst = dst << imm */
/* dst = dst >> imm */
/* dst = dst >> imm (arithmetic) */
/* dst = dst + imm */
/* dst = dst - imm */
/* dst = dst * imm */
/* dst = dst / imm */
/* dst = dst % imm */
case BPF_ALU | BPF_OR | BPF_K:
case BPF_ALU | BPF_AND | BPF_K:
case BPF_ALU | BPF_XOR | BPF_K:
case BPF_ALU | BPF_LSH | BPF_K:
case BPF_ALU | BPF_RSH | BPF_K:
case BPF_ALU | BPF_ARSH | BPF_K:
case BPF_ALU | BPF_ADD | BPF_K:
case BPF_ALU | BPF_SUB | BPF_K:
case BPF_ALU | BPF_MUL | BPF_K:
case BPF_ALU | BPF_DIV | BPF_K:
case BPF_ALU | BPF_MOD | BPF_K:
if (!valid_alu_i(BPF_OP(code), imm)) {
emit_mov_i(ctx, MIPS_R_T6, imm);
emit_alu_r(ctx, lo(dst), MIPS_R_T6, BPF_OP(code));
} else if (rewrite_alu_i(BPF_OP(code), imm, &alu, &val)) {
emit_alu_i(ctx, lo(dst), val, alu);
}
emit_zext_ver(ctx, dst);
break;
/* dst = dst & src */
/* dst = dst | src */
/* dst = dst ^ src */
/* dst = dst << src */
/* dst = dst >> src */
/* dst = dst >> src (arithmetic) */
/* dst = dst + src */
/* dst = dst - src */
/* dst = dst * src */
/* dst = dst / src */
/* dst = dst % src */
case BPF_ALU | BPF_AND | BPF_X:
case BPF_ALU | BPF_OR | BPF_X:
case BPF_ALU | BPF_XOR | BPF_X:
case BPF_ALU | BPF_LSH | BPF_X:
case BPF_ALU | BPF_RSH | BPF_X:
case BPF_ALU | BPF_ARSH | BPF_X:
case BPF_ALU | BPF_ADD | BPF_X:
case BPF_ALU | BPF_SUB | BPF_X:
case BPF_ALU | BPF_MUL | BPF_X:
case BPF_ALU | BPF_DIV | BPF_X:
case BPF_ALU | BPF_MOD | BPF_X:
emit_alu_r(ctx, lo(dst), lo(src), BPF_OP(code));
emit_zext_ver(ctx, dst);
break;
/* dst = imm (64-bit) */
case BPF_ALU64 | BPF_MOV | BPF_K:
emit_mov_se_i64(ctx, dst, imm);
break;
/* dst = src (64-bit) */
case BPF_ALU64 | BPF_MOV | BPF_X:
emit_mov_r(ctx, lo(dst), lo(src));
emit_mov_r(ctx, hi(dst), hi(src));
break;
/* dst = -dst (64-bit) */
case BPF_ALU64 | BPF_NEG:
emit_neg_i64(ctx, dst);
break;
/* dst = dst & imm (64-bit) */
case BPF_ALU64 | BPF_AND | BPF_K:
emit_alu_i64(ctx, dst, imm, BPF_OP(code));
break;
/* dst = dst | imm (64-bit) */
/* dst = dst ^ imm (64-bit) */
/* dst = dst + imm (64-bit) */
/* dst = dst - imm (64-bit) */
case BPF_ALU64 | BPF_OR | BPF_K:
case BPF_ALU64 | BPF_XOR | BPF_K:
case BPF_ALU64 | BPF_ADD | BPF_K:
case BPF_ALU64 | BPF_SUB | BPF_K:
if (imm)
emit_alu_i64(ctx, dst, imm, BPF_OP(code));
break;
/* dst = dst << imm (64-bit) */
/* dst = dst >> imm (64-bit) */
/* dst = dst >> imm (64-bit, arithmetic) */
case BPF_ALU64 | BPF_LSH | BPF_K:
case BPF_ALU64 | BPF_RSH | BPF_K:
case BPF_ALU64 | BPF_ARSH | BPF_K:
if (imm)
emit_shift_i64(ctx, dst, imm, BPF_OP(code));
break;
/* dst = dst * imm (64-bit) */
case BPF_ALU64 | BPF_MUL | BPF_K:
emit_mul_i64(ctx, dst, imm);
break;
/* dst = dst / imm (64-bit) */
/* dst = dst % imm (64-bit) */
case BPF_ALU64 | BPF_DIV | BPF_K:
case BPF_ALU64 | BPF_MOD | BPF_K:
/*
* Sign-extend the immediate value into a temporary register,
* and then do the operation on this register.
