linux/drivers/md/raid5.c
Christoph Hellwig 14ccb66b3f block: remove the bi_phys_segments field in struct bio
We only need the number of segments in the blk-mq submission path.
Remove the field from struct bio, and return it from a variant of
blk_queue_split instead of that it can passed as an argument to
those functions that need the value.

This also means we stop recounting segments except for cloning
and partial segments.

To keep the number of arguments in this how path down remove
pointless struct request_queue arguments from any of the functions
that had it and grew a nr_segs argument.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2019-06-20 10:29:22 -06:00

8525 lines
239 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* raid5.c : Multiple Devices driver for Linux
* Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
* Copyright (C) 1999, 2000 Ingo Molnar
* Copyright (C) 2002, 2003 H. Peter Anvin
*
* RAID-4/5/6 management functions.
* Thanks to Penguin Computing for making the RAID-6 development possible
* by donating a test server!
*/
/*
* BITMAP UNPLUGGING:
*
* The sequencing for updating the bitmap reliably is a little
* subtle (and I got it wrong the first time) so it deserves some
* explanation.
*
* We group bitmap updates into batches. Each batch has a number.
* We may write out several batches at once, but that isn't very important.
* conf->seq_write is the number of the last batch successfully written.
* conf->seq_flush is the number of the last batch that was closed to
* new additions.
* When we discover that we will need to write to any block in a stripe
* (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
* the number of the batch it will be in. This is seq_flush+1.
* When we are ready to do a write, if that batch hasn't been written yet,
* we plug the array and queue the stripe for later.
* When an unplug happens, we increment bm_flush, thus closing the current
* batch.
* When we notice that bm_flush > bm_write, we write out all pending updates
* to the bitmap, and advance bm_write to where bm_flush was.
* This may occasionally write a bit out twice, but is sure never to
* miss any bits.
*/
#include <linux/blkdev.h>
#include <linux/kthread.h>
#include <linux/raid/pq.h>
#include <linux/async_tx.h>
#include <linux/module.h>
#include <linux/async.h>
#include <linux/seq_file.h>
#include <linux/cpu.h>
#include <linux/slab.h>
#include <linux/ratelimit.h>
#include <linux/nodemask.h>
#include <trace/events/block.h>
#include <linux/list_sort.h>
#include "md.h"
#include "raid5.h"
#include "raid0.h"
#include "md-bitmap.h"
#include "raid5-log.h"
#define UNSUPPORTED_MDDEV_FLAGS (1L << MD_FAILFAST_SUPPORTED)
#define cpu_to_group(cpu) cpu_to_node(cpu)
#define ANY_GROUP NUMA_NO_NODE
static bool devices_handle_discard_safely = false;
module_param(devices_handle_discard_safely, bool, 0644);
MODULE_PARM_DESC(devices_handle_discard_safely,
"Set to Y if all devices in each array reliably return zeroes on reads from discarded regions");
static struct workqueue_struct *raid5_wq;
static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
{
int hash = (sect >> STRIPE_SHIFT) & HASH_MASK;
return &conf->stripe_hashtbl[hash];
}
static inline int stripe_hash_locks_hash(sector_t sect)
{
return (sect >> STRIPE_SHIFT) & STRIPE_HASH_LOCKS_MASK;
}
static inline void lock_device_hash_lock(struct r5conf *conf, int hash)
{
spin_lock_irq(conf->hash_locks + hash);
spin_lock(&conf->device_lock);
}
static inline void unlock_device_hash_lock(struct r5conf *conf, int hash)
{
spin_unlock(&conf->device_lock);
spin_unlock_irq(conf->hash_locks + hash);
}
static inline void lock_all_device_hash_locks_irq(struct r5conf *conf)
{
int i;
spin_lock_irq(conf->hash_locks);
for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
spin_lock_nest_lock(conf->hash_locks + i, conf->hash_locks);
spin_lock(&conf->device_lock);
}
static inline void unlock_all_device_hash_locks_irq(struct r5conf *conf)
{
int i;
spin_unlock(&conf->device_lock);
for (i = NR_STRIPE_HASH_LOCKS - 1; i; i--)
spin_unlock(conf->hash_locks + i);
spin_unlock_irq(conf->hash_locks);
}
/* Find first data disk in a raid6 stripe */
static inline int raid6_d0(struct stripe_head *sh)
{
if (sh->ddf_layout)
/* ddf always start from first device */
return 0;
/* md starts just after Q block */
if (sh->qd_idx == sh->disks - 1)
return 0;
else
return sh->qd_idx + 1;
}
static inline int raid6_next_disk(int disk, int raid_disks)
{
disk++;
return (disk < raid_disks) ? disk : 0;
}
/* When walking through the disks in a raid5, starting at raid6_d0,
* We need to map each disk to a 'slot', where the data disks are slot
* 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
* is raid_disks-1. This help does that mapping.
*/
static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
int *count, int syndrome_disks)
{
int slot = *count;
if (sh->ddf_layout)
(*count)++;
if (idx == sh->pd_idx)
return syndrome_disks;
if (idx == sh->qd_idx)
return syndrome_disks + 1;
if (!sh->ddf_layout)
(*count)++;
return slot;
}
static void print_raid5_conf (struct r5conf *conf);
static int stripe_operations_active(struct stripe_head *sh)
{
return sh->check_state || sh->reconstruct_state ||
test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
test_bit(STRIPE_COMPUTE_RUN, &sh->state);
}
static bool stripe_is_lowprio(struct stripe_head *sh)
{
return (test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state) ||
test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state)) &&
!test_bit(STRIPE_R5C_CACHING, &sh->state);
}
static void raid5_wakeup_stripe_thread(struct stripe_head *sh)
{
struct r5conf *conf = sh->raid_conf;
struct r5worker_group *group;
int thread_cnt;
int i, cpu = sh->cpu;
if (!cpu_online(cpu)) {
cpu = cpumask_any(cpu_online_mask);
sh->cpu = cpu;
}
if (list_empty(&sh->lru)) {
struct r5worker_group *group;
group = conf->worker_groups + cpu_to_group(cpu);
if (stripe_is_lowprio(sh))
list_add_tail(&sh->lru, &group->loprio_list);
else
list_add_tail(&sh->lru, &group->handle_list);
group->stripes_cnt++;
sh->group = group;
}
if (conf->worker_cnt_per_group == 0) {
md_wakeup_thread(conf->mddev->thread);
return;
}
group = conf->worker_groups + cpu_to_group(sh->cpu);
group->workers[0].working = true;
/* at least one worker should run to avoid race */
queue_work_on(sh->cpu, raid5_wq, &group->workers[0].work);
thread_cnt = group->stripes_cnt / MAX_STRIPE_BATCH - 1;
/* wakeup more workers */
for (i = 1; i < conf->worker_cnt_per_group && thread_cnt > 0; i++) {
if (group->workers[i].working == false) {
group->workers[i].working = true;
queue_work_on(sh->cpu, raid5_wq,
&group->workers[i].work);
thread_cnt--;
}
}
}
static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh,
struct list_head *temp_inactive_list)
{
int i;
int injournal = 0; /* number of date pages with R5_InJournal */
BUG_ON(!list_empty(&sh->lru));
BUG_ON(atomic_read(&conf->active_stripes)==0);
if (r5c_is_writeback(conf->log))
for (i = sh->disks; i--; )
if (test_bit(R5_InJournal, &sh->dev[i].flags))
injournal++;
/*
* In the following cases, the stripe cannot be released to cached
* lists. Therefore, we make the stripe write out and set
* STRIPE_HANDLE:
* 1. when quiesce in r5c write back;
* 2. when resync is requested fot the stripe.
*/
if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) ||
(conf->quiesce && r5c_is_writeback(conf->log) &&
!test_bit(STRIPE_HANDLE, &sh->state) && injournal != 0)) {
if (test_bit(STRIPE_R5C_CACHING, &sh->state))
r5c_make_stripe_write_out(sh);
set_bit(STRIPE_HANDLE, &sh->state);
}
if (test_bit(STRIPE_HANDLE, &sh->state)) {
if (test_bit(STRIPE_DELAYED, &sh->state) &&
!test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
list_add_tail(&sh->lru, &conf->delayed_list);
else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
sh->bm_seq - conf->seq_write > 0)
list_add_tail(&sh->lru, &conf->bitmap_list);
else {
clear_bit(STRIPE_DELAYED, &sh->state);
clear_bit(STRIPE_BIT_DELAY, &sh->state);
if (conf->worker_cnt_per_group == 0) {
if (stripe_is_lowprio(sh))
list_add_tail(&sh->lru,
&conf->loprio_list);
else
list_add_tail(&sh->lru,
&conf->handle_list);
} else {
raid5_wakeup_stripe_thread(sh);
return;
}
}
md_wakeup_thread(conf->mddev->thread);
} else {
BUG_ON(stripe_operations_active(sh));
if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
if (atomic_dec_return(&conf->preread_active_stripes)
< IO_THRESHOLD)
md_wakeup_thread(conf->mddev->thread);
atomic_dec(&conf->active_stripes);
if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
if (!r5c_is_writeback(conf->log))
list_add_tail(&sh->lru, temp_inactive_list);
else {
WARN_ON(test_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags));
if (injournal == 0)
list_add_tail(&sh->lru, temp_inactive_list);
else if (injournal == conf->raid_disks - conf->max_degraded) {
/* full stripe */
if (!test_and_set_bit(STRIPE_R5C_FULL_STRIPE, &sh->state))
atomic_inc(&conf->r5c_cached_full_stripes);
if (test_and_clear_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state))
atomic_dec(&conf->r5c_cached_partial_stripes);
list_add_tail(&sh->lru, &conf->r5c_full_stripe_list);
r5c_check_cached_full_stripe(conf);
} else
/*
* STRIPE_R5C_PARTIAL_STRIPE is set in
* r5c_try_caching_write(). No need to
* set it again.
*/
list_add_tail(&sh->lru, &conf->r5c_partial_stripe_list);
}
}
}
}
static void __release_stripe(struct r5conf *conf, struct stripe_head *sh,
struct list_head *temp_inactive_list)
{
if (atomic_dec_and_test(&sh->count))
do_release_stripe(conf, sh, temp_inactive_list);
}
/*
* @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list
*
* Be careful: Only one task can add/delete stripes from temp_inactive_list at
* given time. Adding stripes only takes device lock, while deleting stripes
* only takes hash lock.
*/
static void release_inactive_stripe_list(struct r5conf *conf,
struct list_head *temp_inactive_list,
int hash)
{
int size;
bool do_wakeup = false;
unsigned long flags;
if (hash == NR_STRIPE_HASH_LOCKS) {
size = NR_STRIPE_HASH_LOCKS;
hash = NR_STRIPE_HASH_LOCKS - 1;
} else
size = 1;
while (size) {
struct list_head *list = &temp_inactive_list[size - 1];
/*
* We don't hold any lock here yet, raid5_get_active_stripe() might
* remove stripes from the list
*/
if (!list_empty_careful(list)) {
spin_lock_irqsave(conf->hash_locks + hash, flags);
if (list_empty(conf->inactive_list + hash) &&
!list_empty(list))
atomic_dec(&conf->empty_inactive_list_nr);
list_splice_tail_init(list, conf->inactive_list + hash);
do_wakeup = true;
spin_unlock_irqrestore(conf->hash_locks + hash, flags);
}
size--;
hash--;
}
if (do_wakeup) {
wake_up(&conf->wait_for_stripe);
if (atomic_read(&conf->active_stripes) == 0)
wake_up(&conf->wait_for_quiescent);
if (conf->retry_read_aligned)
md_wakeup_thread(conf->mddev->thread);
}
}
/* should hold conf->device_lock already */
static int release_stripe_list(struct r5conf *conf,
struct list_head *temp_inactive_list)
{
struct stripe_head *sh, *t;
int count = 0;
struct llist_node *head;
head = llist_del_all(&conf->released_stripes);
head = llist_reverse_order(head);
llist_for_each_entry_safe(sh, t, head, release_list) {
int hash;
/* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */
smp_mb();
clear_bit(STRIPE_ON_RELEASE_LIST, &sh->state);
/*
* Don't worry the bit is set here, because if the bit is set
* again, the count is always > 1. This is true for
* STRIPE_ON_UNPLUG_LIST bit too.
*/
hash = sh->hash_lock_index;
__release_stripe(conf, sh, &temp_inactive_list[hash]);
count++;
}
return count;
}
void raid5_release_stripe(struct stripe_head *sh)
{
struct r5conf *conf = sh->raid_conf;
unsigned long flags;
struct list_head list;
int hash;
bool wakeup;
/* Avoid release_list until the last reference.
*/
if (atomic_add_unless(&sh->count, -1, 1))
return;
if (unlikely(!conf->mddev->thread) ||
test_and_set_bit(STRIPE_ON_RELEASE_LIST, &sh->state))
goto slow_path;
wakeup = llist_add(&sh->release_list, &conf->released_stripes);
if (wakeup)
md_wakeup_thread(conf->mddev->thread);
return;
slow_path:
/* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */
if (atomic_dec_and_lock_irqsave(&sh->count, &conf->device_lock, flags)) {
INIT_LIST_HEAD(&list);
hash = sh->hash_lock_index;
do_release_stripe(conf, sh, &list);
spin_unlock_irqrestore(&conf->device_lock, flags);
release_inactive_stripe_list(conf, &list, hash);
}
}
static inline void remove_hash(struct stripe_head *sh)
{
pr_debug("remove_hash(), stripe %llu\n",
(unsigned long long)sh->sector);
hlist_del_init(&sh->hash);
}
static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
{
struct hlist_head *hp = stripe_hash(conf, sh->sector);
pr_debug("insert_hash(), stripe %llu\n",
(unsigned long long)sh->sector);
hlist_add_head(&sh->hash, hp);
}
/* find an idle stripe, make sure it is unhashed, and return it. */
static struct stripe_head *get_free_stripe(struct r5conf *conf, int hash)
{
struct stripe_head *sh = NULL;
struct list_head *first;
if (list_empty(conf->inactive_list + hash))
goto out;
first = (conf->inactive_list + hash)->next;
sh = list_entry(first, struct stripe_head, lru);
list_del_init(first);
remove_hash(sh);
atomic_inc(&conf->active_stripes);
BUG_ON(hash != sh->hash_lock_index);
if (list_empty(conf->inactive_list + hash))
atomic_inc(&conf->empty_inactive_list_nr);
out:
return sh;
}
static void shrink_buffers(struct stripe_head *sh)
{
struct page *p;
int i;
int num = sh->raid_conf->pool_size;
for (i = 0; i < num ; i++) {
WARN_ON(sh->dev[i].page != sh->dev[i].orig_page);
p = sh->dev[i].page;
if (!p)
continue;
sh->dev[i].page = NULL;
put_page(p);
}
}
static int grow_buffers(struct stripe_head *sh, gfp_t gfp)
{
int i;
int num = sh->raid_conf->pool_size;
for (i = 0; i < num; i++) {
struct page *page;
if (!(page = alloc_page(gfp))) {
return 1;
}
sh->dev[i].page = page;
sh->dev[i].orig_page = page;
}
return 0;
}
static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
struct stripe_head *sh);
static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
{
struct r5conf *conf = sh->raid_conf;
int i, seq;
BUG_ON(atomic_read(&sh->count) != 0);
BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
BUG_ON(stripe_operations_active(sh));
BUG_ON(sh->batch_head);
pr_debug("init_stripe called, stripe %llu\n",
(unsigned long long)sector);
retry:
seq = read_seqcount_begin(&conf->gen_lock);
sh->generation = conf->generation - previous;
sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
sh->sector = sector;
stripe_set_idx(sector, conf, previous, sh);
sh->state = 0;
for (i = sh->disks; i--; ) {
struct r5dev *dev = &sh->dev[i];
if (dev->toread || dev->read || dev->towrite || dev->written ||
test_bit(R5_LOCKED, &dev->flags)) {
pr_err("sector=%llx i=%d %p %p %p %p %d\n",
(unsigned long long)sh->sector, i, dev->toread,
dev->read, dev->towrite, dev->written,
test_bit(R5_LOCKED, &dev->flags));
WARN_ON(1);
}
dev->flags = 0;
dev->sector = raid5_compute_blocknr(sh, i, previous);
}
if (read_seqcount_retry(&conf->gen_lock, seq))
goto retry;
sh->overwrite_disks = 0;
insert_hash(conf, sh);
sh->cpu = smp_processor_id();
set_bit(STRIPE_BATCH_READY, &sh->state);
}
static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
short generation)
{
struct stripe_head *sh;
pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
hlist_for_each_entry(sh, stripe_hash(conf, sector), hash)
if (sh->sector == sector && sh->generation == generation)
return sh;
pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
return NULL;
}
/*
* Need to check if array has failed when deciding whether to:
* - start an array
* - remove non-faulty devices
* - add a spare
* - allow a reshape
* This determination is simple when no reshape is happening.
* However if there is a reshape, we need to carefully check
* both the before and after sections.
* This is because some failed devices may only affect one
* of the two sections, and some non-in_sync devices may
* be insync in the section most affected by failed devices.
*/
int raid5_calc_degraded(struct r5conf *conf)
{
int degraded, degraded2;
int i;
rcu_read_lock();
degraded = 0;
for (i = 0; i < conf->previous_raid_disks; i++) {
struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
if (rdev && test_bit(Faulty, &rdev->flags))
rdev = rcu_dereference(conf->disks[i].replacement);
if (!rdev || test_bit(Faulty, &rdev->flags))
degraded++;
else if (test_bit(In_sync, &rdev->flags))
;
else
/* not in-sync or faulty.
* If the reshape increases the number of devices,
* this is being recovered by the reshape, so
* this 'previous' section is not in_sync.
* If the number of devices is being reduced however,
* the device can only be part of the array if
* we are reverting a reshape, so this section will
* be in-sync.
*/
if (conf->raid_disks >= conf->previous_raid_disks)
degraded++;
}
rcu_read_unlock();
if (conf->raid_disks == conf->previous_raid_disks)
return degraded;
rcu_read_lock();
degraded2 = 0;
for (i = 0; i < conf->raid_disks; i++) {
struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
if (rdev && test_bit(Faulty, &rdev->flags))
rdev = rcu_dereference(conf->disks[i].replacement);
if (!rdev || test_bit(Faulty, &rdev->flags))
degraded2++;
else if (test_bit(In_sync, &rdev->flags))
;
else
/* not in-sync or faulty.
* If reshape increases the number of devices, this
* section has already been recovered, else it
* almost certainly hasn't.
