linux/arch/x86/crypto/aes-xts-avx-x86_64.S
Eric Biggers 543ea178fb crypto: x86/aes-xts - optimize size of instructions operating on lengths
x86_64 has the "interesting" property that the instruction size is
generally a bit shorter for instructions that operate on the 32-bit (or
less) part of registers, or registers that are in the original set of 8.

This patch adjusts the AES-XTS code to take advantage of that property
by changing the LEN parameter from size_t to unsigned int (which is all
that's needed and is what the non-AVX implementation uses) and using the
%eax register for KEYLEN.

This decreases the size of aes-xts-avx-x86_64.o by 1.2%.

Note that changing the kmovq to kmovd was going to be needed anyway to
make the AVX10/256 code really work on CPUs that don't support 512-bit
vectors (since the AVX10 spec says that 64-bit opmask instructions will
only be supported on processors that support 512-bit vectors).

Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2024-04-19 18:54:19 +08:00

846 lines
26 KiB
ArmAsm

/* SPDX-License-Identifier: GPL-2.0-or-later */
/*
* AES-XTS for modern x86_64 CPUs
*
* Copyright 2024 Google LLC
*
* Author: Eric Biggers <ebiggers@google.com>
*/
/*
* This file implements AES-XTS for modern x86_64 CPUs. To handle the
* complexities of coding for x86 SIMD, e.g. where every vector length needs
* different code, it uses a macro to generate several implementations that
* share similar source code but are targeted at different CPUs, listed below:
*
* AES-NI + AVX
* - 128-bit vectors (1 AES block per vector)
* - VEX-coded instructions
* - xmm0-xmm15
* - This is for older CPUs that lack VAES but do have AVX.
*
* VAES + VPCLMULQDQ + AVX2
* - 256-bit vectors (2 AES blocks per vector)
* - VEX-coded instructions
* - ymm0-ymm15
* - This is for CPUs that have VAES but lack AVX512 or AVX10,
* e.g. Intel's Alder Lake and AMD's Zen 3.
*
* VAES + VPCLMULQDQ + AVX10/256 + BMI2
* - 256-bit vectors (2 AES blocks per vector)
* - EVEX-coded instructions
* - ymm0-ymm31
* - This is for CPUs that have AVX512 but where using zmm registers causes
* downclocking, and for CPUs that have AVX10/256 but not AVX10/512.
* - By "AVX10/256" we really mean (AVX512BW + AVX512VL) || AVX10/256.
* To avoid confusion with 512-bit, we just write AVX10/256.
*
* VAES + VPCLMULQDQ + AVX10/512 + BMI2
* - Same as the previous one, but upgrades to 512-bit vectors
* (4 AES blocks per vector) in zmm0-zmm31.
* - This is for CPUs that have good AVX512 or AVX10/512 support.
*
* This file doesn't have an implementation for AES-NI alone (without AVX), as
* the lack of VEX would make all the assembly code different.
*
* When we use VAES, we also use VPCLMULQDQ to parallelize the computation of
* the XTS tweaks. This avoids a bottleneck. Currently there don't seem to be
* any CPUs that support VAES but not VPCLMULQDQ. If that changes, we might
* need to start also providing an implementation using VAES alone.
*
* The AES-XTS implementations in this file support everything required by the
* crypto API, including support for arbitrary input lengths and multi-part
* processing. However, they are most heavily optimized for the common case of
* power-of-2 length inputs that are processed in a single part (disk sectors).
*/
#include <linux/linkage.h>
#include <linux/cfi_types.h>
.section .rodata
.p2align 4
.Lgf_poly:
// The low 64 bits of this value represent the polynomial x^7 + x^2 + x
// + 1. It is the value that must be XOR'd into the low 64 bits of the
// tweak each time a 1 is carried out of the high 64 bits.
//
// The high 64 bits of this value is just the internal carry bit that
// exists when there's a carry out of the low 64 bits of the tweak.
.quad 0x87, 1
// This table contains constants for vpshufb and vpblendvb, used to
// handle variable byte shifts and blending during ciphertext stealing
// on CPUs that don't support AVX10-style masking.
.Lcts_permute_table:
.byte 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80
.byte 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80
.byte 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07
.byte 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f
.byte 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80
.byte 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80
.text
// Function parameters
.set KEY, %rdi // Initially points to crypto_aes_ctx, then is
// advanced to point to 7th-from-last round key
.set SRC, %rsi // Pointer to next source data
.set DST, %rdx // Pointer to next destination data
.set LEN, %ecx // Remaining length in bytes
.set LEN8, %cl
.set LEN64, %rcx
.set TWEAK, %r8 // Pointer to next tweak
// %rax holds the AES key length in bytes.