*/
emit_mov_se_i64(ctx, tmp, imm);
emit_divmod_r64(ctx, dst, tmp, BPF_OP(code));
break;
/* dst = dst & src (64-bit) */
/* dst = dst | src (64-bit) */
/* dst = dst ^ src (64-bit) */
/* dst = dst + src (64-bit) */
/* dst = dst - src (64-bit) */
case BPF_ALU64 | BPF_AND | BPF_X:
case BPF_ALU64 | BPF_OR | BPF_X:
case BPF_ALU64 | BPF_XOR | BPF_X:
case BPF_ALU64 | BPF_ADD | BPF_X:
case BPF_ALU64 | BPF_SUB | BPF_X:
emit_alu_r64(ctx, dst, src, BPF_OP(code));
break;
/* dst = dst << src (64-bit) */
/* dst = dst >> src (64-bit) */
/* dst = dst >> src (64-bit, arithmetic) */
case BPF_ALU64 | BPF_LSH | BPF_X:
case BPF_ALU64 | BPF_RSH | BPF_X:
case BPF_ALU64 | BPF_ARSH | BPF_X:
emit_shift_r64(ctx, dst, lo(src), BPF_OP(code));
break;
/* dst = dst * src (64-bit) */
case BPF_ALU64 | BPF_MUL | BPF_X:
emit_mul_r64(ctx, dst, src);
break;
/* dst = dst / src (64-bit) */
/* dst = dst % src (64-bit) */
case BPF_ALU64 | BPF_DIV | BPF_X:
case BPF_ALU64 | BPF_MOD | BPF_X:
emit_divmod_r64(ctx, dst, src, BPF_OP(code));
break;
/* dst = htole(dst) */
/* dst = htobe(dst) */
case BPF_ALU | BPF_END | BPF_FROM_LE:
case BPF_ALU | BPF_END | BPF_FROM_BE:
if (BPF_SRC(code) ==
#ifdef __BIG_ENDIAN
BPF_FROM_LE
#else
BPF_FROM_BE
#endif
)
emit_bswap_r64(ctx, dst, imm);
else
emit_trunc_r64(ctx, dst, imm);
break;
/* dst = imm64 */
case BPF_LD | BPF_IMM | BPF_DW:
emit_mov_i(ctx, lo(dst), imm);
emit_mov_i(ctx, hi(dst), insn[1].imm);
return 1;
/* LDX: dst = *(size *)(src + off) */
case BPF_LDX | BPF_MEM | BPF_W:
case BPF_LDX | BPF_MEM | BPF_H:
case BPF_LDX | BPF_MEM | BPF_B:
case BPF_LDX | BPF_MEM | BPF_DW:
emit_ldx(ctx, dst, lo(src), off, BPF_SIZE(code));
break;
/* ST: *(size *)(dst + off) = imm */
case BPF_ST | BPF_MEM | BPF_W:
case BPF_ST | BPF_MEM | BPF_H:
case BPF_ST | BPF_MEM | BPF_B:
case BPF_ST | BPF_MEM | BPF_DW:
switch (BPF_SIZE(code)) {
case BPF_DW:
/* Sign-extend immediate value into temporary reg */
emit_mov_se_i64(ctx, tmp, imm);
break;
case BPF_W:
case BPF_H:
case BPF_B:
emit_mov_i(ctx, lo(tmp), imm);
break;
}
emit_stx(ctx, lo(dst), tmp, off, BPF_SIZE(code));
break;
/* STX: *(size *)(dst + off) = src */
case BPF_STX | BPF_MEM | BPF_W:
case BPF_STX | BPF_MEM | BPF_H:
case BPF_STX | BPF_MEM | BPF_B:
case BPF_STX | BPF_MEM | BPF_DW:
emit_stx(ctx, lo(dst), src, off, BPF_SIZE(code));
break;
/* Speculation barrier */
case BPF_ST | BPF_NOSPEC:
break;
/* Atomics */
case BPF_STX | BPF_ATOMIC | BPF_W:
switch (imm) {
case BPF_ADD:
case BPF_ADD | BPF_FETCH:
case BPF_AND:
case BPF_AND | BPF_FETCH:
case BPF_OR:
case BPF_OR | BPF_FETCH:
case BPF_XOR:
case BPF_XOR | BPF_FETCH:
case BPF_XCHG:
if (cpu_has_llsc)
emit_atomic_r(ctx, lo(dst), lo(src), off, imm);
else /* Non-ll/sc fallback */