*/
if (conf->raid_disks <= conf->previous_raid_disks)
degraded2++;
}
rcu_read_unlock();
if (degraded2 > degraded)
return degraded2;
return degraded;
}
static int has_failed(struct r5conf *conf)
{
int degraded;
if (conf->mddev->reshape_position == MaxSector)
return conf->mddev->degraded > conf->max_degraded;
degraded = raid5_calc_degraded(conf);
if (degraded > conf->max_degraded)
return 1;
return 0;
}
struct stripe_head *
raid5_get_active_stripe(struct r5conf *conf, sector_t sector,
int previous, int noblock, int noquiesce)
{
struct stripe_head *sh;
int hash = stripe_hash_locks_hash(sector);
int inc_empty_inactive_list_flag;
pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
spin_lock_irq(conf->hash_locks + hash);
do {
wait_event_lock_irq(conf->wait_for_quiescent,
conf->quiesce == 0 || noquiesce,
*(conf->hash_locks + hash));
sh = __find_stripe(conf, sector, conf->generation - previous);
if (!sh) {
if (!test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state)) {
sh = get_free_stripe(conf, hash);
if (!sh && !test_bit(R5_DID_ALLOC,
&conf->cache_state))
set_bit(R5_ALLOC_MORE,
&conf->cache_state);
}
if (noblock && sh == NULL)
break;
r5c_check_stripe_cache_usage(conf);
if (!sh) {
set_bit(R5_INACTIVE_BLOCKED,
&conf->cache_state);
r5l_wake_reclaim(conf->log, 0);
wait_event_lock_irq(
conf->wait_for_stripe,
!list_empty(conf->inactive_list + hash) &&
(atomic_read(&conf->active_stripes)
< (conf->max_nr_stripes * 3 / 4)
|| !test_bit(R5_INACTIVE_BLOCKED,
&conf->cache_state)),
*(conf->hash_locks + hash));
clear_bit(R5_INACTIVE_BLOCKED,
&conf->cache_state);
} else {
init_stripe(sh, sector, previous);
atomic_inc(&sh->count);
}
} else if (!atomic_inc_not_zero(&sh->count)) {
spin_lock(&conf->device_lock);
if (!atomic_read(&sh->count)) {
if (!test_bit(STRIPE_HANDLE, &sh->state))
atomic_inc(&conf->active_stripes);
BUG_ON(list_empty(&sh->lru) &&
!test_bit(STRIPE_EXPANDING, &sh->state));
inc_empty_inactive_list_flag = 0;
if (!list_empty(conf->inactive_list + hash))
inc_empty_inactive_list_flag = 1;
list_del_init(&sh->lru);
if (list_empty(conf->inactive_list + hash) && inc_empty_inactive_list_flag)
atomic_inc(&conf->empty_inactive_list_nr);
if (sh->group) {
sh->group->stripes_cnt--;
sh->group = NULL;
}
}
atomic_inc(&sh->count);
spin_unlock(&conf->device_lock);
}
} while (sh == NULL);
spin_unlock_irq(conf->hash_locks + hash);
return sh;
}
static bool is_full_stripe_write(struct stripe_head *sh)
{
BUG_ON(sh->overwrite_disks > (sh->disks - sh->raid_conf->max_degraded));
return sh->overwrite_disks == (sh->disks - sh->raid_conf->max_degraded);
}
static void lock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
__acquires(&sh1->stripe_lock)
__acquires(&sh2->stripe_lock)
{
if (sh1 > sh2) {
spin_lock_irq(&sh2->stripe_lock);
spin_lock_nested(&sh1->stripe_lock, 1);
} else {
spin_lock_irq(&sh1->stripe_lock);
spin_lock_nested(&sh2->stripe_lock, 1);
}
}
static void unlock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
__releases(&sh1->stripe_lock)
__releases(&sh2->stripe_lock)
{
spin_unlock(&sh1->stripe_lock);
spin_unlock_irq(&sh2->stripe_lock);
}
/* Only freshly new full stripe normal write stripe can be added to a batch list */
static bool stripe_can_batch(struct stripe_head *sh)
{
struct r5conf *conf = sh->raid_conf;
if (raid5_has_log(conf) || raid5_has_ppl(conf))
return false;
return test_bit(STRIPE_BATCH_READY, &sh->state) &&
!test_bit(STRIPE_BITMAP_PENDING, &sh->state) &&
is_full_stripe_write(sh);
}
/* we only do back search */
static void stripe_add_to_batch_list(struct r5conf *conf, struct stripe_head *sh)
{
struct stripe_head *head;
sector_t head_sector, tmp_sec;
int hash;
int dd_idx;
int inc_empty_inactive_list_flag;
/* Don't cross chunks, so stripe pd_idx/qd_idx is the same */
tmp_sec = sh->sector;
if (!sector_div(tmp_sec, conf->chunk_sectors))
return;
head_sector = sh->sector - STRIPE_SECTORS;
hash = stripe_hash_locks_hash(head_sector);
spin_lock_irq(conf->hash_locks + hash);
head = __find_stripe(conf, head_sector, conf->generation);
if (head && !atomic_inc_not_zero(&head->count)) {
spin_lock(&conf->device_lock);
if (!atomic_read(&head->count)) {
if (!test_bit(STRIPE_HANDLE, &head->state))
atomic_inc(&conf->active_stripes);
BUG_ON(list_empty(&head->lru) &&
!test_bit(STRIPE_EXPANDING, &head->state));
inc_empty_inactive_list_flag = 0;
if (!list_empty(conf->inactive_list + hash))
inc_empty_inactive_list_flag = 1;
list_del_init(&head->lru);
if (list_empty(conf->inactive_list + hash) && inc_empty_inactive_list_flag)
atomic_inc(&conf->empty_inactive_list_nr);
if (head->group) {
head->group->stripes_cnt--;
head->group = NULL;
}
}
atomic_inc(&head->count);
spin_unlock(&conf->device_lock);
}
spin_unlock_irq(conf->hash_locks + hash);
if (!head)
return;
if (!stripe_can_batch(head))
goto out;
lock_two_stripes(head, sh);
/* clear_batch_ready clear the flag */
if (!stripe_can_batch(head) || !stripe_can_batch(sh))
goto unlock_out;
if (sh->batch_head)
goto unlock_out;
dd_idx = 0;
while (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx)
dd_idx++;
if (head->dev[dd_idx].towrite->bi_opf != sh->dev[dd_idx].towrite->bi_opf ||
bio_op(head->dev[dd_idx].towrite) != bio_op(sh->dev[dd_idx].towrite))
goto unlock_out;
if (head->batch_head) {
spin_lock(&head->batch_head->batch_lock);
/* This batch list is already running */
if (!stripe_can_batch(head)) {
spin_unlock(&head->batch_head->batch_lock);
goto unlock_out;
}
/*
* We must assign batch_head of this stripe within the
* batch_lock, otherwise clear_batch_ready of batch head
* stripe could clear BATCH_READY bit of this stripe and
* this stripe->batch_head doesn't get assigned, which
* could confuse clear_batch_ready for this stripe
*/
sh->batch_head = head->batch_head;
/*
* at this point, head's BATCH_READY could be cleared, but we
* can still add the stripe to batch list
*/
list_add(&sh->batch_list, &head->batch_list);
spin_unlock(&head->batch_head->batch_lock);
} else {
head->batch_head = head;
sh->batch_head = head->batch_head;
spin_lock(&head->batch_lock);
list_add_tail(&sh->batch_list, &head->batch_list);
spin_unlock(&head->batch_lock);
}
if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
if (atomic_dec_return(&conf->preread_active_stripes)
< IO_THRESHOLD)
md_wakeup_thread(conf->mddev->thread);
if (test_and_clear_bit(STRIPE_BIT_DELAY, &sh->state)) {
int seq = sh->bm_seq;
if (test_bit(STRIPE_BIT_DELAY, &sh->batch_head->state) &&
sh->batch_head->bm_seq > seq)
seq = sh->batch_head->bm_seq;
set_bit(STRIPE_BIT_DELAY, &sh->batch_head->state);
sh->batch_head->bm_seq = seq;
}
atomic_inc(&sh->count);
unlock_out:
unlock_two_stripes(head, sh);
out:
raid5_release_stripe(head);
}
/* Determine if 'data_offset' or 'new_data_offset' should be used
* in this stripe_head.
*/
static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
{
sector_t progress = conf->reshape_progress;
/* Need a memory barrier to make sure we see the value
* of conf->generation, or ->data_offset that was set before
* reshape_progress was updated.
*/
smp_rmb();
if (progress == MaxSector)
return 0;
if (sh->generation == conf->generation - 1)
return 0;
/* We are in a reshape, and this is a new-generation stripe,
* so use new_data_offset.
*/
return 1;
}
static void dispatch_bio_list(struct bio_list *tmp)
{
struct bio *bio;
while ((bio = bio_list_pop(tmp)))
generic_make_request(bio);
}
static int cmp_stripe(void *priv, struct list_head *a, struct list_head *b)
{
const struct r5pending_data *da = list_entry(a,
struct r5pending_data, sibling);
const struct r5pending_data *db = list_entry(b,
struct r5pending_data, sibling);
if (da->sector > db->sector)
return 1;
if (da->sector < db->sector)
return -1;
return 0;
}
static void dispatch_defer_bios(struct r5conf *conf, int target,
struct bio_list *list)
{
struct r5pending_data *data;
struct list_head *first, *next = NULL;
int cnt = 0;
if (conf->pending_data_cnt == 0)
return;
list_sort(NULL, &conf->pending_list, cmp_stripe);
first = conf->pending_list.next;
/* temporarily move the head */
if (conf->next_pending_data)
list_move_tail(&conf->pending_list,
&conf->next_pending_data->sibling);
while (!list_empty(&conf->pending_list)) {
data = list_first_entry(&conf->pending_list,
struct r5pending_data, sibling);
if (&data->sibling == first)
first = data->sibling.next;
next = data->sibling.next;
bio_list_merge(list, &data->bios);
list_move(&data->sibling, &conf->free_list);
cnt++;
if (cnt >= target)
break;
}
conf->pending_data_cnt -= cnt;
BUG_ON(conf->pending_data_cnt < 0 || cnt < target);
if (next != &conf->pending_list)
conf->next_pending_data = list_entry(next,
struct r5pending_data, sibling);
else
conf->next_pending_data = NULL;
/* list isn't empty */
if (first != &conf->pending_list)
list_move_tail(&conf->pending_list, first);
}
static void flush_deferred_bios(struct r5conf *conf)
{
struct bio_list tmp = BIO_EMPTY_LIST;
if (conf->pending_data_cnt == 0)
return;
spin_lock(&conf->pending_bios_lock);
dispatch_defer_bios(conf, conf->pending_data_cnt, &tmp);
BUG_ON(conf->pending_data_cnt != 0);
spin_unlock(&conf->pending_bios_lock);
dispatch_bio_list(&tmp);
}
static void defer_issue_bios(struct r5conf *conf, sector_t sector,
struct bio_list *bios)
{
struct bio_list tmp = BIO_EMPTY_LIST;
struct r5pending_data *ent;
spin_lock(&conf->pending_bios_lock);
ent = list_first_entry(&conf->free_list, struct r5pending_data,
sibling);
list_move_tail(&ent->sibling, &conf->pending_list);
ent->sector = sector;
bio_list_init(&ent->bios);
bio_list_merge(&ent->bios, bios);
conf->pending_data_cnt++;
if (conf->pending_data_cnt >= PENDING_IO_MAX)
dispatch_defer_bios(conf, PENDING_IO_ONE_FLUSH, &tmp);
spin_unlock(&conf->pending_bios_lock);
dispatch_bio_list(&tmp);
}
static void
raid5_end_read_request(struct bio *bi);
static void
raid5_end_write_request(struct bio *bi);
static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
{
struct r5conf *conf = sh->raid_conf;
int i, disks = sh->disks;
struct stripe_head *head_sh = sh;
struct bio_list pending_bios = BIO_EMPTY_LIST;
bool should_defer;
might_sleep();
if (log_stripe(sh, s) == 0)
return;
should_defer = conf->batch_bio_dispatch && conf->group_cnt;
for (i = disks; i--; ) {
int op, op_flags = 0;
int replace_only = 0;
struct bio *bi, *rbi;
struct md_rdev *rdev, *rrdev = NULL;
sh = head_sh;
if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
op = REQ_OP_WRITE;
if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
op_flags = REQ_FUA;
if (test_bit(R5_Discard, &sh->dev[i].flags))
op = REQ_OP_DISCARD;
} else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
op = REQ_OP_READ;
else if (test_and_clear_bit(R5_WantReplace,
&sh->dev[i].flags)) {
op = REQ_OP_WRITE;
replace_only = 1;
} else
continue;
if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
op_flags |= REQ_SYNC;
again:
bi = &sh->dev[i].req;
rbi = &sh->dev[i].rreq; /* For writing to replacement */
rcu_read_lock();
rrdev = rcu_dereference(conf->disks[i].replacement);
smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
rdev = rcu_dereference(conf->disks[i].rdev);
if (!rdev) {
rdev = rrdev;
rrdev = NULL;
}
if (op_is_write(op)) {
if (replace_only)
rdev = NULL;
if (rdev == rrdev)
/* We raced and saw duplicates */
rrdev = NULL;
} else {
if (test_bit(R5_ReadRepl, &head_sh->dev[i].flags) && rrdev)
rdev = rrdev;
rrdev = NULL;
}
if (rdev && test_bit(Faulty, &rdev->flags))
rdev = NULL;
if (rdev)
atomic_inc(&rdev->nr_pending);
if (rrdev && test_bit(Faulty, &rrdev->flags))
rrdev = NULL;
if (rrdev)
atomic_inc(&rrdev->nr_pending);
rcu_read_unlock();
/* We have already checked bad blocks for reads. Now
* need to check for writes. We never accept write errors
* on the replacement, so we don't to check rrdev.
*/
while (op_is_write(op) && rdev &&
test_bit(WriteErrorSeen, &rdev->flags)) {
sector_t first_bad;
int bad_sectors;
int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
&first_bad, &bad_sectors);
if (!bad)
break;
if (bad < 0) {
set_bit(BlockedBadBlocks, &rdev->flags);
if (!conf->mddev->external &&
conf->mddev->sb_flags) {
/* It is very unlikely, but we might
* still need to write out the
* bad block log - better give it
* a chance*/
md_check_recovery(conf->mddev);
}
/*
* Because md_wait_for_blocked_rdev
* will dec nr_pending, we must
* increment it first.
*/
atomic_inc(&rdev->nr_pending);
md_wait_for_blocked_rdev(rdev, conf->mddev);
} else {
/* Acknowledged bad block - skip the write */
rdev_dec_pending(rdev, conf->mddev);
rdev = NULL;
}
}
if (rdev) {
if (s->syncing || s->expanding || s->expanded
|| s->replacing)
md_sync_acct(rdev->bdev, STRIPE_SECTORS);
set_bit(STRIPE_IO_STARTED, &sh->state);
bio_set_dev(bi, rdev->bdev);
bio_set_op_attrs(bi, op, op_flags);
bi->bi_end_io = op_is_write(op)
? raid5_end_write_request
: raid5_end_read_request;
bi->bi_private = sh;
pr_debug("%s: for %llu schedule op %d on disc %d\n",
__func__, (unsigned long long)sh->sector,
bi->bi_opf, i);
atomic_inc(&sh->count);
if (sh != head_sh)
atomic_inc(&head_sh->count);
if (use_new_offset(conf, sh))
bi->bi_iter.bi_sector = (sh->sector
+ rdev->new_data_offset);
else
bi->bi_iter.bi_sector = (sh->sector
+ rdev->data_offset);
if (test_bit(R5_ReadNoMerge, &head_sh->dev[i].flags))
bi->bi_opf |= REQ_NOMERGE;
if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
if (!op_is_write(op) &&
test_bit(R5_InJournal, &sh->dev[i].flags))
/*
* issuing read for a page in journal, this
* must be preparing for prexor in rmw; read
* the data into orig_page
*/
sh->dev[i].vec.bv_page = sh->dev[i].orig_page;
else
sh->dev[i].vec.bv_page = sh->dev[i].page;
bi->bi_vcnt = 1;
bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
bi->bi_io_vec[0].bv_offset = 0;
bi->bi_iter.bi_size = STRIPE_SIZE;
bi->bi_write_hint = sh->dev[i].write_hint;
if (!rrdev)
sh->dev[i].write_hint = RWF_WRITE_LIFE_NOT_SET;
/*
* If this is discard request, set bi_vcnt 0. We don't
* want to confuse SCSI because SCSI will replace payload
*/
if (op == REQ_OP_DISCARD)
bi->bi_vcnt = 0;
if (rrdev)
set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
if (conf->mddev->gendisk)
trace_block_bio_remap(bi->bi_disk->queue,
bi, disk_devt(conf->mddev->gendisk),
sh->dev[i].sector);
if (should_defer && op_is_write(op))
bio_list_add(&pending_bios, bi);
else
generic_make_request(bi);
}
if (rrdev) {
if (s->syncing || s->expanding || s->expanded
|| s->replacing)
md_sync_acct(rrdev->bdev, STRIPE_SECTORS);
set_bit(STRIPE_IO_STARTED, &sh->state);
bio_set_dev(rbi, rrdev->bdev);
bio_set_op_attrs(rbi, op, op_flags);
BUG_ON(!op_is_write(op));
rbi->bi_end_io = raid5_end_write_request;
rbi->bi_private = sh;
pr_debug("%s: for %llu schedule op %d on "
"replacement disc %d\n",
__func__, (unsigned long long)sh->sector,
rbi->bi_opf, i);
atomic_inc(&sh->count);
if (sh != head_sh)
atomic_inc(&head_sh->count);
if (use_new_offset(conf, sh))
rbi->bi_iter.bi_sector = (sh->sector
+ rrdev->new_data_offset);
else
rbi->bi_iter.bi_sector = (sh->sector
+ rrdev->data_offset);
if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
sh->dev[i].rvec.bv_page = sh->dev[i].page;
rbi->bi_vcnt = 1;
rbi->bi_io_vec[0].bv_len = STRIPE_SIZE;
rbi->bi_io_vec[0].bv_offset = 0;
rbi->bi_iter.bi_size = STRIPE_SIZE;
rbi->bi_write_hint = sh->dev[i].write_hint;
sh->dev[i].write_hint = RWF_WRITE_LIFE_NOT_SET;
/*
* If this is discard request, set bi_vcnt 0. We don't
* want to confuse SCSI because SCSI will replace payload
*/
if (op == REQ_OP_DISCARD)
rbi->bi_vcnt = 0;
if (conf->mddev->gendisk)
trace_block_bio_remap(rbi->bi_disk->queue,
rbi, disk_devt(conf->mddev->gendisk),
sh->dev[i].sector);
if (should_defer && op_is_write(op))
bio_list_add(&pending_bios, rbi);
else
generic_make_request(rbi);
}
if (!rdev && !rrdev) {
if (op_is_write(op))
set_bit(STRIPE_DEGRADED, &sh->state);
pr_debug("skip op %d on disc %d for sector %llu\n",
bi->bi_opf, i, (unsigned long long)sh->sector);
clear_bit(R5_LOCKED, &sh->dev[i].flags);
set_bit(STRIPE_HANDLE, &sh->state);
}
if (!head_sh->batch_head)
continue;
sh = list_first_entry(&sh->batch_list, struct stripe_head,
batch_list);
if (sh != head_sh)
goto again;
}
if (should_defer && !bio_list_empty(&pending_bios))
defer_issue_bios(conf, head_sh->sector, &pending_bios);
}
static struct dma_async_tx_descriptor *
async_copy_data(int frombio, struct bio *bio, struct page **page,
sector_t sector, struct dma_async_tx_descriptor *tx,
struct stripe_head *sh, int no_skipcopy)
{
struct bio_vec bvl;
struct bvec_iter iter;
struct page *bio_page;
int page_offset;
struct async_submit_ctl submit;
enum async_tx_flags flags = 0;
if (bio->bi_iter.bi_sector >= sector)
page_offset = (signed)(bio->bi_iter.bi_sector - sector) * 512;
else
page_offset = (signed)(sector - bio->bi_iter.bi_sector) * -512;
if (frombio)
flags |= ASYNC_TX_FENCE;
init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
bio_for_each_segment(bvl, bio, iter) {
int len = bvl.bv_len;
int clen;
int b_offset = 0;
if (page_offset < 0) {
b_offset = -page_offset;
page_offset += b_offset;
len -= b_offset;
}
if (len > 0 && page_offset + len > STRIPE_SIZE)
clen = STRIPE_SIZE - page_offset;
else
clen = len;
if (clen > 0) {
b_offset += bvl.bv_offset;
bio_page = bvl.bv_page;
if (frombio) {
if (sh->raid_conf->skip_copy &&
b_offset == 0 && page_offset == 0 &&
clen == STRIPE_SIZE &&
!no_skipcopy)
*page = bio_page;
else
tx = async_memcpy(*page, bio_page, page_offset,
b_offset, clen, &submit);
} else
tx = async_memcpy(bio_page, *page, b_offset,
page_offset, clen, &submit);
}
/* chain the operations */
submit.depend_tx = tx;
if (clen < len) /* hit end of page */
break;
page_offset += len;
}
return tx;
}
static void ops_complete_biofill(void *stripe_head_ref)
{
struct stripe_head *sh = stripe_head_ref;
int i;
pr_debug("%s: stripe %llu\n", __func__,
(unsigned long long)sh->sector);
/* clear completed biofills */
for (i = sh->disks; i--; ) {
struct r5dev *dev = &sh->dev[i];
/* acknowledge completion of a biofill operation */
/* and check if we need to reply to a read request,
* new R5_Wantfill requests are held off until
* !STRIPE_BIOFILL_RUN
*/
if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
struct bio *rbi, *rbi2;
BUG_ON(!dev->read);
rbi = dev->read;
dev->read = NULL;
while (rbi && rbi->bi_iter.bi_sector <
dev->sector + STRIPE_SECTORS) {
rbi2 = r5_next_bio(rbi, dev->sector);
bio_endio(rbi);
rbi = rbi2;
}
}
}
clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
set_bit(STRIPE_HANDLE, &sh->state);
raid5_release_stripe(sh);
}
static void ops_run_biofill(struct stripe_head *sh)
{
struct dma_async_tx_descriptor *tx = NULL;
struct async_submit_ctl submit;
int i;
BUG_ON(sh->batch_head);
pr_debug("%s: stripe %llu\n", __func__,
(unsigned long long)sh->sector);
for (i = sh->disks; i--; ) {
struct r5dev *dev = &sh->dev[i];
if (test_bit(R5_Wantfill, &dev->flags)) {
struct bio *rbi;
spin_lock_irq(&sh->stripe_lock);
dev->read = rbi = dev->toread;
dev->toread = NULL;
spin_unlock_irq(&sh->stripe_lock);
while (rbi && rbi->bi_iter.bi_sector <
dev->sector + STRIPE_SECTORS) {
tx = async_copy_data(0, rbi, &dev->page,
dev->sector, tx, sh, 0);
rbi = r5_next_bio(rbi, dev->sector);
}
}
}
atomic_inc(&sh->count);
init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
async_trigger_callback(&submit);
}
static void mark_target_uptodate(struct stripe_head *sh, int target)
{
struct r5dev *tgt;
if (target < 0)
return;
tgt = &sh->dev[target];
set_bit(R5_UPTODATE, &tgt->flags);
BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
clear_bit(R5_Wantcompute, &tgt->flags);
}
static void ops_complete_compute(void *stripe_head_ref)
{
struct stripe_head *sh = stripe_head_ref;
pr_debug("%s: stripe %llu\n", __func__,
(unsigned long long)sh->sector);
/* mark the computed target(s) as uptodate */
mark_target_uptodate(sh, sh->ops.target);
mark_target_uptodate(sh, sh->ops.target2);
clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
if (sh->check_state == check_state_compute_run)
sh->check_state = check_state_compute_result;
set_bit(STRIPE_HANDLE, &sh->state);
raid5_release_stripe(sh);
}
/* return a pointer to the address conversion region of the scribble buffer */
static struct page **to_addr_page(struct raid5_percpu *percpu, int i)
{
return percpu->scribble + i * percpu->scribble_obj_size;
}
/* return a pointer to the address conversion region of the scribble buffer */
static addr_conv_t *to_addr_conv(struct stripe_head *sh,
struct raid5_percpu *percpu, int i)
{
return (void *) (to_addr_page(percpu, i) + sh->disks + 2);
}
static struct dma_async_tx_descriptor *
ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
{
int disks = sh->disks;
struct page **xor_srcs = to_addr_page(percpu, 0);
int target = sh->ops.target;
struct r5dev *tgt = &sh->dev[target];
struct page *xor_dest = tgt->page;
int count = 0;
struct dma_async_tx_descriptor *tx;
struct async_submit_ctl submit;
int i;
BUG_ON(sh->batch_head);
pr_debug("%s: stripe %llu block: %d\n",
__func__, (unsigned long long)sh->sector, target);
BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
for (i = disks; i--; )
if (i != target)
xor_srcs[count++] = sh->dev[i].page;
atomic_inc(&sh->count);
init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
ops_complete_compute, sh, to_addr_conv(sh, percpu, 0));
if (unlikely(count == 1))
tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
else
tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
return tx;
}
/* set_syndrome_sources - populate source buffers for gen_syndrome
* @srcs - (struct page *) array of size sh->disks
* @sh - stripe_head to parse
*
* Populates srcs in proper layout order for the stripe and returns the
* 'count' of sources to be used in a call to async_gen_syndrome. The P
* destination buffer is recorded in srcs[count] and the Q destination
* is recorded in srcs[count+1]].