.set KEYLEN, %eax
.set KEYLEN64, %rax
// %r9-r11 are available as temporaries.
.macro _define_Vi i
.if VL == 16
.set V\i, %xmm\i
.elseif VL == 32
.set V\i, %ymm\i
.elseif VL == 64
.set V\i, %zmm\i
.else
.error "Unsupported Vector Length (VL)"
.endif
.endm
.macro _define_aliases
// Define register aliases V0-V15, or V0-V31 if all 32 SIMD registers
// are available, that map to the xmm, ymm, or zmm registers according
// to the selected Vector Length (VL).
_define_Vi 0
_define_Vi 1
_define_Vi 2
_define_Vi 3
_define_Vi 4
_define_Vi 5
_define_Vi 6
_define_Vi 7
_define_Vi 8
_define_Vi 9
_define_Vi 10
_define_Vi 11
_define_Vi 12
_define_Vi 13
_define_Vi 14
_define_Vi 15
.if USE_AVX10
_define_Vi 16
_define_Vi 17
_define_Vi 18
_define_Vi 19
_define_Vi 20
_define_Vi 21
_define_Vi 22
_define_Vi 23
_define_Vi 24
_define_Vi 25
_define_Vi 26
_define_Vi 27
_define_Vi 28
_define_Vi 29
_define_Vi 30
_define_Vi 31
.endif
// V0-V3 hold the data blocks during the main loop, or temporary values
// otherwise. V4-V5 hold temporary values.
// V6-V9 hold XTS tweaks. Each 128-bit lane holds one tweak.
.set TWEAK0_XMM, %xmm6
.set TWEAK0, V6
.set TWEAK1_XMM, %xmm7
.set TWEAK1, V7
.set TWEAK2, V8
.set TWEAK3, V9
// V10-V13 are used for computing the next values of TWEAK[0-3].
.set NEXT_TWEAK0, V10
.set NEXT_TWEAK1, V11
.set NEXT_TWEAK2, V12
.set NEXT_TWEAK3, V13
// V14 holds the constant from .Lgf_poly, copied to all 128-bit lanes.
.set GF_POLY_XMM, %xmm14
.set GF_POLY, V14
// V15 holds the key for AES "round 0", copied to all 128-bit lanes.
.set KEY0_XMM, %xmm15
.set KEY0, V15
// If 32 SIMD registers are available, then V16-V29 hold the remaining
// AES round keys, copied to all 128-bit lanes.
//
// AES-128, AES-192, and AES-256 use different numbers of round keys.
// To allow handling all three variants efficiently, we align the round
// keys to the *end* of this register range. I.e., AES-128 uses
// KEY5-KEY14, AES-192 uses KEY3-KEY14, and AES-256 uses KEY1-KEY14.
// (All also use KEY0 for the XOR-only "round" at the beginning.)
.if USE_AVX10
.set KEY1_XMM, %xmm16
.set KEY1, V16
.set KEY2_XMM, %xmm17
.set KEY2, V17
.set KEY3_XMM, %xmm18
.set KEY3, V18
.set KEY4_XMM, %xmm19
.set KEY4, V19
.set KEY5_XMM, %xmm20
.set KEY5, V20
.set KEY6_XMM, %xmm21
.set KEY6, V21
.set KEY7_XMM, %xmm22
.set KEY7, V22
.set KEY8_XMM, %xmm23
.set KEY8, V23
.set KEY9_XMM, %xmm24
.set KEY9, V24
.set KEY10_XMM, %xmm25
.set KEY10, V25
.set KEY11_XMM, %xmm26
.set KEY11, V26
.set KEY12_XMM, %xmm27
.set KEY12, V27
.set KEY13_XMM, %xmm28
.set KEY13, V28
.set KEY14_XMM, %xmm29
.set KEY14, V29
.endif
// V30-V31 are currently unused.
.endm
// Move a vector between memory and a register.
.macro _vmovdqu src, dst
.if VL < 64
vmovdqu \src, \dst
.else
vmovdqu8 \src, \dst
.endif
.endm
// Broadcast a 128-bit value into a vector.
.macro _vbroadcast128 src, dst
.if VL == 16 && !USE_AVX10
vmovdqu \src, \dst
.elseif VL == 32 && !USE_AVX10
vbroadcasti128 \src, \dst
.else
vbroadcasti32x4 \src, \dst
.endif
.endm
// XOR two vectors together.