emit_atomic_r32(ctx, lo(dst), lo(src),
off, imm);
if (imm & BPF_FETCH)
emit_zext_ver(ctx, src);
break;
case BPF_CMPXCHG:
if (cpu_has_llsc)
emit_cmpxchg_r(ctx, lo(dst), lo(src),
lo(res), off);
else /* Non-ll/sc fallback */
emit_cmpxchg_r32(ctx, lo(dst), lo(src), off);
/* Result zero-extension inserted by verifier */
break;
default:
goto notyet;
}
break;
/* Atomics (64-bit) */
case BPF_STX | BPF_ATOMIC | BPF_DW:
switch (imm) {
case BPF_ADD:
case BPF_ADD | BPF_FETCH:
case BPF_AND:
case BPF_AND | BPF_FETCH:
case BPF_OR:
case BPF_OR | BPF_FETCH:
case BPF_XOR:
case BPF_XOR | BPF_FETCH:
case BPF_XCHG:
emit_atomic_r64(ctx, lo(dst), src, off, imm);
break;
case BPF_CMPXCHG:
emit_cmpxchg_r64(ctx, lo(dst), src, off);
break;
default:
goto notyet;
}
break;
/* PC += off if dst == src */
/* PC += off if dst != src */
/* PC += off if dst & src */
/* PC += off if dst > src */
/* PC += off if dst >= src */
/* PC += off if dst < src */
/* PC += off if dst <= src */
/* PC += off if dst > src (signed) */
/* PC += off if dst >= src (signed) */
/* PC += off if dst < src (signed) */
/* PC += off if dst <= src (signed) */
case BPF_JMP32 | BPF_JEQ | BPF_X:
case BPF_JMP32 | BPF_JNE | BPF_X:
case BPF_JMP32 | BPF_JSET | BPF_X:
case BPF_JMP32 | BPF_JGT | BPF_X:
case BPF_JMP32 | BPF_JGE | BPF_X:
case BPF_JMP32 | BPF_JLT | BPF_X:
case BPF_JMP32 | BPF_JLE | BPF_X:
case BPF_JMP32 | BPF_JSGT | BPF_X:
case BPF_JMP32 | BPF_JSGE | BPF_X:
case BPF_JMP32 | BPF_JSLT | BPF_X:
case BPF_JMP32 | BPF_JSLE | BPF_X:
if (off == 0)
break;
setup_jmp_r(ctx, dst == src, BPF_OP(code), off, &jmp, &rel);
emit_jmp_r(ctx, lo(dst), lo(src), rel, jmp);
if (finish_jmp(ctx, jmp, off) < 0)
goto toofar;
break;
/* PC += off if dst == imm */
/* PC += off if dst != imm */
/* PC += off if dst & imm */
/* PC += off if dst > imm */
/* PC += off if dst >= imm */
/* PC += off if dst < imm */
/* PC += off if dst <= imm */
/* PC += off if dst > imm (signed) */
/* PC += off if dst >= imm (signed) */
/* PC += off if dst < imm (signed) */
/* PC += off if dst <= imm (signed) */
case BPF_JMP32 | BPF_JEQ | BPF_K:
case BPF_JMP32 | BPF_JNE | BPF_K:
case BPF_JMP32 | BPF_JSET | BPF_K:
case BPF_JMP32 | BPF_JGT | BPF_K:
case BPF_JMP32 | BPF_JGE | BPF_K:
case BPF_JMP32 | BPF_JLT | BPF_K:
case BPF_JMP32 | BPF_JLE | BPF_K:
case BPF_JMP32 | BPF_JSGT | BPF_K:
case BPF_JMP32 | BPF_JSGE | BPF_K:
case BPF_JMP32 | BPF_JSLT | BPF_K:
case BPF_JMP32 | BPF_JSLE | BPF_K:
if (off == 0)
break;
setup_jmp_i(ctx, imm, 32, BPF_OP(code), off, &jmp, &rel);
if (valid_jmp_i(jmp, imm)) {
emit_jmp_i(ctx, lo(dst), imm, rel, jmp);
} else {
/* Move large immediate to register */
emit_mov_i(ctx, MIPS_R_T6, imm);