*/
static int set_syndrome_sources(struct page **srcs,
struct stripe_head *sh,
int srctype)
{
int disks = sh->disks;
int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
int d0_idx = raid6_d0(sh);
int count;
int i;
for (i = 0; i < disks; i++)
srcs[i] = NULL;
count = 0;
i = d0_idx;
do {
int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
struct r5dev *dev = &sh->dev[i];
if (i == sh->qd_idx || i == sh->pd_idx ||
(srctype == SYNDROME_SRC_ALL) ||
(srctype == SYNDROME_SRC_WANT_DRAIN &&
(test_bit(R5_Wantdrain, &dev->flags) ||
test_bit(R5_InJournal, &dev->flags))) ||
(srctype == SYNDROME_SRC_WRITTEN &&
(dev->written ||
test_bit(R5_InJournal, &dev->flags)))) {
if (test_bit(R5_InJournal, &dev->flags))
srcs[slot] = sh->dev[i].orig_page;
else
srcs[slot] = sh->dev[i].page;
}
i = raid6_next_disk(i, disks);
} while (i != d0_idx);
return syndrome_disks;
}
static struct dma_async_tx_descriptor *
ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
{
int disks = sh->disks;
struct page **blocks = to_addr_page(percpu, 0);
int target;
int qd_idx = sh->qd_idx;
struct dma_async_tx_descriptor *tx;
struct async_submit_ctl submit;
struct r5dev *tgt;
struct page *dest;
int i;
int count;
BUG_ON(sh->batch_head);
if (sh->ops.target < 0)
target = sh->ops.target2;
else if (sh->ops.target2 < 0)
target = sh->ops.target;
else
/* we should only have one valid target */
BUG();
BUG_ON(target < 0);
pr_debug("%s: stripe %llu block: %d\n",
__func__, (unsigned long long)sh->sector, target);
tgt = &sh->dev[target];
BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
dest = tgt->page;
atomic_inc(&sh->count);
if (target == qd_idx) {
count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
blocks[count] = NULL; /* regenerating p is not necessary */
BUG_ON(blocks[count+1] != dest); /* q should already be set */
init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
ops_complete_compute, sh,
to_addr_conv(sh, percpu, 0));
tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
} else {
/* Compute any data- or p-drive using XOR */
count = 0;
for (i = disks; i-- ; ) {
if (i == target || i == qd_idx)
continue;
blocks[count++] = sh->dev[i].page;
}
init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
NULL, ops_complete_compute, sh,
to_addr_conv(sh, percpu, 0));
tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
}
return tx;
}
static struct dma_async_tx_descriptor *
ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
{
int i, count, disks = sh->disks;
int syndrome_disks = sh->ddf_layout ? disks : disks-2;
int d0_idx = raid6_d0(sh);
int faila = -1, failb = -1;
int target = sh->ops.target;
int target2 = sh->ops.target2;
struct r5dev *tgt = &sh->dev[target];
struct r5dev *tgt2 = &sh->dev[target2];
struct dma_async_tx_descriptor *tx;
struct page **blocks = to_addr_page(percpu, 0);
struct async_submit_ctl submit;
BUG_ON(sh->batch_head);
pr_debug("%s: stripe %llu block1: %d block2: %d\n",
__func__, (unsigned long long)sh->sector, target, target2);
BUG_ON(target < 0 || target2 < 0);
BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
/* we need to open-code set_syndrome_sources to handle the
* slot number conversion for 'faila' and 'failb'
*/
for (i = 0; i < disks ; i++)
blocks[i] = NULL;
count = 0;
i = d0_idx;
do {
int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
blocks[slot] = sh->dev[i].page;
if (i == target)
faila = slot;
if (i == target2)
failb = slot;
i = raid6_next_disk(i, disks);
} while (i != d0_idx);
BUG_ON(faila == failb);
if (failb < faila)
swap(faila, failb);
pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
__func__, (unsigned long long)sh->sector, faila, failb);
atomic_inc(&sh->count);
if (failb == syndrome_disks+1) {
/* Q disk is one of the missing disks */
if (faila == syndrome_disks) {
/* Missing P+Q, just recompute */
init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
ops_complete_compute, sh,
to_addr_conv(sh, percpu, 0));
return async_gen_syndrome(blocks, 0, syndrome_disks+2,
STRIPE_SIZE, &submit);
} else {
struct page *dest;
int data_target;
int qd_idx = sh->qd_idx;
/* Missing D+Q: recompute D from P, then recompute Q */
if (target == qd_idx)
data_target = target2;
else
data_target = target;
count = 0;
for (i = disks; i-- ; ) {
if (i == data_target || i == qd_idx)
continue;
blocks[count++] = sh->dev[i].page;
}
dest = sh->dev[data_target].page;
init_async_submit(&submit,
ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
NULL, NULL, NULL,
to_addr_conv(sh, percpu, 0));
tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
&submit);
count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
init_async_submit(&submit, ASYNC_TX_FENCE, tx,
ops_complete_compute, sh,
to_addr_conv(sh, percpu, 0));
return async_gen_syndrome(blocks, 0, count+2,
STRIPE_SIZE, &submit);
}
} else {
init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
ops_complete_compute, sh,
to_addr_conv(sh, percpu, 0));
if (failb == syndrome_disks) {
/* We're missing D+P. */
return async_raid6_datap_recov(syndrome_disks+2,
STRIPE_SIZE, faila,
blocks, &submit);
} else {
/* We're missing D+D. */
return async_raid6_2data_recov(syndrome_disks+2,
STRIPE_SIZE, faila, failb,
blocks, &submit);
}
}
}
static void ops_complete_prexor(void *stripe_head_ref)
{
struct stripe_head *sh = stripe_head_ref;
pr_debug("%s: stripe %llu\n", __func__,
(unsigned long long)sh->sector);
if (r5c_is_writeback(sh->raid_conf->log))
/*
* raid5-cache write back uses orig_page during prexor.
* After prexor, it is time to free orig_page
*/
r5c_release_extra_page(sh);
}
static struct dma_async_tx_descriptor *
ops_run_prexor5(struct stripe_head *sh, struct raid5_percpu *percpu,
struct dma_async_tx_descriptor *tx)
{
int disks = sh->disks;
struct page **xor_srcs = to_addr_page(percpu, 0);
int count = 0, pd_idx = sh->pd_idx, i;
struct async_submit_ctl submit;
/* existing parity data subtracted */
struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
BUG_ON(sh->batch_head);
pr_debug("%s: stripe %llu\n", __func__,
(unsigned long long)sh->sector);
for (i = disks; i--; ) {
struct r5dev *dev = &sh->dev[i];
/* Only process blocks that are known to be uptodate */
if (test_bit(R5_InJournal, &dev->flags))
xor_srcs[count++] = dev->orig_page;
else if (test_bit(R5_Wantdrain, &dev->flags))
xor_srcs[count++] = dev->page;
}
init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
return tx;
}
static struct dma_async_tx_descriptor *
ops_run_prexor6(struct stripe_head *sh, struct raid5_percpu *percpu,
struct dma_async_tx_descriptor *tx)
{
struct page **blocks = to_addr_page(percpu, 0);
int count;
struct async_submit_ctl submit;
pr_debug("%s: stripe %llu\n", __func__,
(unsigned long long)sh->sector);
count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_WANT_DRAIN);
init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_PQ_XOR_DST, tx,
ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
return tx;
}
static struct dma_async_tx_descriptor *
ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
{
struct r5conf *conf = sh->raid_conf;
int disks = sh->disks;
int i;
struct stripe_head *head_sh = sh;
pr_debug("%s: stripe %llu\n", __func__,
(unsigned long long)sh->sector);
for (i = disks; i--; ) {
struct r5dev *dev;
struct bio *chosen;
sh = head_sh;
if (test_and_clear_bit(R5_Wantdrain, &head_sh->dev[i].flags)) {
struct bio *wbi;
again:
dev = &sh->dev[i];
/*
* clear R5_InJournal, so when rewriting a page in
* journal, it is not skipped by r5l_log_stripe()
*/
clear_bit(R5_InJournal, &dev->flags);
spin_lock_irq(&sh->stripe_lock);
chosen = dev->towrite;
dev->towrite = NULL;
sh->overwrite_disks = 0;
BUG_ON(dev->written);
wbi = dev->written = chosen;
spin_unlock_irq(&sh->stripe_lock);
WARN_ON(dev->page != dev->orig_page);
while (wbi && wbi->bi_iter.bi_sector <
dev->sector + STRIPE_SECTORS) {
if (wbi->bi_opf & REQ_FUA)
set_bit(R5_WantFUA, &dev->flags);
if (wbi->bi_opf & REQ_SYNC)
set_bit(R5_SyncIO, &dev->flags);
if (bio_op(wbi) == REQ_OP_DISCARD)
set_bit(R5_Discard, &dev->flags);
else {
tx = async_copy_data(1, wbi, &dev->page,
dev->sector, tx, sh,
r5c_is_writeback(conf->log));
if (dev->page != dev->orig_page &&
!r5c_is_writeback(conf->log)) {
set_bit(R5_SkipCopy, &dev->flags);
clear_bit(R5_UPTODATE, &dev->flags);
clear_bit(R5_OVERWRITE, &dev->flags);
}
}
wbi = r5_next_bio(wbi, dev->sector);
}
if (head_sh->batch_head) {
sh = list_first_entry(&sh->batch_list,
struct stripe_head,
batch_list);
if (sh == head_sh)
continue;
goto again;
}
}
}
return tx;
}
static void ops_complete_reconstruct(void *stripe_head_ref)
{
struct stripe_head *sh = stripe_head_ref;
int disks = sh->disks;
int pd_idx = sh->pd_idx;
int qd_idx = sh->qd_idx;
int i;
bool fua = false, sync = false, discard = false;
pr_debug("%s: stripe %llu\n", __func__,
(unsigned long long)sh->sector);
for (i = disks; i--; ) {
fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
discard |= test_bit(R5_Discard, &sh->dev[i].flags);
}
for (i = disks; i--; ) {
struct r5dev *dev = &sh->dev[i];
if (dev->written || i == pd_idx || i == qd_idx) {
if (!discard && !test_bit(R5_SkipCopy, &dev->flags)) {
set_bit(R5_UPTODATE, &dev->flags);
if (test_bit(STRIPE_EXPAND_READY, &sh->state))
set_bit(R5_Expanded, &dev->flags);
}
if (fua)
set_bit(R5_WantFUA, &dev->flags);
if (sync)
set_bit(R5_SyncIO, &dev->flags);
}
}
if (sh->reconstruct_state == reconstruct_state_drain_run)
sh->reconstruct_state = reconstruct_state_drain_result;
else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
sh->reconstruct_state = reconstruct_state_prexor_drain_result;
else {
BUG_ON(sh->reconstruct_state != reconstruct_state_run);
sh->reconstruct_state = reconstruct_state_result;
}
set_bit(STRIPE_HANDLE, &sh->state);
raid5_release_stripe(sh);
}
static void
ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
struct dma_async_tx_descriptor *tx)
{
int disks = sh->disks;
struct page **xor_srcs;
struct async_submit_ctl submit;
int count, pd_idx = sh->pd_idx, i;
struct page *xor_dest;
int prexor = 0;
unsigned long flags;
int j = 0;
struct stripe_head *head_sh = sh;
int last_stripe;
pr_debug("%s: stripe %llu\n", __func__,
(unsigned long long)sh->sector);
for (i = 0; i < sh->disks; i++) {
if (pd_idx == i)
continue;
if (!test_bit(R5_Discard, &sh->dev[i].flags))
break;
}
if (i >= sh->disks) {
atomic_inc(&sh->count);
set_bit(R5_Discard, &sh->dev[pd_idx].flags);
ops_complete_reconstruct(sh);
return;
}
again:
count = 0;
xor_srcs = to_addr_page(percpu, j);
/* check if prexor is active which means only process blocks
* that are part of a read-modify-write (written)
*/
if (head_sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
prexor = 1;
xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
for (i = disks; i--; ) {
struct r5dev *dev = &sh->dev[i];
if (head_sh->dev[i].written ||
test_bit(R5_InJournal, &head_sh->dev[i].flags))
xor_srcs[count++] = dev->page;
}
} else {
xor_dest = sh->dev[pd_idx].page;
for (i = disks; i--; ) {
struct r5dev *dev = &sh->dev[i];
if (i != pd_idx)
xor_srcs[count++] = dev->page;
}
}
/* 1/ if we prexor'd then the dest is reused as a source
* 2/ if we did not prexor then we are redoing the parity
* set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
* for the synchronous xor case
*/
last_stripe = !head_sh->batch_head ||
list_first_entry(&sh->batch_list,
struct stripe_head, batch_list) == head_sh;
if (last_stripe) {
flags = ASYNC_TX_ACK |
(prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
atomic_inc(&head_sh->count);
init_async_submit(&submit, flags, tx, ops_complete_reconstruct, head_sh,
to_addr_conv(sh, percpu, j));
} else {
flags = prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST;
init_async_submit(&submit, flags, tx, NULL, NULL,
to_addr_conv(sh, percpu, j));
}
if (unlikely(count == 1))
tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
else
tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
if (!last_stripe) {
j++;
sh = list_first_entry(&sh->batch_list, struct stripe_head,
batch_list);
goto again;
}
}
static void
ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
struct dma_async_tx_descriptor *tx)
{
struct async_submit_ctl submit;
struct page **blocks;
int count, i, j = 0;
struct stripe_head *head_sh = sh;
int last_stripe;
int synflags;
unsigned long txflags;
pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
for (i = 0; i < sh->disks; i++) {
if (sh->pd_idx == i || sh->qd_idx == i)
continue;
if (!test_bit(R5_Discard, &sh->dev[i].flags))
break;
}
if (i >= sh->disks) {
atomic_inc(&sh->count);
set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
ops_complete_reconstruct(sh);
return;
}
again:
blocks = to_addr_page(percpu, j);
if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
synflags = SYNDROME_SRC_WRITTEN;
txflags = ASYNC_TX_ACK | ASYNC_TX_PQ_XOR_DST;
} else {
synflags = SYNDROME_SRC_ALL;
txflags = ASYNC_TX_ACK;
}
count = set_syndrome_sources(blocks, sh, synflags);
last_stripe = !head_sh->batch_head ||
list_first_entry(&sh->batch_list,
struct stripe_head, batch_list) == head_sh;
if (last_stripe) {
atomic_inc(&head_sh->count);
init_async_submit(&submit, txflags, tx, ops_complete_reconstruct,
head_sh, to_addr_conv(sh, percpu, j));
} else
init_async_submit(&submit, 0, tx, NULL, NULL,
to_addr_conv(sh, percpu, j));
tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
if (!last_stripe) {
j++;
sh = list_first_entry(&sh->batch_list, struct stripe_head,
batch_list);
goto again;
}
}
static void ops_complete_check(void *stripe_head_ref)
{
struct stripe_head *sh = stripe_head_ref;
pr_debug("%s: stripe %llu\n", __func__,
(unsigned long long)sh->sector);
sh->check_state = check_state_check_result;
set_bit(STRIPE_HANDLE, &sh->state);
raid5_release_stripe(sh);
}
static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
{
int disks = sh->disks;
int pd_idx = sh->pd_idx;
int qd_idx = sh->qd_idx;
struct page *xor_dest;
struct page **xor_srcs = to_addr_page(percpu, 0);
struct dma_async_tx_descriptor *tx;
struct async_submit_ctl submit;
int count;
int i;
pr_debug("%s: stripe %llu\n", __func__,
(unsigned long long)sh->sector);
BUG_ON(sh->batch_head);
count = 0;
xor_dest = sh->dev[pd_idx].page;
xor_srcs[count++] = xor_dest;
for (i = disks; i--; ) {
if (i == pd_idx || i == qd_idx)
continue;
xor_srcs[count++] = sh->dev[i].page;
}
init_async_submit(&submit, 0, NULL, NULL, NULL,
to_addr_conv(sh, percpu, 0));
tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
&sh->ops.zero_sum_result, &submit);
atomic_inc(&sh->count);
init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
tx = async_trigger_callback(&submit);
}
static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
{
struct page **srcs = to_addr_page(percpu, 0);
struct async_submit_ctl submit;
int count;
pr_debug("%s: stripe %llu checkp: %d\n", __func__,
(unsigned long long)sh->sector, checkp);
BUG_ON(sh->batch_head);
count = set_syndrome_sources(srcs, sh, SYNDROME_SRC_ALL);
if (!checkp)
srcs[count] = NULL;
atomic_inc(&sh->count);
init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
sh, to_addr_conv(sh, percpu, 0));
async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
&sh->ops.zero_sum_result, percpu->spare_page, &submit);
}