.macro _vpxor src1, src2, dst
.if USE_AVX10
vpxord \src1, \src2, \dst
.else
vpxor \src1, \src2, \dst
.endif
.endm
// XOR three vectors together.
.macro _xor3 src1, src2, src3_and_dst
.if USE_AVX10
// vpternlogd with immediate 0x96 is a three-argument XOR.
vpternlogd $0x96, \src1, \src2, \src3_and_dst
.else
vpxor \src1, \src3_and_dst, \src3_and_dst
vpxor \src2, \src3_and_dst, \src3_and_dst
.endif
.endm
// Given a 128-bit XTS tweak in the xmm register \src, compute the next tweak
// (by multiplying by the polynomial 'x') and write it to \dst.
.macro _next_tweak src, tmp, dst
vpshufd $0x13, \src, \tmp
vpaddq \src, \src, \dst
vpsrad $31, \tmp, \tmp
vpand GF_POLY_XMM, \tmp, \tmp
vpxor \tmp, \dst, \dst
.endm
// Given the XTS tweak(s) in the vector \src, compute the next vector of
// tweak(s) (by multiplying by the polynomial 'x^(VL/16)') and write it to \dst.
//
// If VL > 16, then there are multiple tweaks, and we use vpclmulqdq to compute
// all tweaks in the vector in parallel. If VL=16, we just do the regular
// computation without vpclmulqdq, as it's the faster method for a single tweak.
.macro _next_tweakvec src, tmp1, tmp2, dst
.if VL == 16
_next_tweak \src, \tmp1, \dst
.else
vpsrlq $64 - VL/16, \src, \tmp1
vpclmulqdq $0x01, GF_POLY, \tmp1, \tmp2
vpslldq $8, \tmp1, \tmp1
vpsllq $VL/16, \src, \dst
_xor3 \tmp1, \tmp2, \dst
.endif
.endm
// Given the first XTS tweak at (TWEAK), compute the first set of tweaks and
// store them in the vector registers TWEAK0-TWEAK3. Clobbers V0-V5.
.macro _compute_first_set_of_tweaks
vmovdqu (TWEAK), TWEAK0_XMM
_vbroadcast128 .Lgf_poly(%rip), GF_POLY
.if VL == 16
// With VL=16, multiplying by x serially is fastest.
_next_tweak TWEAK0, %xmm0, TWEAK1
_next_tweak TWEAK1, %xmm0, TWEAK2
_next_tweak TWEAK2, %xmm0, TWEAK3
.else
.if VL == 32
// Compute the second block of TWEAK0.
_next_tweak TWEAK0_XMM, %xmm0, %xmm1
vinserti128 $1, %xmm1, TWEAK0, TWEAK0
.elseif VL == 64
// Compute the remaining blocks of TWEAK0.
_next_tweak TWEAK0_XMM, %xmm0, %xmm1
_next_tweak %xmm1, %xmm0, %xmm2
_next_tweak %xmm2, %xmm0, %xmm3
vinserti32x4 $1, %xmm1, TWEAK0, TWEAK0
vinserti32x4 $2, %xmm2, TWEAK0, TWEAK0
vinserti32x4 $3, %xmm3, TWEAK0, TWEAK0
.endif
// Compute TWEAK[1-3] from TWEAK0.
vpsrlq $64 - 1*VL/16, TWEAK0, V0
vpsrlq $64 - 2*VL/16, TWEAK0, V2
vpsrlq $64 - 3*VL/16, TWEAK0, V4
vpclmulqdq $0x01, GF_POLY, V0, V1
vpclmulqdq $0x01, GF_POLY, V2, V3
vpclmulqdq $0x01, GF_POLY, V4, V5
vpslldq $8, V0, V0
vpslldq $8, V2, V2
vpslldq $8, V4, V4
vpsllq $1*VL/16, TWEAK0, TWEAK1
vpsllq $2*VL/16, TWEAK0, TWEAK2
vpsllq $3*VL/16, TWEAK0, TWEAK3
.if USE_AVX10
vpternlogd $0x96, V0, V1, TWEAK1
vpternlogd $0x96, V2, V3, TWEAK2
vpternlogd $0x96, V4, V5, TWEAK3
.else
vpxor V0, TWEAK1, TWEAK1
vpxor V2, TWEAK2, TWEAK2
vpxor V4, TWEAK3, TWEAK3
vpxor V1, TWEAK1, TWEAK1
vpxor V3, TWEAK2, TWEAK2
vpxor V5, TWEAK3, TWEAK3
.endif
.endif
.endm
// Do one step in computing the next set of tweaks using the method of just
// multiplying by x repeatedly (the same method _next_tweak uses).