emit_jmp_r(ctx, lo(dst), MIPS_R_T6, rel, jmp);
}
if (finish_jmp(ctx, jmp, off) < 0)
goto toofar;
break;
/* PC += off if dst == src */
/* PC += off if dst != src */
/* PC += off if dst & src */
/* PC += off if dst > src */
/* PC += off if dst >= src */
/* PC += off if dst < src */
/* PC += off if dst <= src */
/* PC += off if dst > src (signed) */
/* PC += off if dst >= src (signed) */
/* PC += off if dst < src (signed) */
/* PC += off if dst <= src (signed) */
case BPF_JMP | BPF_JEQ | BPF_X:
case BPF_JMP | BPF_JNE | BPF_X:
case BPF_JMP | BPF_JSET | BPF_X:
case BPF_JMP | BPF_JGT | BPF_X:
case BPF_JMP | BPF_JGE | BPF_X:
case BPF_JMP | BPF_JLT | BPF_X:
case BPF_JMP | BPF_JLE | BPF_X:
case BPF_JMP | BPF_JSGT | BPF_X:
case BPF_JMP | BPF_JSGE | BPF_X:
case BPF_JMP | BPF_JSLT | BPF_X:
case BPF_JMP | BPF_JSLE | BPF_X:
if (off == 0)
break;
setup_jmp_r(ctx, dst == src, BPF_OP(code), off, &jmp, &rel);
emit_jmp_r64(ctx, dst, src, rel, jmp);
if (finish_jmp(ctx, jmp, off) < 0)
goto toofar;
break;
/* PC += off if dst == imm */
/* PC += off if dst != imm */
/* PC += off if dst & imm */
/* PC += off if dst > imm */
/* PC += off if dst >= imm */
/* PC += off if dst < imm */
/* PC += off if dst <= imm */
/* PC += off if dst > imm (signed) */
/* PC += off if dst >= imm (signed) */
/* PC += off if dst < imm (signed) */
/* PC += off if dst <= imm (signed) */
case BPF_JMP | BPF_JEQ | BPF_K:
case BPF_JMP | BPF_JNE | BPF_K:
case BPF_JMP | BPF_JSET | BPF_K:
case BPF_JMP | BPF_JGT | BPF_K:
case BPF_JMP | BPF_JGE | BPF_K:
case BPF_JMP | BPF_JLT | BPF_K:
case BPF_JMP | BPF_JLE | BPF_K:
case BPF_JMP | BPF_JSGT | BPF_K:
case BPF_JMP | BPF_JSGE | BPF_K:
case BPF_JMP | BPF_JSLT | BPF_K:
case BPF_JMP | BPF_JSLE | BPF_K:
if (off == 0)
break;
setup_jmp_i(ctx, imm, 64, BPF_OP(code), off, &jmp, &rel);
emit_jmp_i64(ctx, dst, imm, rel, jmp);
if (finish_jmp(ctx, jmp, off) < 0)
goto toofar;
break;
/* PC += off */
case BPF_JMP | BPF_JA:
if (off == 0)
break;
if (emit_ja(ctx, off) < 0)
goto toofar;
break;
/* Tail call */
case BPF_JMP | BPF_TAIL_CALL:
if (emit_tail_call(ctx) < 0)
goto invalid;
break;
/* Function call */
case BPF_JMP | BPF_CALL:
if (emit_call(ctx, insn) < 0)
goto invalid;
break;
/* Function return */
case BPF_JMP | BPF_EXIT:
/*
* Optimization: when last instruction is EXIT
* simply continue to epilogue.
*/
if (ctx->bpf_index == ctx->program->len - 1)
break;
if (emit_exit(ctx) < 0)
goto toofar;
break;
default:
invalid:
pr_err_once("unknown opcode %02x\n", code);
return -EINVAL;
notyet:
pr_info_once("*** NOT YET: opcode %02x ***\n", code);
return -EFAULT;
toofar:
pr_info_once("*** TOO FAR: jump at %u opcode %02x ***\n",
ctx->bpf_index, code);
return -E2BIG;
}
return 0;
}