static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
{
int overlap_clear = 0, i, disks = sh->disks;
struct dma_async_tx_descriptor *tx = NULL;
struct r5conf *conf = sh->raid_conf;
int level = conf->level;
struct raid5_percpu *percpu;
unsigned long cpu;
cpu = get_cpu();
percpu = per_cpu_ptr(conf->percpu, cpu);
if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
ops_run_biofill(sh);
overlap_clear++;
}
if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
if (level < 6)
tx = ops_run_compute5(sh, percpu);
else {
if (sh->ops.target2 < 0 || sh->ops.target < 0)
tx = ops_run_compute6_1(sh, percpu);
else
tx = ops_run_compute6_2(sh, percpu);
}
/* terminate the chain if reconstruct is not set to be run */
if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
async_tx_ack(tx);
}
if (test_bit(STRIPE_OP_PREXOR, &ops_request)) {
if (level < 6)
tx = ops_run_prexor5(sh, percpu, tx);
else
tx = ops_run_prexor6(sh, percpu, tx);
}
if (test_bit(STRIPE_OP_PARTIAL_PARITY, &ops_request))
tx = ops_run_partial_parity(sh, percpu, tx);
if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
tx = ops_run_biodrain(sh, tx);
overlap_clear++;
}
if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
if (level < 6)
ops_run_reconstruct5(sh, percpu, tx);
else
ops_run_reconstruct6(sh, percpu, tx);
}
if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
if (sh->check_state == check_state_run)
ops_run_check_p(sh, percpu);
else if (sh->check_state == check_state_run_q)
ops_run_check_pq(sh, percpu, 0);
else if (sh->check_state == check_state_run_pq)
ops_run_check_pq(sh, percpu, 1);
else
BUG();
}
if (overlap_clear && !sh->batch_head)
for (i = disks; i--; ) {
struct r5dev *dev = &sh->dev[i];
if (test_and_clear_bit(R5_Overlap, &dev->flags))
wake_up(&sh->raid_conf->wait_for_overlap);
}
put_cpu();
}
static void free_stripe(struct kmem_cache *sc, struct stripe_head *sh)
{
if (sh->ppl_page)
__free_page(sh->ppl_page);
kmem_cache_free(sc, sh);
}
static struct stripe_head *alloc_stripe(struct kmem_cache *sc, gfp_t gfp,
int disks, struct r5conf *conf)
{
struct stripe_head *sh;
int i;
sh = kmem_cache_zalloc(sc, gfp);
if (sh) {
spin_lock_init(&sh->stripe_lock);
spin_lock_init(&sh->batch_lock);
INIT_LIST_HEAD(&sh->batch_list);
INIT_LIST_HEAD(&sh->lru);
INIT_LIST_HEAD(&sh->r5c);
INIT_LIST_HEAD(&sh->log_list);
atomic_set(&sh->count, 1);
sh->raid_conf = conf;
sh->log_start = MaxSector;
for (i = 0; i < disks; i++) {
struct r5dev *dev = &sh->dev[i];
bio_init(&dev->req, &dev->vec, 1);
bio_init(&dev->rreq, &dev->rvec, 1);
}
if (raid5_has_ppl(conf)) {
sh->ppl_page = alloc_page(gfp);
if (!sh->ppl_page) {
free_stripe(sc, sh);
sh = NULL;
}
}
}
return sh;
}
static int grow_one_stripe(struct r5conf *conf, gfp_t gfp)
{
struct stripe_head *sh;
sh = alloc_stripe(conf->slab_cache, gfp, conf->pool_size, conf);
if (!sh)
return 0;
if (grow_buffers(sh, gfp)) {
shrink_buffers(sh);
free_stripe(conf->slab_cache, sh);
return 0;
}
sh->hash_lock_index =
conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS;
/* we just created an active stripe so... */
atomic_inc(&conf->active_stripes);
raid5_release_stripe(sh);
conf->max_nr_stripes++;
return 1;
}
static int grow_stripes(struct r5conf *conf, int num)
{
struct kmem_cache *sc;
size_t namelen = sizeof(conf->cache_name[0]);
int devs = max(conf->raid_disks, conf->previous_raid_disks);
if (conf->mddev->gendisk)
snprintf(conf->cache_name[0], namelen,
"raid%d-%s", conf->level, mdname(conf->mddev));
else
snprintf(conf->cache_name[0], namelen,
"raid%d-%p", conf->level, conf->mddev);
snprintf(conf->cache_name[1], namelen, "%.27s-alt", conf->cache_name[0]);
conf->active_name = 0;
sc = kmem_cache_create(conf->cache_name[conf->active_name],
sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
0, 0, NULL);
if (!sc)
return 1;
conf->slab_cache = sc;
conf->pool_size = devs;
while (num--)
if (!grow_one_stripe(conf, GFP_KERNEL))
return 1;
return 0;
}
/**
* scribble_len - return the required size of the scribble region
* @num - total number of disks in the array
*
* The size must be enough to contain:
* 1/ a struct page pointer for each device in the array +2
* 2/ room to convert each entry in (1) to its corresponding dma
* (dma_map_page()) or page (page_address()) address.
*
* Note: the +2 is for the destination buffers of the ddf/raid6 case where we
* calculate over all devices (not just the data blocks), using zeros in place
* of the P and Q blocks.
*/
static int scribble_alloc(struct raid5_percpu *percpu,
int num, int cnt, gfp_t flags)
{
size_t obj_size =
sizeof(struct page *) * (num+2) +
sizeof(addr_conv_t) * (num+2);
void *scribble;
scribble = kvmalloc_array(cnt, obj_size, flags);
if (!scribble)
return -ENOMEM;
kvfree(percpu->scribble);
percpu->scribble = scribble;
percpu->scribble_obj_size = obj_size;
return 0;
}
static int resize_chunks(struct r5conf *conf, int new_disks, int new_sectors)
{
unsigned long cpu;
int err = 0;
/*
* Never shrink. And mddev_suspend() could deadlock if this is called
* from raid5d. In that case, scribble_disks and scribble_sectors
* should equal to new_disks and new_sectors
*/
if (conf->scribble_disks >= new_disks &&
conf->scribble_sectors >= new_sectors)
return 0;
mddev_suspend(conf->mddev);
get_online_cpus();
for_each_present_cpu(cpu) {
struct raid5_percpu *percpu;
percpu = per_cpu_ptr(conf->percpu, cpu);
err = scribble_alloc(percpu, new_disks,
new_sectors / STRIPE_SECTORS,
GFP_NOIO);
if (err)
break;
}
put_online_cpus();
mddev_resume(conf->mddev);
if (!err) {
conf->scribble_disks = new_disks;
conf->scribble_sectors = new_sectors;
}
return err;
}
static int resize_stripes(struct r5conf *conf, int newsize)
{
/* Make all the stripes able to hold 'newsize' devices.
* New slots in each stripe get 'page' set to a new page.
*
* This happens in stages:
* 1/ create a new kmem_cache and allocate the required number of
* stripe_heads.
* 2/ gather all the old stripe_heads and transfer the pages across
* to the new stripe_heads. This will have the side effect of
* freezing the array as once all stripe_heads have been collected,
* no IO will be possible. Old stripe heads are freed once their
* pages have been transferred over, and the old kmem_cache is
* freed when all stripes are done.
* 3/ reallocate conf->disks to be suitable bigger. If this fails,
* we simple return a failure status - no need to clean anything up.
* 4/ allocate new pages for the new slots in the new stripe_heads.
* If this fails, we don't bother trying the shrink the
* stripe_heads down again, we just leave them as they are.
* As each stripe_head is processed the new one is released into
* active service.
*
* Once step2 is started, we cannot afford to wait for a write,
* so we use GFP_NOIO allocations.
*/
struct stripe_head *osh, *nsh;
LIST_HEAD(newstripes);
struct disk_info *ndisks;
int err = 0;
struct kmem_cache *sc;
int i;
int hash, cnt;
md_allow_write(conf->mddev);
/* Step 1 */
sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
0, 0, NULL);
if (!sc)
return -ENOMEM;
/* Need to ensure auto-resizing doesn't interfere */
mutex_lock(&conf->cache_size_mutex);
for (i = conf->max_nr_stripes; i; i--) {
nsh = alloc_stripe(sc, GFP_KERNEL, newsize, conf);
if (!nsh)
break;
list_add(&nsh->lru, &newstripes);
}
if (i) {
/* didn't get enough, give up */
while (!list_empty(&newstripes)) {
nsh = list_entry(newstripes.next, struct stripe_head, lru);
list_del(&nsh->lru);
free_stripe(sc, nsh);
}
kmem_cache_destroy(sc);
mutex_unlock(&conf->cache_size_mutex);
return -ENOMEM;
}
/* Step 2 - Must use GFP_NOIO now.
* OK, we have enough stripes, start collecting inactive
* stripes and copying them over
*/
hash = 0;
cnt = 0;
list_for_each_entry(nsh, &newstripes, lru) {
lock_device_hash_lock(conf, hash);
wait_event_cmd(conf->wait_for_stripe,
!list_empty(conf->inactive_list + hash),
unlock_device_hash_lock(conf, hash),
lock_device_hash_lock(conf, hash));
osh = get_free_stripe(conf, hash);
unlock_device_hash_lock(conf, hash);
for(i=0; i<conf->pool_size; i++) {
nsh->dev[i].page = osh->dev[i].page;
nsh->dev[i].orig_page = osh->dev[i].page;
}
nsh->hash_lock_index = hash;
free_stripe(conf->slab_cache, osh);
cnt++;
if (cnt >= conf->max_nr_stripes / NR_STRIPE_HASH_LOCKS +
!!((conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS) > hash)) {
hash++;
cnt = 0;
}
}
kmem_cache_destroy(conf->slab_cache);
/* Step 3.
* At this point, we are holding all the stripes so the array
* is completely stalled, so now is a good time to resize
* conf->disks and the scribble region
*/
ndisks = kcalloc(newsize, sizeof(struct disk_info), GFP_NOIO);
if (ndisks) {
for (i = 0; i < conf->pool_size; i++)
ndisks[i] = conf->disks[i];
for (i = conf->pool_size; i < newsize; i++) {
ndisks[i].extra_page = alloc_page(GFP_NOIO);
if (!ndisks[i].extra_page)
err = -ENOMEM;
}
if (err) {
for (i = conf->pool_size; i < newsize; i++)
if (ndisks[i].extra_page)
put_page(ndisks[i].extra_page);
kfree(ndisks);
} else {
kfree(conf->disks);
conf->disks = ndisks;
}
} else
err = -ENOMEM;
mutex_unlock(&conf->cache_size_mutex);
conf->slab_cache = sc;
conf->active_name = 1-conf->active_name;
/* Step 4, return new stripes to service */
while(!list_empty(&newstripes)) {
nsh = list_entry(newstripes.next, struct stripe_head, lru);
list_del_init(&nsh->lru);
for (i=conf->raid_disks; i < newsize; i++)
if (nsh->dev[i].page == NULL) {
struct page *p = alloc_page(GFP_NOIO);
nsh->dev[i].page = p;
nsh->dev[i].orig_page = p;
if (!p)
err = -ENOMEM;
}
raid5_release_stripe(nsh);
}
/* critical section pass, GFP_NOIO no longer needed */
if (!err)
conf->pool_size = newsize;
return err;
}
static int drop_one_stripe(struct r5conf *conf)
{
struct stripe_head *sh;
int hash = (conf->max_nr_stripes - 1) & STRIPE_HASH_LOCKS_MASK;
spin_lock_irq(conf->hash_locks + hash);
sh = get_free_stripe(conf, hash);
spin_unlock_irq(conf->hash_locks + hash);
if (!sh)
return 0;
BUG_ON(atomic_read(&sh->count));
shrink_buffers(sh);
free_stripe(conf->slab_cache, sh);
atomic_dec(&conf->active_stripes);
conf->max_nr_stripes--;
return 1;
}
static void shrink_stripes(struct r5conf *conf)
{
while (conf->max_nr_stripes &&
drop_one_stripe(conf))
;
kmem_cache_destroy(conf->slab_cache);
conf->slab_cache = NULL;
}
static void raid5_end_read_request(struct bio * bi)
{
struct stripe_head *sh = bi->bi_private;
struct r5conf *conf = sh->raid_conf;
int disks = sh->disks, i;
char b[BDEVNAME_SIZE];
struct md_rdev *rdev = NULL;
sector_t s;
for (i=0 ; i<disks; i++)
if (bi == &sh->dev[i].req)
break;
pr_debug("end_read_request %llu/%d, count: %d, error %d.\n",
(unsigned long long)sh->sector, i, atomic_read(&sh->count),
bi->bi_status);
if (i == disks) {
bio_reset(bi);
BUG();
return;
}
if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
/* If replacement finished while this request was outstanding,
* 'replacement' might be NULL already.
* In that case it moved down to 'rdev'.
* rdev is not removed until all requests are finished.
*/
rdev = conf->disks[i].replacement;
if (!rdev)
rdev = conf->disks[i].rdev;
if (use_new_offset(conf, sh))
s = sh->sector + rdev->new_data_offset;
else
s = sh->sector + rdev->data_offset;
if (!bi->bi_status) {
set_bit(R5_UPTODATE, &sh->dev[i].flags);
if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
/* Note that this cannot happen on a
* replacement device. We just fail those on
* any error
*/
pr_info_ratelimited(
"md/raid:%s: read error corrected (%lu sectors at %llu on %s)\n",
mdname(conf->mddev), STRIPE_SECTORS,
(unsigned long long)s,
bdevname(rdev->bdev, b));
atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
clear_bit(R5_ReadError, &sh->dev[i].flags);
clear_bit(R5_ReWrite, &sh->dev[i].flags);
} else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
if (test_bit(R5_InJournal, &sh->dev[i].flags))
/*
* end read for a page in journal, this
* must be preparing for prexor in rmw
*/
set_bit(R5_OrigPageUPTDODATE, &sh->dev[i].flags);
if (atomic_read(&rdev->read_errors))
atomic_set(&rdev->read_errors, 0);
} else {
const char *bdn = bdevname(rdev->bdev, b);
int retry = 0;
int set_bad = 0;
clear_bit(R5_UPTODATE, &sh->dev[i].flags);
atomic_inc(&rdev->read_errors);
if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
pr_warn_ratelimited(
"md/raid:%s: read error on replacement device (sector %llu on %s).\n",
mdname(conf->mddev),
(unsigned long long)s,
bdn);
else if (conf->mddev->degraded >= conf->max_degraded) {
set_bad = 1;
pr_warn_ratelimited(
"md/raid:%s: read error not correctable (sector %llu on %s).\n",
mdname(conf->mddev),
(unsigned long long)s,
bdn);
} else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) {
/* Oh, no!!! */
set_bad = 1;
pr_warn_ratelimited(
"md/raid:%s: read error NOT corrected!! (sector %llu on %s).\n",
mdname(conf->mddev),
(unsigned long long)s,
bdn);
} else if (atomic_read(&rdev->read_errors)
> conf->max_nr_stripes)
pr_warn("md/raid:%s: Too many read errors, failing device %s.\n",
mdname(conf->mddev), bdn);
else
retry = 1;
if (set_bad && test_bit(In_sync, &rdev->flags)
&& !test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
retry = 1;
if (retry)
if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) {
set_bit(R5_ReadError, &sh->dev[i].flags);
clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
} else
set_bit(R5_ReadNoMerge, &sh->dev[i].flags);
else {
clear_bit(R5_ReadError, &sh->dev[i].flags);
clear_bit(R5_ReWrite, &sh->dev[i].flags);
if (!(set_bad
&& test_bit(In_sync, &rdev->flags)
&& rdev_set_badblocks(
rdev, sh->sector, STRIPE_SECTORS, 0)))
md_error(conf->mddev, rdev);
}
}
rdev_dec_pending(rdev, conf->mddev);
bio_reset(bi);
clear_bit(R5_LOCKED, &sh->dev[i].flags);
set_bit(STRIPE_HANDLE, &sh->state);
raid5_release_stripe(sh);
}
static void raid5_end_write_request(struct bio *bi)
{
struct stripe_head *sh = bi->bi_private;
struct r5conf *conf = sh->raid_conf;
int disks = sh->disks, i;
struct md_rdev *uninitialized_var(rdev);
sector_t first_bad;
int bad_sectors;
int replacement = 0;
for (i = 0 ; i < disks; i++) {
if (bi == &sh->dev[i].req) {
rdev = conf->disks[i].rdev;
break;
}
if (bi == &sh->dev[i].rreq) {
rdev = conf->disks[i].replacement;
if (rdev)
replacement = 1;
else
/* rdev was removed and 'replacement'
* replaced it. rdev is not removed
* until all requests are finished.
*/
rdev = conf->disks[i].rdev;
break;
}
}
pr_debug("end_write_request %llu/%d, count %d, error: %d.\n",
(unsigned long long)sh->sector, i, atomic_read(&sh->count),
bi->bi_status);
if (i == disks) {
bio_reset(bi);
BUG();
return;
}
if (replacement) {
if (bi->bi_status)
md_error(conf->mddev, rdev);
else if (is_badblock(rdev, sh->sector,
STRIPE_SECTORS,
&first_bad, &bad_sectors))
set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
} else {
if (bi->bi_status) {
set_bit(STRIPE_DEGRADED, &sh->state);
set_bit(WriteErrorSeen, &rdev->flags);
set_bit(R5_WriteError, &sh->dev[i].flags);
if (!test_and_set_bit(WantReplacement, &rdev->flags))
set_bit(MD_RECOVERY_NEEDED,
&rdev->mddev->recovery);
} else if (is_badblock(rdev, sh->sector,
STRIPE_SECTORS,
&first_bad, &bad_sectors)) {
set_bit(R5_MadeGood, &sh->dev[i].flags);
if (test_bit(R5_ReadError, &sh->dev[i].flags))
/* That was a successful write so make
* sure it looks like we already did
* a re-write.