.macro _tweak_step_mulx i
.if \i == 0
.set PREV_TWEAK, TWEAK3
.set NEXT_TWEAK, NEXT_TWEAK0
.elseif \i == 5
.set PREV_TWEAK, NEXT_TWEAK0
.set NEXT_TWEAK, NEXT_TWEAK1
.elseif \i == 10
.set PREV_TWEAK, NEXT_TWEAK1
.set NEXT_TWEAK, NEXT_TWEAK2
.elseif \i == 15
.set PREV_TWEAK, NEXT_TWEAK2
.set NEXT_TWEAK, NEXT_TWEAK3
.endif
.if \i >= 0 && \i < 20 && \i % 5 == 0
vpshufd $0x13, PREV_TWEAK, V5
.elseif \i >= 0 && \i < 20 && \i % 5 == 1
vpaddq PREV_TWEAK, PREV_TWEAK, NEXT_TWEAK
.elseif \i >= 0 && \i < 20 && \i % 5 == 2
vpsrad $31, V5, V5
.elseif \i >= 0 && \i < 20 && \i % 5 == 3
vpand GF_POLY, V5, V5
.elseif \i >= 0 && \i < 20 && \i % 5 == 4
vpxor V5, NEXT_TWEAK, NEXT_TWEAK
.elseif \i == 1000
vmovdqa NEXT_TWEAK0, TWEAK0
vmovdqa NEXT_TWEAK1, TWEAK1
vmovdqa NEXT_TWEAK2, TWEAK2
vmovdqa NEXT_TWEAK3, TWEAK3
.endif
.endm
// Do one step in computing the next set of tweaks using the VPCLMULQDQ method
// (the same method _next_tweakvec uses for VL > 16). This means multiplying
// each tweak by x^(4*VL/16) independently. Since 4*VL/16 is a multiple of 8
// when VL > 16 (which it is here), the needed shift amounts are byte-aligned,
// which allows the use of vpsrldq and vpslldq to do 128-bit wide shifts.
.macro _tweak_step_pclmul i
.if \i == 0
vpsrldq $(128 - 4*VL/16) / 8, TWEAK0, NEXT_TWEAK0
.elseif \i == 2
vpsrldq $(128 - 4*VL/16) / 8, TWEAK1, NEXT_TWEAK1
.elseif \i == 4
vpsrldq $(128 - 4*VL/16) / 8, TWEAK2, NEXT_TWEAK2
.elseif \i == 6
vpsrldq $(128 - 4*VL/16) / 8, TWEAK3, NEXT_TWEAK3
.elseif \i == 8
vpclmulqdq $0x00, GF_POLY, NEXT_TWEAK0, NEXT_TWEAK0
.elseif \i == 10
vpclmulqdq $0x00, GF_POLY, NEXT_TWEAK1, NEXT_TWEAK1
.elseif \i == 12
vpclmulqdq $0x00, GF_POLY, NEXT_TWEAK2, NEXT_TWEAK2
.elseif \i == 14
vpclmulqdq $0x00, GF_POLY, NEXT_TWEAK3, NEXT_TWEAK3
.elseif \i == 1000
vpslldq $(4*VL/16) / 8, TWEAK0, TWEAK0
vpslldq $(4*VL/16) / 8, TWEAK1, TWEAK1
vpslldq $(4*VL/16) / 8, TWEAK2, TWEAK2
vpslldq $(4*VL/16) / 8, TWEAK3, TWEAK3
_vpxor NEXT_TWEAK0, TWEAK0, TWEAK0
_vpxor NEXT_TWEAK1, TWEAK1, TWEAK1
_vpxor NEXT_TWEAK2, TWEAK2, TWEAK2
_vpxor NEXT_TWEAK3, TWEAK3, TWEAK3
.endif
.endm
// _tweak_step does one step of the computation of the next set of tweaks from
// TWEAK[0-3]. To complete all steps, this is invoked with increasing values of
// \i that include at least 0 through 19, then 1000 which signals the last step.
//
// This is used to interleave the computation of the next set of tweaks with the
// AES en/decryptions, which increases performance in some cases.
.macro _tweak_step i
.if VL == 16
_tweak_step_mulx \i
.else
_tweak_step_pclmul \i
.endif
.endm
.macro _setup_round_keys enc
// Select either the encryption round keys or the decryption round keys.
.if \enc
.set OFFS, 0
.else
.set OFFS, 240
.endif
// Load the round key for "round 0".
_vbroadcast128 OFFS(KEY), KEY0
// Increment KEY to make it so that 7*16(KEY) is the last round key.
// For AES-128, increment by 3*16, resulting in the 10 round keys (not
// counting the zero-th round key which was just loaded into KEY0) being
// -2*16(KEY) through 7*16(KEY). For AES-192, increment by 5*16 and use
// 12 round keys -4*16(KEY) through 7*16(KEY). For AES-256, increment
// by 7*16 and use 14 round keys -6*16(KEY) through 7*16(KEY).
//
// This rebasing provides two benefits. First, it makes the offset to
// any round key be in the range [-96, 112], fitting in a signed byte.
// This shortens VEX-encoded instructions that access the later round
// keys which otherwise would need 4-byte offsets. Second, it makes it
// easy to do AES-128 and AES-192 by skipping irrelevant rounds at the
// beginning. Skipping rounds at the end doesn't work as well because
// the last round needs different instructions.
//
// An alternative approach would be to roll up all the round loops. We
// don't do that because it isn't compatible with caching the round keys
// in registers which we do when possible (see below), and also because
// it seems unwise to rely *too* heavily on the CPU's branch predictor.
lea OFFS-16(KEY, KEYLEN64, 4), KEY
// If all 32 SIMD registers are available, cache all the round keys.
.if USE_AVX10
cmp $24, KEYLEN
jl .Laes128\@
je .Laes192\@
_vbroadcast128 -6*16(KEY), KEY1
_vbroadcast128 -5*16(KEY), KEY2
.Laes192\@:
_vbroadcast128 -4*16(KEY), KEY3
_vbroadcast128 -3*16(KEY), KEY4
.Laes128\@:
_vbroadcast128 -2*16(KEY), KEY5
_vbroadcast128 -1*16(KEY), KEY6
_vbroadcast128 0*16(KEY), KEY7
_vbroadcast128 1*16(KEY), KEY8
_vbroadcast128 2*16(KEY), KEY9
_vbroadcast128 3*16(KEY), KEY10
_vbroadcast128 4*16(KEY), KEY11
_vbroadcast128 5*16(KEY), KEY12
_vbroadcast128 6*16(KEY), KEY13
_vbroadcast128 7*16(KEY), KEY14
.endif
.endm
// Do a single round of AES encryption (if \enc==1) or decryption (if \enc==0)
// on the block(s) in \data using the round key(s) in \key. The register length
// determines the number of AES blocks en/decrypted.
.macro _vaes enc, last, key, data
.if \enc
.if \last
vaesenclast \key, \data, \data
.else
vaesenc \key, \data, \data
.endif
.else
.if \last
vaesdeclast \key, \data, \data
.else
vaesdec \key, \data, \data
.endif
.endif
.endm
// Do a single round of AES en/decryption on the block(s) in \data, using the
// same key for all block(s). The round key is loaded from the appropriate
// register or memory location for round \i. May clobber V4.
.macro _vaes_1x enc, last, i, xmm_suffix, data
.if USE_AVX10
_vaes \enc, \last, KEY\i\xmm_suffix, \data
.else
.ifnb \xmm_suffix
_vaes \enc, \last, (\i-7)*16(KEY), \data
.else
_vbroadcast128 (\i-7)*16(KEY), V4
_vaes \enc, \last, V4, \data
.endif
.endif
.endm
// Do a single round of AES en/decryption on the blocks in registers V0-V3,
// using the same key for all blocks. The round key is loaded from the
// appropriate register or memory location for round \i. In addition, does two
// steps of the computation of the next set of tweaks. May clobber V4.
.macro _vaes_4x enc, last, i
.if USE_AVX10
_tweak_step (2*(\i-5))
_vaes \enc, \last, KEY\i, V0
_vaes \enc, \last, KEY\i, V1
_tweak_step (2*(\i-5) + 1)
_vaes \enc, \last, KEY\i, V2
_vaes \enc, \last, KEY\i, V3
.else
_vbroadcast128 (\i-7)*16(KEY), V4
_tweak_step (2*(\i-5))
_vaes \enc, \last, V4, V0
_vaes \enc, \last, V4, V1
_tweak_step (2*(\i-5) + 1)
_vaes \enc, \last, V4, V2
_vaes \enc, \last, V4, V3
.endif
.endm
// Do tweaked AES en/decryption (i.e., XOR with \tweak, then AES en/decrypt,
// then XOR with \tweak again) of the block(s) in \data. To process a single
// block, use xmm registers and set \xmm_suffix=_XMM. To process a vector of
// length VL, use V* registers and leave \xmm_suffix empty. May clobber V4.