*/
set_bit(R5_ReWrite, &sh->dev[i].flags);
}
}
rdev_dec_pending(rdev, conf->mddev);
if (sh->batch_head && bi->bi_status && !replacement)
set_bit(STRIPE_BATCH_ERR, &sh->batch_head->state);
bio_reset(bi);
if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
clear_bit(R5_LOCKED, &sh->dev[i].flags);
set_bit(STRIPE_HANDLE, &sh->state);
raid5_release_stripe(sh);
if (sh->batch_head && sh != sh->batch_head)
raid5_release_stripe(sh->batch_head);
}
static void raid5_error(struct mddev *mddev, struct md_rdev *rdev)
{
char b[BDEVNAME_SIZE];
struct r5conf *conf = mddev->private;
unsigned long flags;
pr_debug("raid456: error called\n");
spin_lock_irqsave(&conf->device_lock, flags);
if (test_bit(In_sync, &rdev->flags) &&
mddev->degraded == conf->max_degraded) {
/*
* Don't allow to achieve failed state
* Don't try to recover this device
*/
conf->recovery_disabled = mddev->recovery_disabled;
spin_unlock_irqrestore(&conf->device_lock, flags);
return;
}
set_bit(Faulty, &rdev->flags);
clear_bit(In_sync, &rdev->flags);
mddev->degraded = raid5_calc_degraded(conf);
spin_unlock_irqrestore(&conf->device_lock, flags);
set_bit(MD_RECOVERY_INTR, &mddev->recovery);
set_bit(Blocked, &rdev->flags);
set_mask_bits(&mddev->sb_flags, 0,
BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
pr_crit("md/raid:%s: Disk failure on %s, disabling device.\n"
"md/raid:%s: Operation continuing on %d devices.\n",
mdname(mddev),
bdevname(rdev->bdev, b),
mdname(mddev),
conf->raid_disks - mddev->degraded);
r5c_update_on_rdev_error(mddev, rdev);
}
/*
* Input: a 'big' sector number,
* Output: index of the data and parity disk, and the sector # in them.
*/
sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
int previous, int *dd_idx,
struct stripe_head *sh)
{
sector_t stripe, stripe2;
sector_t chunk_number;
unsigned int chunk_offset;
int pd_idx, qd_idx;
int ddf_layout = 0;
sector_t new_sector;
int algorithm = previous ? conf->prev_algo
: conf->algorithm;
int sectors_per_chunk = previous ? conf->prev_chunk_sectors
: conf->chunk_sectors;
int raid_disks = previous ? conf->previous_raid_disks
: conf->raid_disks;
int data_disks = raid_disks - conf->max_degraded;
/* First compute the information on this sector */
/*
* Compute the chunk number and the sector offset inside the chunk
*/
chunk_offset = sector_div(r_sector, sectors_per_chunk);
chunk_number = r_sector;
/*
* Compute the stripe number
*/
stripe = chunk_number;
*dd_idx = sector_div(stripe, data_disks);
stripe2 = stripe;
/*
* Select the parity disk based on the user selected algorithm.
*/
pd_idx = qd_idx = -1;
switch(conf->level) {
case 4:
pd_idx = data_disks;
break;
case 5:
switch (algorithm) {
case ALGORITHM_LEFT_ASYMMETRIC:
pd_idx = data_disks - sector_div(stripe2, raid_disks);
if (*dd_idx >= pd_idx)
(*dd_idx)++;
break;
case ALGORITHM_RIGHT_ASYMMETRIC:
pd_idx = sector_div(stripe2, raid_disks);
if (*dd_idx >= pd_idx)
(*dd_idx)++;
break;
case ALGORITHM_LEFT_SYMMETRIC:
pd_idx = data_disks - sector_div(stripe2, raid_disks);
*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
break;
case ALGORITHM_RIGHT_SYMMETRIC:
pd_idx = sector_div(stripe2, raid_disks);
*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
break;
case ALGORITHM_PARITY_0:
pd_idx = 0;
(*dd_idx)++;
break;
case ALGORITHM_PARITY_N:
pd_idx = data_disks;
break;
default:
BUG();
}
break;
case 6:
switch (algorithm) {
case ALGORITHM_LEFT_ASYMMETRIC:
pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
qd_idx = pd_idx + 1;
if (pd_idx == raid_disks-1) {
(*dd_idx)++; /* Q D D D P */
qd_idx = 0;
} else if (*dd_idx >= pd_idx)
(*dd_idx) += 2; /* D D P Q D */
break;
case ALGORITHM_RIGHT_ASYMMETRIC:
pd_idx = sector_div(stripe2, raid_disks);
qd_idx = pd_idx + 1;
if (pd_idx == raid_disks-1) {
(*dd_idx)++; /* Q D D D P */
qd_idx = 0;
} else if (*dd_idx >= pd_idx)
(*dd_idx) += 2; /* D D P Q D */
break;
case ALGORITHM_LEFT_SYMMETRIC:
pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
qd_idx = (pd_idx + 1) % raid_disks;
*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
break;
case ALGORITHM_RIGHT_SYMMETRIC:
pd_idx = sector_div(stripe2, raid_disks);
qd_idx = (pd_idx + 1) % raid_disks;
*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
break;
case ALGORITHM_PARITY_0:
pd_idx = 0;
qd_idx = 1;
(*dd_idx) += 2;
break;
case ALGORITHM_PARITY_N:
pd_idx = data_disks;
qd_idx = data_disks + 1;
break;
case ALGORITHM_ROTATING_ZERO_RESTART:
/* Exactly the same as RIGHT_ASYMMETRIC, but or
* of blocks for computing Q is different.
*/
pd_idx = sector_div(stripe2, raid_disks);
qd_idx = pd_idx + 1;
if (pd_idx == raid_disks-1) {
(*dd_idx)++; /* Q D D D P */
qd_idx = 0;
} else if (*dd_idx >= pd_idx)
(*dd_idx) += 2; /* D D P Q D */
ddf_layout = 1;
break;
case ALGORITHM_ROTATING_N_RESTART:
/* Same a left_asymmetric, by first stripe is
* D D D P Q rather than
* Q D D D P
*/
stripe2 += 1;
pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
qd_idx = pd_idx + 1;
if (pd_idx == raid_disks-1) {
(*dd_idx)++; /* Q D D D P */
qd_idx = 0;
} else if (*dd_idx >= pd_idx)
(*dd_idx) += 2; /* D D P Q D */
ddf_layout = 1;
break;
case ALGORITHM_ROTATING_N_CONTINUE:
/* Same as left_symmetric but Q is before P */
pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
ddf_layout = 1;
break;
case ALGORITHM_LEFT_ASYMMETRIC_6:
/* RAID5 left_asymmetric, with Q on last device */
pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
if (*dd_idx >= pd_idx)
(*dd_idx)++;
qd_idx = raid_disks - 1;
break;
case ALGORITHM_RIGHT_ASYMMETRIC_6:
pd_idx = sector_div(stripe2, raid_disks-1);
if (*dd_idx >= pd_idx)
(*dd_idx)++;
qd_idx = raid_disks - 1;
break;
case ALGORITHM_LEFT_SYMMETRIC_6:
pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
qd_idx = raid_disks - 1;
break;
case ALGORITHM_RIGHT_SYMMETRIC_6:
pd_idx = sector_div(stripe2, raid_disks-1);
*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
qd_idx = raid_disks - 1;
break;
case ALGORITHM_PARITY_0_6:
pd_idx = 0;
(*dd_idx)++;
qd_idx = raid_disks - 1;
break;
default:
BUG();
}
break;
}
if (sh) {
sh->pd_idx = pd_idx;
sh->qd_idx = qd_idx;
sh->ddf_layout = ddf_layout;
}
/*
* Finally, compute the new sector number
*/
new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
return new_sector;
}
sector_t raid5_compute_blocknr(struct stripe_head *sh, int i, int previous)
{
struct r5conf *conf = sh->raid_conf;
int raid_disks = sh->disks;
int data_disks = raid_disks - conf->max_degraded;
sector_t new_sector = sh->sector, check;
int sectors_per_chunk = previous ? conf->prev_chunk_sectors
: conf->chunk_sectors;
int algorithm = previous ? conf->prev_algo
: conf->algorithm;
sector_t stripe;
int chunk_offset;
sector_t chunk_number;
int dummy1, dd_idx = i;
sector_t r_sector;
struct stripe_head sh2;
chunk_offset = sector_div(new_sector, sectors_per_chunk);
stripe = new_sector;
if (i == sh->pd_idx)
return 0;
switch(conf->level) {
case 4: break;
case 5:
switch (algorithm) {
case ALGORITHM_LEFT_ASYMMETRIC:
case ALGORITHM_RIGHT_ASYMMETRIC:
if (i > sh->pd_idx)
i--;
break;
case ALGORITHM_LEFT_SYMMETRIC:
case ALGORITHM_RIGHT_SYMMETRIC:
if (i < sh->pd_idx)
i += raid_disks;
i -= (sh->pd_idx + 1);
break;
case ALGORITHM_PARITY_0:
i -= 1;
break;
case ALGORITHM_PARITY_N:
break;
default:
BUG();
}
break;
case 6:
if (i == sh->qd_idx)
return 0; /* It is the Q disk */
switch (algorithm) {
case ALGORITHM_LEFT_ASYMMETRIC:
case ALGORITHM_RIGHT_ASYMMETRIC:
case ALGORITHM_ROTATING_ZERO_RESTART:
case ALGORITHM_ROTATING_N_RESTART:
if (sh->pd_idx == raid_disks-1)
i--; /* Q D D D P */
else if (i > sh->pd_idx)
i -= 2; /* D D P Q D */
break;
case ALGORITHM_LEFT_SYMMETRIC:
case ALGORITHM_RIGHT_SYMMETRIC:
if (sh->pd_idx == raid_disks-1)
i--; /* Q D D D P */
else {
/* D D P Q D */
if (i < sh->pd_idx)
i += raid_disks;
i -= (sh->pd_idx + 2);
}
break;
case ALGORITHM_PARITY_0:
i -= 2;
break;
case ALGORITHM_PARITY_N:
break;
case ALGORITHM_ROTATING_N_CONTINUE:
/* Like left_symmetric, but P is before Q */
if (sh->pd_idx == 0)
i--; /* P D D D Q */
else {
/* D D Q P D */
if (i < sh->pd_idx)
i += raid_disks;
i -= (sh->pd_idx + 1);
}
break;
case ALGORITHM_LEFT_ASYMMETRIC_6:
case ALGORITHM_RIGHT_ASYMMETRIC_6:
if (i > sh->pd_idx)
i--;
break;
case ALGORITHM_LEFT_SYMMETRIC_6:
case ALGORITHM_RIGHT_SYMMETRIC_6:
if (i < sh->pd_idx)
i += data_disks + 1;
i -= (sh->pd_idx + 1);
break;
case ALGORITHM_PARITY_0_6:
i -= 1;
break;
default:
BUG();
}
break;
}
chunk_number = stripe * data_disks + i;
r_sector = chunk_number * sectors_per_chunk + chunk_offset;
check = raid5_compute_sector(conf, r_sector,
previous, &dummy1, &sh2);
if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
|| sh2.qd_idx != sh->qd_idx) {
pr_warn("md/raid:%s: compute_blocknr: map not correct\n",
mdname(conf->mddev));
return 0;
}
return r_sector;
}
/*
* There are cases where we want handle_stripe_dirtying() and
* schedule_reconstruction() to delay towrite to some dev of a stripe.
*
* This function checks whether we want to delay the towrite. Specifically,
* we delay the towrite when:
*
* 1. degraded stripe has a non-overwrite to the missing dev, AND this
* stripe has data in journal (for other devices).
*
* In this case, when reading data for the non-overwrite dev, it is
* necessary to handle complex rmw of write back cache (prexor with
* orig_page, and xor with page). To keep read path simple, we would
* like to flush data in journal to RAID disks first, so complex rmw
* is handled in the write patch (handle_stripe_dirtying).
*
* 2. when journal space is critical (R5C_LOG_CRITICAL=1)
*
* It is important to be able to flush all stripes in raid5-cache.
* Therefore, we need reserve some space on the journal device for
* these flushes. If flush operation includes pending writes to the
* stripe, we need to reserve (conf->raid_disk + 1) pages per stripe
* for the flush out. If we exclude these pending writes from flush
* operation, we only need (conf->max_degraded + 1) pages per stripe.
* Therefore, excluding pending writes in these cases enables more
* efficient use of the journal device.
*
* Note: To make sure the stripe makes progress, we only delay
* towrite for stripes with data already in journal (injournal > 0).
* When LOG_CRITICAL, stripes with injournal == 0 will be sent to
* no_space_stripes list.
*
* 3. during journal failure
* In journal failure, we try to flush all cached data to raid disks
* based on data in stripe cache. The array is read-only to upper
* layers, so we would skip all pending writes.
*
*/
static inline bool delay_towrite(struct r5conf *conf,
struct r5dev *dev,
struct stripe_head_state *s)
{
/* case 1 above */
if (!test_bit(R5_OVERWRITE, &dev->flags) &&
!test_bit(R5_Insync, &dev->flags) && s->injournal)
return true;
/* case 2 above */
if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state) &&
s->injournal > 0)
return true;
/* case 3 above */
if (s->log_failed && s->injournal)
return true;
return false;
}
static void
schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
int rcw, int expand)
{
int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx, disks = sh->disks;
struct r5conf *conf = sh->raid_conf;
int level = conf->level;
if (rcw) {
/*
* In some cases, handle_stripe_dirtying initially decided to
* run rmw and allocates extra page for prexor. However, rcw is
* cheaper later on. We need to free the extra page now,
* because we won't be able to do that in ops_complete_prexor().
*/
r5c_release_extra_page(sh);
for (i = disks; i--; ) {
struct r5dev *dev = &sh->dev[i];
if (dev->towrite && !delay_towrite(conf, dev, s)) {
set_bit(R5_LOCKED, &dev->flags);
set_bit(R5_Wantdrain, &dev->flags);
if (!expand)
clear_bit(R5_UPTODATE, &dev->flags);
s->locked++;
} else if (test_bit(R5_InJournal, &dev->flags)) {
set_bit(R5_LOCKED, &dev->flags);
s->locked++;
}
}
/* if we are not expanding this is a proper write request, and
* there will be bios with new data to be drained into the
* stripe cache
*/
if (!expand) {
if (!s->locked)
/* False alarm, nothing to do */
return;
sh->reconstruct_state = reconstruct_state_drain_run;
set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
} else
sh->reconstruct_state = reconstruct_state_run;
set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
if (s->locked + conf->max_degraded == disks)
if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
atomic_inc(&conf->pending_full_writes);
} else {
BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
BUG_ON(level == 6 &&
(!(test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags) ||
test_bit(R5_Wantcompute, &sh->dev[qd_idx].flags))));
for (i = disks; i--; ) {
struct r5dev *dev = &sh->dev[i];
if (i == pd_idx || i == qd_idx)
continue;
if (dev->towrite &&
(test_bit(R5_UPTODATE, &dev->flags) ||
test_bit(R5_Wantcompute, &dev->flags))) {
set_bit(R5_Wantdrain, &dev->flags);
set_bit(R5_LOCKED, &dev->flags);
clear_bit(R5_UPTODATE, &dev->flags);
s->locked++;
} else if (test_bit(R5_InJournal, &dev->flags)) {
set_bit(R5_LOCKED, &dev->flags);
s->locked++;
}
}
if (!s->locked)
/* False alarm - nothing to do */
return;
sh->reconstruct_state = reconstruct_state_prexor_drain_run;
set_bit(STRIPE_OP_PREXOR, &s->ops_request);
set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
}
/* keep the parity disk(s) locked while asynchronous operations
* are in flight
*/
set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
s->locked++;
if (level == 6) {
int qd_idx = sh->qd_idx;
struct r5dev *dev = &sh->dev[qd_idx];
set_bit(R5_LOCKED, &dev->flags);
clear_bit(R5_UPTODATE, &dev->flags);
s->locked++;
}
if (raid5_has_ppl(sh->raid_conf) && sh->ppl_page &&
test_bit(STRIPE_OP_BIODRAIN, &s->ops_request) &&
!test_bit(STRIPE_FULL_WRITE, &sh->state) &&
test_bit(R5_Insync, &sh->dev[pd_idx].flags))
set_bit(STRIPE_OP_PARTIAL_PARITY, &s->ops_request);
pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
__func__, (unsigned long long)sh->sector,
s->locked, s->ops_request);
}
/*
* Each stripe/dev can have one or more bion attached.
* toread/towrite point to the first in a chain.
* The bi_next chain must be in order.
*/
static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx,
int forwrite, int previous)
{
struct bio **bip;
struct r5conf *conf = sh->raid_conf;
int firstwrite=0;
pr_debug("adding bi b#%llu to stripe s#%llu\n",
(unsigned long long)bi->bi_iter.bi_sector,
(unsigned long long)sh->sector);
spin_lock_irq(&sh->stripe_lock);
sh->dev[dd_idx].write_hint = bi->bi_write_hint;
/* Don't allow new IO added to stripes in batch list */
if (sh->batch_head)
goto overlap;
if (forwrite) {
bip = &sh->dev[dd_idx].towrite;
if (*bip == NULL)
firstwrite = 1;
} else
bip = &sh->dev[dd_idx].toread;
while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector) {
if (bio_end_sector(*bip) > bi->bi_iter.bi_sector)
goto overlap;
bip = & (*bip)->bi_next;
}
if (*bip && (*bip)->bi_iter.bi_sector < bio_end_sector(bi))
goto overlap;
if (forwrite && raid5_has_ppl(conf)) {
/*
* With PPL only writes to consecutive data chunks within a
* stripe are allowed because for a single stripe_head we can
* only have one PPL entry at a time, which describes one data
* range. Not really an overlap, but wait_for_overlap can be
* used to handle this.
*/
sector_t sector;
sector_t first = 0;
sector_t last = 0;
int count = 0;
int i;
for (i = 0; i < sh->disks; i++) {
if (i != sh->pd_idx &&
(i == dd_idx || sh->dev[i].towrite)) {
sector = sh->dev[i].sector;
if (count == 0 || sector < first)
first = sector;
if (sector > last)
last = sector;
count++;
}
}
if (first + conf->chunk_sectors * (count - 1) != last)
goto overlap;
}
if (!forwrite || previous)
clear_bit(STRIPE_BATCH_READY, &sh->state);
BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
if (*bip)
bi->bi_next = *bip;
*bip = bi;
bio_inc_remaining(bi);
md_write_inc(conf->mddev, bi);
if (forwrite) {
/* check if page is covered */
sector_t sector = sh->dev[dd_idx].sector;
for (bi=sh->dev[dd_idx].towrite;
sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
bi && bi->bi_iter.bi_sector <= sector;
bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
if (bio_end_sector(bi) >= sector)
sector = bio_end_sector(bi);
}
if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
if (!test_and_set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags))
sh->overwrite_disks++;
}
pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
(unsigned long long)(*bip)->bi_iter.bi_sector,
(unsigned long long)sh->sector, dd_idx);
if (conf->mddev->bitmap && firstwrite) {
/* Cannot hold spinlock over bitmap_startwrite,
* but must ensure this isn't added to a batch until
* we have added to the bitmap and set bm_seq.
* So set STRIPE_BITMAP_PENDING to prevent
* batching.
* If multiple add_stripe_bio() calls race here they
* much all set STRIPE_BITMAP_PENDING. So only the first one
* to complete "bitmap_startwrite" gets to set
* STRIPE_BIT_DELAY. This is important as once a stripe
* is added to a batch, STRIPE_BIT_DELAY cannot be changed
* any more.