.macro _aes_crypt enc, xmm_suffix, tweak, data
_xor3 KEY0\xmm_suffix, \tweak, \data
cmp $24, KEYLEN
jl .Laes128\@
je .Laes192\@
_vaes_1x \enc, 0, 1, \xmm_suffix, \data
_vaes_1x \enc, 0, 2, \xmm_suffix, \data
.Laes192\@:
_vaes_1x \enc, 0, 3, \xmm_suffix, \data
_vaes_1x \enc, 0, 4, \xmm_suffix, \data
.Laes128\@:
_vaes_1x \enc, 0, 5, \xmm_suffix, \data
_vaes_1x \enc, 0, 6, \xmm_suffix, \data
_vaes_1x \enc, 0, 7, \xmm_suffix, \data
_vaes_1x \enc, 0, 8, \xmm_suffix, \data
_vaes_1x \enc, 0, 9, \xmm_suffix, \data
_vaes_1x \enc, 0, 10, \xmm_suffix, \data
_vaes_1x \enc, 0, 11, \xmm_suffix, \data
_vaes_1x \enc, 0, 12, \xmm_suffix, \data
_vaes_1x \enc, 0, 13, \xmm_suffix, \data
_vaes_1x \enc, 1, 14, \xmm_suffix, \data
_vpxor \tweak, \data, \data
.endm
.macro _aes_xts_crypt enc
_define_aliases
.if !\enc
// When decrypting a message whose length isn't a multiple of the AES
// block length, exclude the last full block from the main loop by
// subtracting 16 from LEN. This is needed because ciphertext stealing
// decryption uses the last two tweaks in reverse order. We'll handle
// the last full block and the partial block specially at the end.
lea -16(LEN), %eax
test $15, LEN8
cmovnz %eax, LEN
.endif
// Load the AES key length: 16 (AES-128), 24 (AES-192), or 32 (AES-256).
movl 480(KEY), KEYLEN
// Setup the pointer to the round keys and cache as many as possible.
_setup_round_keys \enc
// Compute the first set of tweaks TWEAK[0-3].
_compute_first_set_of_tweaks
sub $4*VL, LEN
jl .Lhandle_remainder\@
.Lmain_loop\@:
// This is the main loop, en/decrypting 4*VL bytes per iteration.
// XOR each source block with its tweak and the zero-th round key.
.if USE_AVX10
vmovdqu8 0*VL(SRC), V0
vmovdqu8 1*VL(SRC), V1
vmovdqu8 2*VL(SRC), V2
vmovdqu8 3*VL(SRC), V3
vpternlogd $0x96, TWEAK0, KEY0, V0
vpternlogd $0x96, TWEAK1, KEY0, V1
vpternlogd $0x96, TWEAK2, KEY0, V2
vpternlogd $0x96, TWEAK3, KEY0, V3
.else
vpxor 0*VL(SRC), KEY0, V0
vpxor 1*VL(SRC), KEY0, V1
vpxor 2*VL(SRC), KEY0, V2
vpxor 3*VL(SRC), KEY0, V3
vpxor TWEAK0, V0, V0
vpxor TWEAK1, V1, V1
vpxor TWEAK2, V2, V2
vpxor TWEAK3, V3, V3
.endif
cmp $24, KEYLEN
jl .Laes128\@
je .Laes192\@
// Do all the AES rounds on the data blocks, interleaved with
// the computation of the next set of tweaks.
_vaes_4x \enc, 0, 1
_vaes_4x \enc, 0, 2
.Laes192\@:
_vaes_4x \enc, 0, 3
_vaes_4x \enc, 0, 4
.Laes128\@:
_vaes_4x \enc, 0, 5
_vaes_4x \enc, 0, 6
_vaes_4x \enc, 0, 7
_vaes_4x \enc, 0, 8
_vaes_4x \enc, 0, 9
_vaes_4x \enc, 0, 10
_vaes_4x \enc, 0, 11
_vaes_4x \enc, 0, 12
_vaes_4x \enc, 0, 13
_vaes_4x \enc, 1, 14
// XOR in the tweaks again.
_vpxor TWEAK0, V0, V0
_vpxor TWEAK1, V1, V1
_vpxor TWEAK2, V2, V2
_vpxor TWEAK3, V3, V3
// Store the destination blocks.
_vmovdqu V0, 0*VL(DST)
_vmovdqu V1, 1*VL(DST)
_vmovdqu V2, 2*VL(DST)
_vmovdqu V3, 3*VL(DST)
// Finish computing the next set of tweaks.
_tweak_step 1000
add $4*VL, SRC
add $4*VL, DST
sub $4*VL, LEN
jge .Lmain_loop\@
// Check for the uncommon case where the data length isn't a multiple of
// 4*VL. Handle it out-of-line in order to optimize for the common
// case. In the common case, just fall through to the ret.
test $4*VL-1, LEN8
jnz .Lhandle_remainder\@
.Ldone\@:
// Store the next tweak back to *TWEAK to support continuation calls.
vmovdqu TWEAK0_XMM, (TWEAK)
.if VL > 16
vzeroupper
.endif
RET
.Lhandle_remainder\@:
// En/decrypt any remaining full blocks, one vector at a time.
.if VL > 16
add $3*VL, LEN // Undo extra sub of 4*VL, then sub VL.
jl .Lvec_at_a_time_done\@
.Lvec_at_a_time\@:
_vmovdqu (SRC), V0
_aes_crypt \enc, , TWEAK0, V0
_vmovdqu V0, (DST)
_next_tweakvec TWEAK0, V0, V1, TWEAK0
add $VL, SRC
add $VL, DST
sub $VL, LEN
jge .Lvec_at_a_time\@
.Lvec_at_a_time_done\@:
add $VL-16, LEN // Undo extra sub of VL, then sub 16.
.else
add $4*VL-16, LEN // Undo extra sub of 4*VL, then sub 16.
.endif
// En/decrypt any remaining full blocks, one at a time.
jl .Lblock_at_a_time_done\@
.Lblock_at_a_time\@:
vmovdqu (SRC), %xmm0
_aes_crypt \enc, _XMM, TWEAK0_XMM, %xmm0
vmovdqu %xmm0, (DST)
_next_tweak TWEAK0_XMM, %xmm0, TWEAK0_XMM
add $16, SRC
add $16, DST
sub $16, LEN
jge .Lblock_at_a_time\@
.Lblock_at_a_time_done\@:
add $16, LEN // Undo the extra sub of 16.
// Now 0 <= LEN <= 15. If LEN is zero, we're done.
jz .Ldone\@
// Otherwise 1 <= LEN <= 15, but the real remaining length is 16 + LEN.
// Do ciphertext stealing to process the last 16 + LEN bytes.
.if \enc
// If encrypting, the main loop already encrypted the last full block to
// create the CTS intermediate ciphertext. Prepare for the rest of CTS
// by rewinding the pointers and loading the intermediate ciphertext.
sub $16, SRC
sub $16, DST
vmovdqu (DST), %xmm0
.else
// If decrypting, the main loop didn't decrypt the last full block
// because CTS decryption uses the last two tweaks in reverse order.
// Do it now by advancing the tweak and decrypting the last full block.
_next_tweak TWEAK0_XMM, %xmm0, TWEAK1_XMM
vmovdqu (SRC), %xmm0
_aes_crypt \enc, _XMM, TWEAK1_XMM, %xmm0
.endif
.if USE_AVX10
// Create a mask that has the first LEN bits set.
mov $-1, %r9d
bzhi LEN, %r9d, %r9d
kmovd %r9d, %k1
// Swap the first LEN bytes of the en/decryption of the last full block
// with the partial block. Note that to support in-place en/decryption,
// the load from the src partial block must happen before the store to
// the dst partial block.
vmovdqa %xmm0, %xmm1
vmovdqu8 16(SRC), %xmm0{%k1}
vmovdqu8 %xmm1, 16(DST){%k1}
.else
lea .Lcts_permute_table(%rip), %r9
// Load the src partial block, left-aligned. Note that to support
// in-place en/decryption, this must happen before the store to the dst
// partial block.
vmovdqu (SRC, LEN64, 1), %xmm1
// Shift the first LEN bytes of the en/decryption of the last full block
// to the end of a register, then store it to DST+LEN. This stores the
// dst partial block. It also writes to the second part of the dst last
// full block, but that part is overwritten later.
vpshufb (%r9, LEN64, 1), %xmm0, %xmm2
vmovdqu %xmm2, (DST, LEN64, 1)
// Make xmm3 contain [16-LEN,16-LEN+1,...,14,15,0x80,0x80,...].
sub LEN64, %r9
vmovdqu 32(%r9), %xmm3
// Shift the src partial block to the beginning of its register.
vpshufb %xmm3, %xmm1, %xmm1
// Do a blend to generate the src partial block followed by the second
// part of the en/decryption of the last full block.
vpblendvb %xmm3, %xmm0, %xmm1, %xmm0
.endif
// En/decrypt again and store the last full block.