*/
set_bit(STRIPE_BITMAP_PENDING, &sh->state);
spin_unlock_irq(&sh->stripe_lock);
md_bitmap_startwrite(conf->mddev->bitmap, sh->sector,
STRIPE_SECTORS, 0);
spin_lock_irq(&sh->stripe_lock);
clear_bit(STRIPE_BITMAP_PENDING, &sh->state);
if (!sh->batch_head) {
sh->bm_seq = conf->seq_flush+1;
set_bit(STRIPE_BIT_DELAY, &sh->state);
}
}
spin_unlock_irq(&sh->stripe_lock);
if (stripe_can_batch(sh))
stripe_add_to_batch_list(conf, sh);
return 1;
overlap:
set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
spin_unlock_irq(&sh->stripe_lock);
return 0;
}
static void end_reshape(struct r5conf *conf);
static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
struct stripe_head *sh)
{
int sectors_per_chunk =
previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
int dd_idx;
int chunk_offset = sector_div(stripe, sectors_per_chunk);
int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
raid5_compute_sector(conf,
stripe * (disks - conf->max_degraded)
*sectors_per_chunk + chunk_offset,
previous,
&dd_idx, sh);
}
static void
handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
struct stripe_head_state *s, int disks)
{
int i;
BUG_ON(sh->batch_head);
for (i = disks; i--; ) {
struct bio *bi;
int bitmap_end = 0;
if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
struct md_rdev *rdev;
rcu_read_lock();
rdev = rcu_dereference(conf->disks[i].rdev);
if (rdev && test_bit(In_sync, &rdev->flags) &&
!test_bit(Faulty, &rdev->flags))
atomic_inc(&rdev->nr_pending);
else
rdev = NULL;
rcu_read_unlock();
if (rdev) {
if (!rdev_set_badblocks(
rdev,
sh->sector,
STRIPE_SECTORS, 0))
md_error(conf->mddev, rdev);
rdev_dec_pending(rdev, conf->mddev);
}
}
spin_lock_irq(&sh->stripe_lock);
/* fail all writes first */
bi = sh->dev[i].towrite;
sh->dev[i].towrite = NULL;
sh->overwrite_disks = 0;
spin_unlock_irq(&sh->stripe_lock);
if (bi)
bitmap_end = 1;
log_stripe_write_finished(sh);
if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
wake_up(&conf->wait_for_overlap);
while (bi && bi->bi_iter.bi_sector <
sh->dev[i].sector + STRIPE_SECTORS) {
struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
md_write_end(conf->mddev);
bio_io_error(bi);
bi = nextbi;
}
if (bitmap_end)
md_bitmap_endwrite(conf->mddev->bitmap, sh->sector,
STRIPE_SECTORS, 0, 0);
bitmap_end = 0;
/* and fail all 'written' */
bi = sh->dev[i].written;
sh->dev[i].written = NULL;
if (test_and_clear_bit(R5_SkipCopy, &sh->dev[i].flags)) {
WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
sh->dev[i].page = sh->dev[i].orig_page;
}
if (bi) bitmap_end = 1;
while (bi && bi->bi_iter.bi_sector <
sh->dev[i].sector + STRIPE_SECTORS) {
struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
md_write_end(conf->mddev);
bio_io_error(bi);
bi = bi2;
}
/* fail any reads if this device is non-operational and
* the data has not reached the cache yet.
*/
if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
s->failed > conf->max_degraded &&
(!test_bit(R5_Insync, &sh->dev[i].flags) ||
test_bit(R5_ReadError, &sh->dev[i].flags))) {
spin_lock_irq(&sh->stripe_lock);
bi = sh->dev[i].toread;
sh->dev[i].toread = NULL;
spin_unlock_irq(&sh->stripe_lock);
if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
wake_up(&conf->wait_for_overlap);
if (bi)
s->to_read--;
while (bi && bi->bi_iter.bi_sector <
sh->dev[i].sector + STRIPE_SECTORS) {
struct bio *nextbi =
r5_next_bio(bi, sh->dev[i].sector);
bio_io_error(bi);
bi = nextbi;
}
}
if (bitmap_end)
md_bitmap_endwrite(conf->mddev->bitmap, sh->sector,
STRIPE_SECTORS, 0, 0);
/* If we were in the middle of a write the parity block might
* still be locked - so just clear all R5_LOCKED flags
*/
clear_bit(R5_LOCKED, &sh->dev[i].flags);
}
s->to_write = 0;
s->written = 0;
if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
if (atomic_dec_and_test(&conf->pending_full_writes))
md_wakeup_thread(conf->mddev->thread);
}
static void
handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
struct stripe_head_state *s)
{
int abort = 0;
int i;
BUG_ON(sh->batch_head);
clear_bit(STRIPE_SYNCING, &sh->state);
if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
wake_up(&conf->wait_for_overlap);
s->syncing = 0;
s->replacing = 0;
/* There is nothing more to do for sync/check/repair.
* Don't even need to abort as that is handled elsewhere
* if needed, and not always wanted e.g. if there is a known
* bad block here.
* For recover/replace we need to record a bad block on all
* non-sync devices, or abort the recovery
*/
if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
/* During recovery devices cannot be removed, so
* locking and refcounting of rdevs is not needed
*/
rcu_read_lock();
for (i = 0; i < conf->raid_disks; i++) {
struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
if (rdev
&& !test_bit(Faulty, &rdev->flags)
&& !test_bit(In_sync, &rdev->flags)
&& !rdev_set_badblocks(rdev, sh->sector,
STRIPE_SECTORS, 0))
abort = 1;
rdev = rcu_dereference(conf->disks[i].replacement);
if (rdev
&& !test_bit(Faulty, &rdev->flags)
&& !test_bit(In_sync, &rdev->flags)
&& !rdev_set_badblocks(rdev, sh->sector,
STRIPE_SECTORS, 0))
abort = 1;
}
rcu_read_unlock();
if (abort)
conf->recovery_disabled =
conf->mddev->recovery_disabled;
}
md_done_sync(conf->mddev, STRIPE_SECTORS, !abort);
}
static int want_replace(struct stripe_head *sh, int disk_idx)
{
struct md_rdev *rdev;
int rv = 0;
rcu_read_lock();
rdev = rcu_dereference(sh->raid_conf->disks[disk_idx].replacement);
if (rdev
&& !test_bit(Faulty, &rdev->flags)
&& !test_bit(In_sync, &rdev->flags)
&& (rdev->recovery_offset <= sh->sector
|| rdev->mddev->recovery_cp <= sh->sector))
rv = 1;
rcu_read_unlock();
return rv;
}
static int need_this_block(struct stripe_head *sh, struct stripe_head_state *s,
int disk_idx, int disks)
{
struct r5dev *dev = &sh->dev[disk_idx];
struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
&sh->dev[s->failed_num[1]] };
int i;
if (test_bit(R5_LOCKED, &dev->flags) ||
test_bit(R5_UPTODATE, &dev->flags))
/* No point reading this as we already have it or have
* decided to get it.
*/
return 0;
if (dev->toread ||
(dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)))
/* We need this block to directly satisfy a request */
return 1;
if (s->syncing || s->expanding ||
(s->replacing && want_replace(sh, disk_idx)))
/* When syncing, or expanding we read everything.
* When replacing, we need the replaced block.
*/
return 1;
if ((s->failed >= 1 && fdev[0]->toread) ||
(s->failed >= 2 && fdev[1]->toread))
/* If we want to read from a failed device, then
* we need to actually read every other device.
*/
return 1;
/* Sometimes neither read-modify-write nor reconstruct-write
* cycles can work. In those cases we read every block we
* can. Then the parity-update is certain to have enough to
* work with.
* This can only be a problem when we need to write something,
* and some device has failed. If either of those tests
* fail we need look no further.
*/
if (!s->failed || !s->to_write)
return 0;
if (test_bit(R5_Insync, &dev->flags) &&
!test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
/* Pre-reads at not permitted until after short delay
* to gather multiple requests. However if this
* device is no Insync, the block could only be computed
* and there is no need to delay that.
*/
return 0;
for (i = 0; i < s->failed && i < 2; i++) {
if (fdev[i]->towrite &&
!test_bit(R5_UPTODATE, &fdev[i]->flags) &&
!test_bit(R5_OVERWRITE, &fdev[i]->flags))
/* If we have a partial write to a failed
* device, then we will need to reconstruct
* the content of that device, so all other
* devices must be read.
*/
return 1;
}
/* If we are forced to do a reconstruct-write, either because
* the current RAID6 implementation only supports that, or
* because parity cannot be trusted and we are currently
* recovering it, there is extra need to be careful.
* If one of the devices that we would need to read, because
* it is not being overwritten (and maybe not written at all)
* is missing/faulty, then we need to read everything we can.
*/
if (sh->raid_conf->level != 6 &&
sh->sector < sh->raid_conf->mddev->recovery_cp)
/* reconstruct-write isn't being forced */
return 0;
for (i = 0; i < s->failed && i < 2; i++) {
if (s->failed_num[i] != sh->pd_idx &&
s->failed_num[i] != sh->qd_idx &&
!test_bit(R5_UPTODATE, &fdev[i]->flags) &&
!test_bit(R5_OVERWRITE, &fdev[i]->flags))
return 1;
}
return 0;
}
/* fetch_block - checks the given member device to see if its data needs
* to be read or computed to satisfy a request.
*
* Returns 1 when no more member devices need to be checked, otherwise returns
* 0 to tell the loop in handle_stripe_fill to continue
*/
static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
int disk_idx, int disks)
{
struct r5dev *dev = &sh->dev[disk_idx];
/* is the data in this block needed, and can we get it? */
if (need_this_block(sh, s, disk_idx, disks)) {
/* we would like to get this block, possibly by computing it,
* otherwise read it if the backing disk is insync
*/
BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
BUG_ON(test_bit(R5_Wantread, &dev->flags));
BUG_ON(sh->batch_head);
/*
* In the raid6 case if the only non-uptodate disk is P
* then we already trusted P to compute the other failed
* drives. It is safe to compute rather than re-read P.
* In other cases we only compute blocks from failed
* devices, otherwise check/repair might fail to detect
* a real inconsistency.
*/
if ((s->uptodate == disks - 1) &&
((sh->qd_idx >= 0 && sh->pd_idx == disk_idx) ||
(s->failed && (disk_idx == s->failed_num[0] ||
disk_idx == s->failed_num[1])))) {
/* have disk failed, and we're requested to fetch it;
* do compute it
*/
pr_debug("Computing stripe %llu block %d\n",
(unsigned long long)sh->sector, disk_idx);
set_bit(STRIPE_COMPUTE_RUN, &sh->state);
set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
set_bit(R5_Wantcompute, &dev->flags);
sh->ops.target = disk_idx;
sh->ops.target2 = -1; /* no 2nd target */
s->req_compute = 1;
/* Careful: from this point on 'uptodate' is in the eye
* of raid_run_ops which services 'compute' operations
* before writes. R5_Wantcompute flags a block that will
* be R5_UPTODATE by the time it is needed for a
* subsequent operation.
*/
s->uptodate++;
return 1;
} else if (s->uptodate == disks-2 && s->failed >= 2) {
/* Computing 2-failure is *very* expensive; only
* do it if failed >= 2
*/
int other;
for (other = disks; other--; ) {
if (other == disk_idx)
continue;
if (!test_bit(R5_UPTODATE,
&sh->dev[other].flags))
break;
}
BUG_ON(other < 0);
pr_debug("Computing stripe %llu blocks %d,%d\n",
(unsigned long long)sh->sector,
disk_idx, other);
set_bit(STRIPE_COMPUTE_RUN, &sh->state);
set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
set_bit(R5_Wantcompute, &sh->dev[other].flags);
sh->ops.target = disk_idx;
sh->ops.target2 = other;
s->uptodate += 2;
s->req_compute = 1;
return 1;
} else if (test_bit(R5_Insync, &dev->flags)) {
set_bit(R5_LOCKED, &dev->flags);
set_bit(R5_Wantread, &dev->flags);
s->locked++;
pr_debug("Reading block %d (sync=%d)\n",
disk_idx, s->syncing);
}
}
return 0;
}
/**
* handle_stripe_fill - read or compute data to satisfy pending requests.
*/
static void handle_stripe_fill(struct stripe_head *sh,
struct stripe_head_state *s,
int disks)
{
int i;
/* look for blocks to read/compute, skip this if a compute
* is already in flight, or if the stripe contents are in the
* midst of changing due to a write
*/
if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
!sh->reconstruct_state) {
/*
* For degraded stripe with data in journal, do not handle
* read requests yet, instead, flush the stripe to raid
* disks first, this avoids handling complex rmw of write
* back cache (prexor with orig_page, and then xor with
* page) in the read path
*/
if (s->injournal && s->failed) {
if (test_bit(STRIPE_R5C_CACHING, &sh->state))
r5c_make_stripe_write_out(sh);
goto out;
}
for (i = disks; i--; )
if (fetch_block(sh, s, i, disks))
break;
}
out:
set_bit(STRIPE_HANDLE, &sh->state);
}
static void break_stripe_batch_list(struct stripe_head *head_sh,
unsigned long handle_flags);
/* handle_stripe_clean_event
* any written block on an uptodate or failed drive can be returned.
* Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
* never LOCKED, so we don't need to test 'failed' directly.
*/
static void handle_stripe_clean_event(struct r5conf *conf,
struct stripe_head *sh, int disks)
{
int i;
struct r5dev *dev;
int discard_pending = 0;
struct stripe_head *head_sh = sh;
bool do_endio = false;
for (i = disks; i--; )
if (sh->dev[i].written) {
dev = &sh->dev[i];
if (!test_bit(R5_LOCKED, &dev->flags) &&
(test_bit(R5_UPTODATE, &dev->flags) ||
test_bit(R5_Discard, &dev->flags) ||
test_bit(R5_SkipCopy, &dev->flags))) {
/* We can return any write requests */
struct bio *wbi, *wbi2;
pr_debug("Return write for disc %d\n", i);
if (test_and_clear_bit(R5_Discard, &dev->flags))
clear_bit(R5_UPTODATE, &dev->flags);
if (test_and_clear_bit(R5_SkipCopy, &dev->flags)) {
WARN_ON(test_bit(R5_UPTODATE, &dev->flags));
}
do_endio = true;
returnbi:
dev->page = dev->orig_page;
wbi = dev->written;
dev->written = NULL;
while (wbi && wbi->bi_iter.bi_sector <
dev->sector + STRIPE_SECTORS) {
wbi2 = r5_next_bio(wbi, dev->sector);
md_write_end(conf->mddev);
bio_endio(wbi);
wbi = wbi2;
}
md_bitmap_endwrite(conf->mddev->bitmap, sh->sector,
STRIPE_SECTORS,
!test_bit(STRIPE_DEGRADED, &sh->state),
0);
if (head_sh->batch_head) {
sh = list_first_entry(&sh->batch_list,
struct stripe_head,
batch_list);
if (sh != head_sh) {
dev = &sh->dev[i];
goto returnbi;
}
}
sh = head_sh;
dev = &sh->dev[i];
} else if (test_bit(R5_Discard, &dev->flags))
discard_pending = 1;
}
log_stripe_write_finished(sh);
if (!discard_pending &&
test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) {
int hash;
clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
if (sh->qd_idx >= 0) {
clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags);
}
/* now that discard is done we can proceed with any sync */
clear_bit(STRIPE_DISCARD, &sh->state);
/*
* SCSI discard will change some bio fields and the stripe has
* no updated data, so remove it from hash list and the stripe
* will be reinitialized
*/
unhash:
hash = sh->hash_lock_index;
spin_lock_irq(conf->hash_locks + hash);
remove_hash(sh);
spin_unlock_irq(conf->hash_locks + hash);
if (head_sh->batch_head) {
sh = list_first_entry(&sh->batch_list,
struct stripe_head, batch_list);
if (sh != head_sh)
goto unhash;
}
sh = head_sh;
if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
set_bit(STRIPE_HANDLE, &sh->state);
}
if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
if (atomic_dec_and_test(&conf->pending_full_writes))
md_wakeup_thread(conf->mddev->thread);
if (head_sh->batch_head && do_endio)
break_stripe_batch_list(head_sh, STRIPE_EXPAND_SYNC_FLAGS);
}
/*
* For RMW in write back cache, we need extra page in prexor to store the
* old data. This page is stored in dev->orig_page.
*
* This function checks whether we have data for prexor. The exact logic
* is:
* R5_UPTODATE && (!R5_InJournal || R5_OrigPageUPTDODATE)
*/
static inline bool uptodate_for_rmw(struct r5dev *dev)
{
return (test_bit(R5_UPTODATE, &dev->flags)) &&
(!test_bit(R5_InJournal, &dev->flags) ||
test_bit(R5_OrigPageUPTDODATE, &dev->flags));
}
static int handle_stripe_dirtying(struct r5conf *conf,
struct stripe_head *sh,
struct stripe_head_state *s,
int disks)
{
int rmw = 0, rcw = 0, i;
sector_t recovery_cp = conf->mddev->recovery_cp;
/* Check whether resync is now happening or should start.
* If yes, then the array is dirty (after unclean shutdown or
* initial creation), so parity in some stripes might be inconsistent.
* In this case, we need to always do reconstruct-write, to ensure
* that in case of drive failure or read-error correction, we
* generate correct data from the parity.