_aes_crypt \enc, _XMM, TWEAK0_XMM, %xmm0
vmovdqu %xmm0, (DST)
jmp .Ldone\@
.endm
// void aes_xts_encrypt_iv(const struct crypto_aes_ctx *tweak_key,
// u8 iv[AES_BLOCK_SIZE]);
SYM_TYPED_FUNC_START(aes_xts_encrypt_iv)
vmovdqu (%rsi), %xmm0
vpxor (%rdi), %xmm0, %xmm0
movl 480(%rdi), %eax // AES key length
lea -16(%rdi, %rax, 4), %rdi
cmp $24, %eax
jl .Lencrypt_iv_aes128
je .Lencrypt_iv_aes192
vaesenc -6*16(%rdi), %xmm0, %xmm0
vaesenc -5*16(%rdi), %xmm0, %xmm0
.Lencrypt_iv_aes192:
vaesenc -4*16(%rdi), %xmm0, %xmm0
vaesenc -3*16(%rdi), %xmm0, %xmm0
.Lencrypt_iv_aes128:
vaesenc -2*16(%rdi), %xmm0, %xmm0
vaesenc -1*16(%rdi), %xmm0, %xmm0
vaesenc 0*16(%rdi), %xmm0, %xmm0
vaesenc 1*16(%rdi), %xmm0, %xmm0
vaesenc 2*16(%rdi), %xmm0, %xmm0
vaesenc 3*16(%rdi), %xmm0, %xmm0
vaesenc 4*16(%rdi), %xmm0, %xmm0
vaesenc 5*16(%rdi), %xmm0, %xmm0
vaesenc 6*16(%rdi), %xmm0, %xmm0
vaesenclast 7*16(%rdi), %xmm0, %xmm0
vmovdqu %xmm0, (%rsi)
RET
SYM_FUNC_END(aes_xts_encrypt_iv)
// Below are the actual AES-XTS encryption and decryption functions,
// instantiated from the above macro. They all have the following prototype:
//
// void (*xts_asm_func)(const struct crypto_aes_ctx *key,
// const u8 *src, u8 *dst, unsigned int len,
// u8 tweak[AES_BLOCK_SIZE]);
//
// |key| is the data key. |tweak| contains the next tweak; the encryption of
// the original IV with the tweak key was already done. This function supports
// incremental computation, but |len| must always be >= 16 (AES_BLOCK_SIZE), and
// |len| must be a multiple of 16 except on the last call. If |len| is a
// multiple of 16, then this function updates |tweak| to contain the next tweak.
.set VL, 16
.set USE_AVX10, 0
SYM_TYPED_FUNC_START(aes_xts_encrypt_aesni_avx)
_aes_xts_crypt 1
SYM_FUNC_END(aes_xts_encrypt_aesni_avx)
SYM_TYPED_FUNC_START(aes_xts_decrypt_aesni_avx)
_aes_xts_crypt 0
SYM_FUNC_END(aes_xts_decrypt_aesni_avx)
#if defined(CONFIG_AS_VAES) && defined(CONFIG_AS_VPCLMULQDQ)
.set VL, 32
.set USE_AVX10, 0
SYM_TYPED_FUNC_START(aes_xts_encrypt_vaes_avx2)
_aes_xts_crypt 1
SYM_FUNC_END(aes_xts_encrypt_vaes_avx2)
SYM_TYPED_FUNC_START(aes_xts_decrypt_vaes_avx2)
_aes_xts_crypt 0
SYM_FUNC_END(aes_xts_decrypt_vaes_avx2)
.set VL, 32
.set USE_AVX10, 1
SYM_TYPED_FUNC_START(aes_xts_encrypt_vaes_avx10_256)
_aes_xts_crypt 1
SYM_FUNC_END(aes_xts_encrypt_vaes_avx10_256)
SYM_TYPED_FUNC_START(aes_xts_decrypt_vaes_avx10_256)
_aes_xts_crypt 0
SYM_FUNC_END(aes_xts_decrypt_vaes_avx10_256)
.set VL, 64
.set USE_AVX10, 1
SYM_TYPED_FUNC_START(aes_xts_encrypt_vaes_avx10_512)
_aes_xts_crypt 1
SYM_FUNC_END(aes_xts_encrypt_vaes_avx10_512)
SYM_TYPED_FUNC_START(aes_xts_decrypt_vaes_avx10_512)
_aes_xts_crypt 0
SYM_FUNC_END(aes_xts_decrypt_vaes_avx10_512)
#endif /* CONFIG_AS_VAES && CONFIG_AS_VPCLMULQDQ */