*/
if (conf->rmw_level == PARITY_DISABLE_RMW ||
(recovery_cp < MaxSector && sh->sector >= recovery_cp &&
s->failed == 0)) {
/* Calculate the real rcw later - for now make it
* look like rcw is cheaper
*/
rcw = 1; rmw = 2;
pr_debug("force RCW rmw_level=%u, recovery_cp=%llu sh->sector=%llu\n",
conf->rmw_level, (unsigned long long)recovery_cp,
(unsigned long long)sh->sector);
} else for (i = disks; i--; ) {
/* would I have to read this buffer for read_modify_write */
struct r5dev *dev = &sh->dev[i];
if (((dev->towrite && !delay_towrite(conf, dev, s)) ||
i == sh->pd_idx || i == sh->qd_idx ||
test_bit(R5_InJournal, &dev->flags)) &&
!test_bit(R5_LOCKED, &dev->flags) &&
!(uptodate_for_rmw(dev) ||
test_bit(R5_Wantcompute, &dev->flags))) {
if (test_bit(R5_Insync, &dev->flags))
rmw++;
else
rmw += 2*disks; /* cannot read it */
}
/* Would I have to read this buffer for reconstruct_write */
if (!test_bit(R5_OVERWRITE, &dev->flags) &&
i != sh->pd_idx && i != sh->qd_idx &&
!test_bit(R5_LOCKED, &dev->flags) &&
!(test_bit(R5_UPTODATE, &dev->flags) ||
test_bit(R5_Wantcompute, &dev->flags))) {
if (test_bit(R5_Insync, &dev->flags))
rcw++;
else
rcw += 2*disks;
}
}
pr_debug("for sector %llu state 0x%lx, rmw=%d rcw=%d\n",
(unsigned long long)sh->sector, sh->state, rmw, rcw);
set_bit(STRIPE_HANDLE, &sh->state);
if ((rmw < rcw || (rmw == rcw && conf->rmw_level == PARITY_PREFER_RMW)) && rmw > 0) {
/* prefer read-modify-write, but need to get some data */
if (conf->mddev->queue)
blk_add_trace_msg(conf->mddev->queue,
"raid5 rmw %llu %d",
(unsigned long long)sh->sector, rmw);
for (i = disks; i--; ) {
struct r5dev *dev = &sh->dev[i];
if (test_bit(R5_InJournal, &dev->flags) &&
dev->page == dev->orig_page &&
!test_bit(R5_LOCKED, &sh->dev[sh->pd_idx].flags)) {
/* alloc page for prexor */
struct page *p = alloc_page(GFP_NOIO);
if (p) {
dev->orig_page = p;
continue;
}
/*
* alloc_page() failed, try use
* disk_info->extra_page
*/
if (!test_and_set_bit(R5C_EXTRA_PAGE_IN_USE,
&conf->cache_state)) {
r5c_use_extra_page(sh);
break;
}
/* extra_page in use, add to delayed_list */
set_bit(STRIPE_DELAYED, &sh->state);
s->waiting_extra_page = 1;
return -EAGAIN;
}
}
for (i = disks; i--; ) {
struct r5dev *dev = &sh->dev[i];
if (((dev->towrite && !delay_towrite(conf, dev, s)) ||
i == sh->pd_idx || i == sh->qd_idx ||
test_bit(R5_InJournal, &dev->flags)) &&
!test_bit(R5_LOCKED, &dev->flags) &&
!(uptodate_for_rmw(dev) ||
test_bit(R5_Wantcompute, &dev->flags)) &&
test_bit(R5_Insync, &dev->flags)) {
if (test_bit(STRIPE_PREREAD_ACTIVE,
&sh->state)) {
pr_debug("Read_old block %d for r-m-w\n",
i);
set_bit(R5_LOCKED, &dev->flags);
set_bit(R5_Wantread, &dev->flags);
s->locked++;
} else {
set_bit(STRIPE_DELAYED, &sh->state);
set_bit(STRIPE_HANDLE, &sh->state);
}
}
}
}
if ((rcw < rmw || (rcw == rmw && conf->rmw_level != PARITY_PREFER_RMW)) && rcw > 0) {
/* want reconstruct write, but need to get some data */
int qread =0;
rcw = 0;
for (i = disks; i--; ) {
struct r5dev *dev = &sh->dev[i];
if (!test_bit(R5_OVERWRITE, &dev->flags) &&
i != sh->pd_idx && i != sh->qd_idx &&
!test_bit(R5_LOCKED, &dev->flags) &&
!(test_bit(R5_UPTODATE, &dev->flags) ||
test_bit(R5_Wantcompute, &dev->flags))) {
rcw++;
if (test_bit(R5_Insync, &dev->flags) &&
test_bit(STRIPE_PREREAD_ACTIVE,
&sh->state)) {
pr_debug("Read_old block "
"%d for Reconstruct\n", i);
set_bit(R5_LOCKED, &dev->flags);
set_bit(R5_Wantread, &dev->flags);
s->locked++;
qread++;
} else {
set_bit(STRIPE_DELAYED, &sh->state);
set_bit(STRIPE_HANDLE, &sh->state);
}
}
}
if (rcw && conf->mddev->queue)
blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d",
(unsigned long long)sh->sector,
rcw, qread, test_bit(STRIPE_DELAYED, &sh->state));
}
if (rcw > disks && rmw > disks &&
!test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
set_bit(STRIPE_DELAYED, &sh->state);
/* now if nothing is locked, and if we have enough data,
* we can start a write request
*/
/* since handle_stripe can be called at any time we need to handle the
* case where a compute block operation has been submitted and then a
* subsequent call wants to start a write request. raid_run_ops only
* handles the case where compute block and reconstruct are requested
* simultaneously. If this is not the case then new writes need to be
* held off until the compute completes.
*/
if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
(s->locked == 0 && (rcw == 0 || rmw == 0) &&
!test_bit(STRIPE_BIT_DELAY, &sh->state)))
schedule_reconstruction(sh, s, rcw == 0, 0);
return 0;
}
static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
struct stripe_head_state *s, int disks)
{
struct r5dev *dev = NULL;
BUG_ON(sh->batch_head);
set_bit(STRIPE_HANDLE, &sh->state);
switch (sh->check_state) {
case check_state_idle:
/* start a new check operation if there are no failures */
if (s->failed == 0) {
BUG_ON(s->uptodate != disks);
sh->check_state = check_state_run;
set_bit(STRIPE_OP_CHECK, &s->ops_request);
clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
s->uptodate--;
break;
}
dev = &sh->dev[s->failed_num[0]];
/* fall through */
case check_state_compute_result:
sh->check_state = check_state_idle;
if (!dev)
dev = &sh->dev[sh->pd_idx];
/* check that a write has not made the stripe insync */
if (test_bit(STRIPE_INSYNC, &sh->state))
break;
/* either failed parity check, or recovery is happening */
BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
BUG_ON(s->uptodate != disks);
set_bit(R5_LOCKED, &dev->flags);
s->locked++;
set_bit(R5_Wantwrite, &dev->flags);
clear_bit(STRIPE_DEGRADED, &sh->state);
set_bit(STRIPE_INSYNC, &sh->state);
break;
case check_state_run:
break; /* we will be called again upon completion */
case check_state_check_result:
sh->check_state = check_state_idle;
/* if a failure occurred during the check operation, leave
* STRIPE_INSYNC not set and let the stripe be handled again
*/
if (s->failed)
break;
/* handle a successful check operation, if parity is correct
* we are done. Otherwise update the mismatch count and repair
* parity if !MD_RECOVERY_CHECK
*/
if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
/* parity is correct (on disc,
* not in buffer any more)
*/
set_bit(STRIPE_INSYNC, &sh->state);
else {
atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) {
/* don't try to repair!! */
set_bit(STRIPE_INSYNC, &sh->state);
pr_warn_ratelimited("%s: mismatch sector in range "
"%llu-%llu\n", mdname(conf->mddev),
(unsigned long long) sh->sector,
(unsigned long long) sh->sector +
STRIPE_SECTORS);
} else {
sh->check_state = check_state_compute_run;
set_bit(STRIPE_COMPUTE_RUN, &sh->state);
set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
set_bit(R5_Wantcompute,
&sh->dev[sh->pd_idx].flags);
sh->ops.target = sh->pd_idx;
sh->ops.target2 = -1;
s->uptodate++;
}
}
break;
case check_state_compute_run:
break;
default:
pr_err("%s: unknown check_state: %d sector: %llu\n",
__func__, sh->check_state,
(unsigned long long) sh->sector);
BUG();
}
}
static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
struct stripe_head_state *s,
int disks)
{
int pd_idx = sh->pd_idx;
int qd_idx = sh->qd_idx;
struct r5dev *dev;
BUG_ON(sh->batch_head);
set_bit(STRIPE_HANDLE, &sh->state);
BUG_ON(s->failed > 2);
/* Want to check and possibly repair P and Q.
* However there could be one 'failed' device, in which
* case we can only check one of them, possibly using the
* other to generate missing data
*/
switch (sh->check_state) {
case check_state_idle:
/* start a new check operation if there are < 2 failures */
if (s->failed == s->q_failed) {
/* The only possible failed device holds Q, so it
* makes sense to check P (If anything else were failed,
* we would have used P to recreate it).
*/
sh->check_state = check_state_run;
}
if (!s->q_failed && s->failed < 2) {
/* Q is not failed, and we didn't use it to generate
* anything, so it makes sense to check it
*/
if (sh->check_state == check_state_run)
sh->check_state = check_state_run_pq;
else
sh->check_state = check_state_run_q;
}
/* discard potentially stale zero_sum_result */
sh->ops.zero_sum_result = 0;
if (sh->check_state == check_state_run) {
/* async_xor_zero_sum destroys the contents of P */
clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
s->uptodate--;
}
if (sh->check_state >= check_state_run &&
sh->check_state <= check_state_run_pq) {
/* async_syndrome_zero_sum preserves P and Q, so
* no need to mark them !uptodate here
*/
set_bit(STRIPE_OP_CHECK, &s->ops_request);
break;
}
/* we have 2-disk failure */
BUG_ON(s->failed != 2);
/* fall through */
case check_state_compute_result:
sh->check_state = check_state_idle;
/* check that a write has not made the stripe insync */
if (test_bit(STRIPE_INSYNC, &sh->state))
break;
/* now write out any block on a failed drive,
* or P or Q if they were recomputed
*/
dev = NULL;
if (s->failed == 2) {
dev = &sh->dev[s->failed_num[1]];
s->locked++;
set_bit(R5_LOCKED, &dev->flags);
set_bit(R5_Wantwrite, &dev->flags);
}
if (s->failed >= 1) {
dev = &sh->dev[s->failed_num[0]];
s->locked++;
set_bit(R5_LOCKED, &dev->flags);
set_bit(R5_Wantwrite, &dev->flags);
}
if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
dev = &sh->dev[pd_idx];
s->locked++;
set_bit(R5_LOCKED, &dev->flags);
set_bit(R5_Wantwrite, &dev->flags);
}
if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
dev = &sh->dev[qd_idx];
s->locked++;
set_bit(R5_LOCKED, &dev->flags);
set_bit(R5_Wantwrite, &dev->flags);
}
if (WARN_ONCE(dev && !test_bit(R5_UPTODATE, &dev->flags),
"%s: disk%td not up to date\n",
mdname(conf->mddev),
dev - (struct r5dev *) &sh->dev)) {
clear_bit(R5_LOCKED, &dev->flags);
clear_bit(R5_Wantwrite, &dev->flags);
s->locked--;
}
clear_bit(STRIPE_DEGRADED, &sh->state);
set_bit(STRIPE_INSYNC, &sh->state);
break;
case check_state_run:
case check_state_run_q:
case check_state_run_pq:
break; /* we will be called again upon completion */
case check_state_check_result:
sh->check_state = check_state_idle;
/* handle a successful check operation, if parity is correct
* we are done. Otherwise update the mismatch count and repair
* parity if !MD_RECOVERY_CHECK
*/
if (sh->ops.zero_sum_result == 0) {
/* both parities are correct */
if (!s->failed)
set_bit(STRIPE_INSYNC, &sh->state);
else {
/* in contrast to the raid5 case we can validate
* parity, but still have a failure to write
* back
*/
sh->check_state = check_state_compute_result;
/* Returning at this point means that we may go
* off and bring p and/or q uptodate again so
* we make sure to check zero_sum_result again
* to verify if p or q need writeback
*/
}
} else {
atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) {
/* don't try to repair!! */
set_bit(STRIPE_INSYNC, &sh->state);
pr_warn_ratelimited("%s: mismatch sector in range "
"%llu-%llu\n", mdname(conf->mddev),
(unsigned long long) sh->sector,
(unsigned long long) sh->sector +
STRIPE_SECTORS);
} else {
int *target = &sh->ops.target;
sh->ops.target = -1;
sh->ops.target2 = -1;
sh->check_state = check_state_compute_run;
set_bit(STRIPE_COMPUTE_RUN, &sh->state);
set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
set_bit(R5_Wantcompute,
&sh->dev[pd_idx].flags);
*target = pd_idx;
target = &sh->ops.target2;
s->uptodate++;
}
if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
set_bit(R5_Wantcompute,
&sh->dev[qd_idx].flags);
*target = qd_idx;
s->uptodate++;
}
}
}
break;
case check_state_compute_run:
break;
default:
pr_warn("%s: unknown check_state: %d sector: %llu\n",
__func__, sh->check_state,
(unsigned long long) sh->sector);
BUG();
}
}
static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
{
int i;
/* We have read all the blocks in this stripe and now we need to
* copy some of them into a target stripe for expand.
*/
struct dma_async_tx_descriptor *tx = NULL;
BUG_ON(sh->batch_head);
clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
for (i = 0; i < sh->disks; i++)
if (i != sh->pd_idx && i != sh->qd_idx) {
int dd_idx, j;
struct stripe_head *sh2;
struct async_submit_ctl submit;
sector_t bn = raid5_compute_blocknr(sh, i, 1);
sector_t s = raid5_compute_sector(conf, bn, 0,
&dd_idx, NULL);
sh2 = raid5_get_active_stripe(conf, s, 0, 1, 1);
if (sh2 == NULL)
/* so far only the early blocks of this stripe
* have been requested. When later blocks
* get requested, we will try again
*/
continue;
if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
/* must have already done this block */
raid5_release_stripe(sh2);
continue;
}
/* place all the copies on one channel */
init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
tx = async_memcpy(sh2->dev[dd_idx].page,
sh->dev[i].page, 0, 0, STRIPE_SIZE,
&submit);
set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
for (j = 0; j < conf->raid_disks; j++)
if (j != sh2->pd_idx &&
j != sh2->qd_idx &&
!test_bit(R5_Expanded, &sh2->dev[j].flags))
break;
if (j == conf->raid_disks) {
set_bit(STRIPE_EXPAND_READY, &sh2->state);
set_bit(STRIPE_HANDLE, &sh2->state);
}
raid5_release_stripe(sh2);
}
/* done submitting copies, wait for them to complete */
async_tx_quiesce(&tx);
}
/*
* handle_stripe - do things to a stripe.
*
* We lock the stripe by setting STRIPE_ACTIVE and then examine the
* state of various bits to see what needs to be done.
* Possible results:
* return some read requests which now have data
* return some write requests which are safely on storage
* schedule a read on some buffers
* schedule a write of some buffers
* return confirmation of parity correctness
*
*/
static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
{
struct r5conf *conf = sh->raid_conf;
int disks = sh->disks;
struct r5dev *dev;
int i;
int do_recovery = 0;
memset(s, 0, sizeof(*s));
s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state) && !sh->batch_head;
s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state) && !sh->batch_head;
s->failed_num[0] = -1;
s->failed_num[1] = -1;
s->log_failed = r5l_log_disk_error(conf);
/* Now to look around and see what can be done */
rcu_read_lock();
for (i=disks; i--; ) {
struct md_rdev *rdev;
sector_t first_bad;
int bad_sectors;
int is_bad = 0;
dev = &sh->dev[i];
pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
i, dev->flags,
dev->toread, dev->towrite, dev->written);
/* maybe we can reply to a read
*
* new wantfill requests are only permitted while
* ops_complete_biofill is guaranteed to be inactive
*/
if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
!test_bit(STRIPE_BIOFILL_RUN, &sh->state))
set_bit(R5_Wantfill, &dev->flags);
/* now count some things */
if (test_bit(R5_LOCKED, &dev->flags))
s->locked++;
if (test_bit(R5_UPTODATE, &dev->flags))
s->uptodate++;
if (test_bit(R5_Wantcompute, &dev->flags)) {
s->compute++;
BUG_ON(s->compute > 2);
}
if (test_bit(R5_Wantfill, &dev->flags))
s->to_fill++;
else if (dev->toread)
s->to_read++;
if (dev->towrite) {
s->to_write++;
if (!test_bit(R5_OVERWRITE, &dev->flags))
s->non_overwrite++;
}
if (dev->written)
s->written++;
/* Prefer to use the replacement for reads, but only
* if it is recovered enough and has no bad blocks.
*/
rdev = rcu_dereference(conf->disks[i].replacement);
if (rdev && !test_bit(Faulty, &rdev->flags) &&
rdev->recovery_offset >= sh->sector + STRIPE_SECTORS &&
!is_badblock(rdev, sh->sector, STRIPE_SECTORS,
&first_bad, &bad_sectors))
set_bit(R5_ReadRepl, &dev->flags);
else {
if (rdev && !test_bit(Faulty, &rdev->flags))
set_bit(R5_NeedReplace, &dev->flags);
else
clear_bit(R5_NeedReplace, &dev->flags);
rdev = rcu_dereference(conf->disks[i].rdev);
clear_bit(R5_ReadRepl, &dev->flags);
}
if (rdev && test_bit(Faulty, &rdev->flags))
rdev = NULL;
if (rdev) {
is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
&first_bad, &bad_sectors);
if (s->blocked_rdev == NULL
&& (test_bit(Blocked, &rdev->flags)
|| is_bad < 0)) {
if (is_bad < 0)
set_bit(BlockedBadBlocks,
&rdev->flags);
s->blocked_rdev = rdev;
atomic_inc(&rdev->nr_pending);
}
}
clear_bit(R5_Insync, &dev->flags);
if (!rdev)
/* Not in-sync */;
else if (is_bad) {
/* also not in-sync */
if (!test_bit(WriteErrorSeen, &rdev->flags) &&
test_bit(R5_UPTODATE, &dev->flags)) {
/* treat as in-sync, but with a read error
* which we can now try to correct
*/
set_bit(R5_Insync, &dev->flags);
set_bit(R5_ReadError, &dev->flags);
}
} else if (test_bit(In_sync, &rdev->flags))
set_bit(R5_Insync, &dev->flags);
else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
/* in sync if before recovery_offset */
set_bit(R5_Insync, &dev->flags);
else if (test_bit(R5_UPTODATE, &dev->flags) &&
test_bit(R5_Expanded, &dev->flags))
/* If we've reshaped into here, we assume it is Insync.
* We will shortly update recovery_offset to make
* it official.
*/
set_bit(R5_Insync, &dev->flags);
if (test_bit(R5_WriteError, &dev->flags)) {
/* This flag does not apply to '.replacement'
* only to .rdev, so make sure to check that*/
struct md_rdev *rdev2 = rcu_dereference(
conf->disks[i].rdev);
if (rdev2 == rdev)
clear_bit(R5_Insync, &dev->flags);
if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
s->handle_bad_blocks = 1;
atomic_inc(&rdev2->nr_pending);
} else
clear_bit(R5_WriteError, &dev->flags);
}
if (test_bit(R5_MadeGood, &dev->flags)) {
/* This flag does not apply to '.replacement'
* only to .rdev, so make sure to check that*/
struct md_rdev *rdev2 = rcu_dereference(
conf->disks[i].rdev);
if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
s->handle_bad_blocks = 1;
atomic_inc(&rdev2->nr_pending);
} else
clear_bit(R5_MadeGood, &dev->flags);
}
if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
struct md_rdev *rdev2 = rcu_dereference(
conf->disks[i].replacement);
if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
s->handle_bad_blocks = 1;
atomic_inc(&rdev2->nr_pending);
} else
clear_bit(R5_MadeGoodRepl, &dev->flags);
}
if (!test_bit(R5_Insync, &dev->flags)) {
/* The ReadError flag will just be confusing now */
clear_bit(R5_ReadError, &dev->flags);
clear_bit(R5_ReWrite, &dev->flags);
}
if (test_bit(R5_ReadError, &dev->flags))
clear_bit(R5_Insync, &dev->flags);
if (!test_bit(R5_Insync, &dev->flags)) {
if (s->failed < 2)
s->failed_num[s->failed] = i;
s->failed++;
if (rdev && !test_bit(Faulty, &rdev->flags))
do_recovery = 1;
else if (!rdev) {
rdev = rcu_dereference(
conf->disks[i].replacement);
if (rdev && !test_bit(Faulty, &rdev->flags))
do_recovery = 1;
}
}
if (test_bit(R5_InJournal, &dev->flags))
s->injournal++;
if (test_bit(R5_InJournal, &dev->flags) && dev->written)
s->just_cached++;
}
if (test_bit(STRIPE_SYNCING, &sh->state)) {
/* If there is a failed device being replaced,
* we must be recovering.
* else if we are after recovery_cp, we must be syncing
* else if MD_RECOVERY_REQUESTED is set, we also are syncing.
* else we can only be replacing
* sync and recovery both need to read all devices, and so
* use the same flag.
*/
if (do_recovery ||
sh->sector >= conf->mddev->recovery_cp ||
test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
s->syncing = 1;
else
s->replacing = 1;
}
rcu_read_unlock();
}
static int clear_batch_ready(struct stripe_head *sh)
{
/* Return '1' if this is a member of batch, or
* '0' if it is a lone stripe or a head which can now be
* handled.
*/
struct stripe_head *tmp;
if (!test_and_clear_bit(STRIPE_BATCH_READY, &sh->state))
return (sh->batch_head && sh->batch_head != sh);
spin_lock(&sh->stripe_lock);
if (!sh->batch_head) {
spin_unlock(&sh->stripe_lock);
return 0;
}
/*
* this stripe could be added to a batch list before we check
* BATCH_READY, skips it
*/
if (sh->batch_head != sh) {
spin_unlock(&sh->stripe_lock);
return 1;
}
spin_lock(&sh->batch_lock);
list_for_each_entry(tmp, &sh->batch_list, batch_list)
clear_bit(STRIPE_BATCH_READY, &tmp->state);
spin_unlock(&sh->batch_lock);
spin_unlock(&sh->stripe_lock);
/*
* BATCH_READY is cleared, no new stripes can be added.
* batch_list can be accessed without lock
*/
return 0;
}
static void break_stripe_batch_list(struct stripe_head *head_sh,
unsigned long handle_flags)
{
struct stripe_head *sh, *next;
int i;
int do_wakeup = 0;
list_for_each_entry_safe(sh, next, &head_sh->batch_list, batch_list) {
list_del_init(&sh->batch_list);
WARN_ONCE(sh->state & ((1 << STRIPE_ACTIVE) |
(1 << STRIPE_SYNCING) |
(1 << STRIPE_REPLACED) |
(1 << STRIPE_DELAYED) |
(1 << STRIPE_BIT_DELAY) |
(1 << STRIPE_FULL_WRITE) |
(1 << STRIPE_BIOFILL_RUN) |
(1 << STRIPE_COMPUTE_RUN) |
(1 << STRIPE_OPS_REQ_PENDING) |
(1 << STRIPE_DISCARD) |
(1 << STRIPE_BATCH_READY) |
(1 << STRIPE_BATCH_ERR) |
(1 << STRIPE_BITMAP_PENDING)),
"stripe state: %lx\n", sh->state);
WARN_ONCE(head_sh->state & ((1 << STRIPE_DISCARD) |
(1 << STRIPE_REPLACED)),
"head stripe state: %lx\n", head_sh->state);
set_mask_bits(&sh->state, ~(STRIPE_EXPAND_SYNC_FLAGS |
(1 << STRIPE_PREREAD_ACTIVE) |
(1 << STRIPE_DEGRADED) |
(1 << STRIPE_ON_UNPLUG_LIST)),
head_sh->state & (1 << STRIPE_INSYNC));
sh->check_state = head_sh->check_state;
sh->reconstruct_state = head_sh->reconstruct_state;
spin_lock_irq(&sh->stripe_lock);
sh->batch_head = NULL;
spin_unlock_irq(&sh->stripe_lock);
for (i = 0; i < sh->disks; i++) {
if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
do_wakeup = 1;
sh->dev[i].flags = head_sh->dev[i].flags &
(~((1 << R5_WriteError) | (1 << R5_Overlap)));
}
if (handle_flags == 0 ||
sh->state & handle_flags)
set_bit(STRIPE_HANDLE, &sh->state);
raid5_release_stripe(sh);
}
spin_lock_irq(&head_sh->stripe_lock);
head_sh->batch_head = NULL;
spin_unlock_irq(&head_sh->stripe_lock);
for (i = 0; i < head_sh->disks; i++)
if (test_and_clear_bit(R5_Overlap, &head_sh->dev[i].flags))
do_wakeup = 1;
if (head_sh->state & handle_flags)
set_bit(STRIPE_HANDLE, &head_sh->state);
if (do_wakeup)
wake_up(&head_sh->raid_conf->wait_for_overlap);
}
static void handle_stripe(struct stripe_head *sh)
{
struct stripe_head_state s;
struct r5conf *conf = sh->raid_conf;
int i;
int prexor;
int disks = sh->disks;
struct r5dev *pdev, *qdev;
clear_bit(STRIPE_HANDLE, &sh->state);
if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
/* already being handled, ensure it gets handled
* again when current action finishes */
set_bit(STRIPE_HANDLE, &sh->state);
return;
}
if (clear_batch_ready(sh) ) {
clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
return;
}
if (test_and_clear_bit(STRIPE_BATCH_ERR, &sh->state))
break_stripe_batch_list(sh, 0);
if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) && !sh->batch_head) {
spin_lock(&sh->stripe_lock);
/*
* Cannot process 'sync' concurrently with 'discard'.
* Flush data in r5cache before 'sync'.
*/
if (!test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state) &&
!test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state) &&
!test_bit(STRIPE_DISCARD, &sh->state) &&
test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
set_bit(STRIPE_SYNCING, &sh->state);
clear_bit(STRIPE_INSYNC, &sh->state);
clear_bit(STRIPE_REPLACED, &sh->state);
}
spin_unlock(&sh->stripe_lock);
}
clear_bit(STRIPE_DELAYED, &sh->state);
pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
"pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
(unsigned long long)sh->sector, sh->state,
atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
sh->check_state, sh->reconstruct_state);
analyse_stripe(sh, &s);
if (test_bit(STRIPE_LOG_TRAPPED, &sh->state))
goto finish;
if (s.handle_bad_blocks ||
test_bit(MD_SB_CHANGE_PENDING, &conf->mddev->sb_flags)) {
set_bit(STRIPE_HANDLE, &sh->state);
goto finish;
}
if (unlikely(s.blocked_rdev)) {
if (s.syncing || s.expanding || s.expanded ||
s.replacing || s.to_write || s.written) {
set_bit(STRIPE_HANDLE, &sh->state);
goto finish;
}
/* There is nothing for the blocked_rdev to block */
rdev_dec_pending(s.blocked_rdev, conf->mddev);
s.blocked_rdev = NULL;
}
if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
set_bit(STRIPE_BIOFILL_RUN, &sh->state);
}
pr_debug("locked=%d uptodate=%d to_read=%d"
" to_write=%d failed=%d failed_num=%d,%d\n",
s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
s.failed_num[0], s.failed_num[1]);
/*
* check if the array has lost more than max_degraded devices and,
* if so, some requests might need to be failed.
*
* When journal device failed (log_failed), we will only process
* the stripe if there is data need write to raid disks
*/
if (s.failed > conf->max_degraded ||
(s.log_failed && s.injournal == 0)) {
sh->check_state = 0;
sh->reconstruct_state = 0;
break_stripe_batch_list(sh, 0);
if (s.to_read+s.to_write+s.written)
handle_failed_stripe(conf, sh, &s, disks);
if (s.syncing + s.replacing)
handle_failed_sync(conf, sh, &s);
}
/* Now we check to see if any write operations have recently
* completed
*/
prexor = 0;
if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
prexor = 1;
if (sh->reconstruct_state == reconstruct_state_drain_result ||
sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
sh->reconstruct_state = reconstruct_state_idle;
/* All the 'written' buffers and the parity block are ready to
* be written back to disk
*/
BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) &&
!test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags));
BUG_ON(sh->qd_idx >= 0 &&
!test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) &&
!test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags));
for (i = disks; i--; ) {
struct r5dev *dev = &sh->dev[i];
if (test_bit(R5_LOCKED, &dev->flags) &&
(i == sh->pd_idx || i == sh->qd_idx ||
dev->written || test_bit(R5_InJournal,
&dev->flags))) {
pr_debug("Writing block %d\n", i);
set_bit(R5_Wantwrite, &dev->flags);
if (prexor)
continue;
if (s.failed > 1)
continue;
if (!test_bit(R5_Insync, &dev->flags) ||
((i == sh->pd_idx || i == sh->qd_idx) &&
s.failed == 0))
set_bit(STRIPE_INSYNC, &sh->state);
}
}
if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
s.dec_preread_active = 1;
}
/*
* might be able to return some write requests if the parity blocks
* are safe, or on a failed drive
*/
pdev = &sh->dev[sh->pd_idx];
s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
|| (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
qdev = &sh->dev[sh->qd_idx];
s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
|| (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
|| conf->level < 6;
if (s.written &&
(s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
&& !test_bit(R5_LOCKED, &pdev->flags)
&& (test_bit(R5_UPTODATE, &pdev->flags) ||
test_bit(R5_Discard, &pdev->flags))))) &&
(s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
&& !test_bit(R5_LOCKED, &qdev->flags)
&& (test_bit(R5_UPTODATE, &qdev->flags) ||
test_bit(R5_Discard, &qdev->flags))))))
handle_stripe_clean_event(conf, sh, disks);
if (s.just_cached)
r5c_handle_cached_data_endio(conf, sh, disks);
log_stripe_write_finished(sh);
/* Now we might consider reading some blocks, either to check/generate
* parity, or to satisfy requests
* or to load a block that is being partially written.
*/
if (s.to_read || s.non_overwrite
|| (conf->level == 6 && s.to_write && s.failed)
|| (s.syncing && (s.uptodate + s.compute < disks))
|| s.replacing
|| s.expanding)
handle_stripe_fill(sh, &s, disks);
/*
* When the stripe finishes full journal write cycle (write to journal
* and raid disk), this is the clean up procedure so it is ready for
* next operation.
*/
r5c_finish_stripe_write_out(conf, sh, &s);
/*
* Now to consider new write requests, cache write back and what else,
* if anything should be read. We do not handle new writes when:
* 1/ A 'write' operation (copy+xor) is already in flight.
* 2/ A 'check' operation is in flight, as it may clobber the parity
* block.
* 3/ A r5c cache log write is in flight.
*/
if (!sh->reconstruct_state && !sh->check_state && !sh->log_io) {
if (!r5c_is_writeback(conf->log)) {
if (s.to_write)
handle_stripe_dirtying(conf, sh, &s, disks);
} else { /* write back cache */
int ret = 0;
/* First, try handle writes in caching phase */
if (s.to_write)
ret = r5c_try_caching_write(conf, sh, &s,
disks);
/*
* If caching phase failed: ret == -EAGAIN
* OR
* stripe under reclaim: !caching && injournal
*
* fall back to handle_stripe_dirtying()
*/
if (ret == -EAGAIN ||
/* stripe under reclaim: !caching && injournal */
(!test_bit(STRIPE_R5C_CACHING, &sh->state) &&
s.injournal > 0)) {
ret = handle_stripe_dirtying(conf, sh, &s,
disks);
if (ret == -EAGAIN)
goto finish;
}
}
}
/* maybe we need to check and possibly fix the parity for this stripe
* Any reads will already have been scheduled, so we just see if enough
* data is available. The parity check is held off while parity
* dependent operations are in flight.
*/
if (sh->check_state ||
(s.syncing && s.locked == 0 &&
!test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
!test_bit(STRIPE_INSYNC, &sh->state))) {
if (conf->level == 6)
handle_parity_checks6(conf, sh, &s, disks);
else
handle_parity_checks5(conf, sh, &s, disks);
}
if ((s.replacing || s.syncing) && s.locked == 0
&& !test_bit(STRIPE_COMPUTE_RUN, &sh->state)
&& !test_bit(STRIPE_REPLACED, &sh->state)) {
/* Write out to replacement devices where possible */
for (i = 0; i < conf->raid_disks; i++)
if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags));
set_bit(R5_WantReplace, &sh->dev[i].flags);
set_bit(R5_LOCKED, &sh->dev[i].flags);
s.locked++;
}
if (s.replacing)
set_bit(STRIPE_INSYNC, &sh->state);
set_bit(STRIPE_REPLACED, &sh->state);
}
if ((s.syncing || s.replacing) && s.locked == 0 &&
!test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
test_bit(STRIPE_INSYNC, &sh->state)) {
md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
clear_bit(STRIPE_SYNCING, &sh->state);
if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
wake_up(&conf->wait_for_overlap);
}
/* If the failed drives are just a ReadError, then we might need
* to progress the repair/check process
*/
if (s.failed <= conf->max_degraded && !conf->mddev->ro)
for (i = 0; i < s.failed; i++) {
struct r5dev *dev = &sh->dev[s.failed_num[i]];
if (test_bit(R5_ReadError, &dev->flags)
&& !test_bit(R5_LOCKED, &dev->flags)
&& test_bit(R5_UPTODATE, &dev->flags)
) {
if (!test_bit(R5_ReWrite, &dev->flags)) {
set_bit(R5_Wantwrite, &dev->flags);
set_bit(R5_ReWrite, &dev->flags);
set_bit(R5_LOCKED, &dev->flags);
s.locked++;
} else {
/* let's read it back */
set_bit(R5_Wantread, &dev->flags);
set_bit(R5_LOCKED, &dev->flags);
s.locked++;
}
}
}
/* Finish reconstruct operations initiated by the expansion process */
if (sh->reconstruct_state == reconstruct_state_result) {
struct stripe_head *sh_src
= raid5_get_active_stripe(conf, sh->sector, 1, 1, 1);
if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
/* sh cannot be written until sh_src has been read.
* so arrange for sh to be delayed a little
*/
set_bit(STRIPE_DELAYED, &sh->state);
set_bit(STRIPE_HANDLE, &sh->state);
if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
&sh_src->state))
atomic_inc(&conf->preread_active_stripes);
raid5_release_stripe(sh_src);
goto finish;
}
if (sh_src)
raid5_release_stripe(sh_src);
sh->reconstruct_state = reconstruct_state_idle;
clear_bit(STRIPE_EXPANDING, &sh->state);
for (i = conf->raid_disks; i--; ) {
set_bit(R5_Wantwrite, &sh->dev[i].flags);
set_bit(R5_LOCKED, &sh->dev[i].flags);
s.locked++;
}
}
if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
!sh->reconstruct_state) {
/* Need to write out all blocks after computing parity */
sh->disks = conf->raid_disks;
stripe_set_idx(sh->sector, conf, 0, sh);
schedule_reconstruction(sh, &s, 1, 1);
} else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
clear_bit(STRIPE_EXPAND_READY, &sh->state);
atomic_dec(&conf->reshape_stripes);
wake_up(&conf->wait_for_overlap);
md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
}
if (s.expanding && s.locked == 0 &&
!test_bit(STRIPE_COMPUTE_RUN, &sh->state))
handle_stripe_expansion(conf, sh);
finish:
/* wait for this device to become unblocked */
if (unlikely(s.blocked_rdev)) {
if (conf->mddev->external)
md_wait_for_blocked_rdev(s.blocked_rdev,
conf->mddev);
else
/* Internal metadata will immediately
* be written by raid5d, so we don't
* need to wait here.
*/
rdev_dec_pending(s.blocked_rdev,
conf->mddev);
}
if (s.handle_bad_blocks)
for (i = disks; i--; ) {
struct md_rdev *rdev;
struct r5dev *dev = &sh->dev[i];
if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
/* We own a safe reference to the rdev */
rdev = conf->disks[i].rdev;
if (!rdev_set_badblocks(rdev, sh->sector,
STRIPE_SECTORS, 0))
md_error(conf->mddev, rdev);
rdev_dec_pending(rdev, conf->mddev);
}
if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
rdev = conf->disks[i].rdev;
rdev_clear_badblocks(rdev, sh->sector,
STRIPE_SECTORS, 0);
rdev_dec_pending(rdev, conf->mddev);
}
if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
rdev = conf->disks[i].replacement;
if (!rdev)
/* rdev have been moved down */
rdev = conf->disks[i].rdev;
rdev_clear_badblocks(rdev, sh->sector,
STRIPE_SECTORS, 0);
rdev_dec_pending(rdev, conf->mddev);
}
}
if (s.ops_request)
raid_run_ops(sh, s.ops_request);
ops_run_io(sh, &s);
if (s.dec_preread_active) {
/* We delay this until after ops_run_io so that if make_request
* is waiting on a flush, it won't continue until the writes
* have actually been submitted.
*/
atomic_dec(&conf->preread_active_stripes);
if (atomic_read(&conf->preread_active_stripes) <
IO_THRESHOLD)
md_wakeup_thread(conf->mddev->thread);
}
clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
}
static void raid5_activate_delayed(struct r5conf *conf)
{
if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
while (!list_empty(&conf->delayed_list)) {
struct list_head *l = conf->delayed_list.next;
struct stripe_head *sh;
sh = list_entry(l, struct stripe_head, lru);
list_del_init(l);
clear_bit(STRIPE_DELAYED, &sh->state);
if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
atomic_inc(&conf->preread_active_stripes);
list_add_tail(&sh->lru, &conf->hold_list);
raid5_wakeup_stripe_thread(sh);
}
}
}
static void activate_bit_delay(struct r5conf *conf,
struct list_head *temp_inactive_list)
{
/* device_lock is held */
struct list_head head;
list_add(&head, &conf->bitmap_list);
list_del_init(&conf->bitmap_list);
while (!list_empty(&head)) {
struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
int hash;
list_del_init(&sh->lru);
atomic_inc(&sh->count);
hash = sh->hash_lock_index;
__release_stripe(conf, sh, &temp_inactive_list[hash]);
}
}
static int raid5_congested(struct mddev *mddev, int bits)
{
struct r5conf *conf = mddev->private;
/* No difference between reads and writes. Just check
* how busy the stripe_cache is
*/
if (test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state))
return 1;
/* Also checks whether there is pressure on r5cache log space */
if (test_bit(R5C_LOG_TIGHT, &conf->cache_state))
return 1;
if (conf->quiesce)
return 1;
if (atomic_read(&conf->empty_inactive_list_nr))
return 1;
return 0;
}
static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
{
struct r5conf *conf = mddev->private;
sector_t sector = bio->bi_iter.bi_sector;
unsigned int chunk_sectors;
unsigned int bio_sectors = bio_sectors(bio);
WARN_ON_ONCE(bio->bi_partno);
chunk_sectors = min(conf->chunk_sectors, conf->prev_chunk_sectors);
return chunk_sectors >=
((sector & (chunk_sectors - 1)) + bio_sectors);
}
/*
* add bio to the retry LIFO ( in O(1) ... we are in interrupt )
* later sampled by raid5d.
*/
static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
{
unsigned long flags;
spin_lock_irqsave(&conf->device_lock, flags);
bi->bi_next = conf->retry_read_aligned_list;
conf->retry_read_aligned_list = bi;
spin_unlock_irqrestore(&conf->device_lock, flags);
md_wakeup_thread(conf->mddev->thread);
}
static struct bio *remove_bio_from_retry(struct r5conf *conf,
unsigned int *offset)
{
struct bio *bi;
bi = conf->retry_read_aligned;
if (bi) {
*offset = conf->retry_read_offset;
conf->retry_read_aligned = NULL;
return bi;
}
bi = conf->retry_read_aligned_list;
if(bi) {
conf->retry_read_aligned_list = bi->bi_next;
bi->bi_next = NULL;
*offset = 0;
}
return bi;
}
/*
* The "raid5_align_endio" should check if the read succeeded and if it
* did, call bio_endio on the original bio (having bio_put the new bio
* first).
* If the read failed..
*/
static void raid5_align_endio(struct bio *bi)
{
struct bio* raid_bi = bi->bi_private;
struct mddev *mddev;
struct r5conf *conf;
struct md_rdev *rdev;
blk_status_t error = bi->bi_status;
bio_put(bi);
rdev = (void*)raid_bi->bi_next;
raid_bi->bi_next = NULL;
mddev = rdev->mddev;
conf = mddev->private;
rdev_dec_pending(rdev, conf->mddev);
if (!error) {
bio_endio(raid_bi);
if (atomic_dec_and_test(&conf->active_aligned_reads))
wake_up(&conf->wait_for_quiescent);
return;
}
pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
add_bio_to_retry(raid_bi, conf);
}
static int raid5_read_one_chunk(struct mddev *mddev, struct bio *raid_bio)
{
struct r5conf *conf = mddev->private;
int dd_idx;
struct bio* align_bi;
struct md_rdev *rdev;
sector_t end_sector;
if (!in_chunk_boundary(mddev, raid_bio)) {
pr_debug("%s: non aligned\n", __func__);
return 0;
}
/*
* use bio_clone_fast to make a copy of the bio
*/
align_bi = bio_clone_fast(raid_bio, GFP_NOIO, &mddev->bio_set);
if (!align_bi)
return 0;
/*
* set bi_end_io to a new function, and set bi_private to the
* original bio.
*/
align_bi->bi_end_io = raid5_align_endio;
align_bi->bi_private = raid_bio;
/*
* compute position
*/
align_bi->bi_iter.bi_sector =
raid5_compute_sector(conf, raid_bio->bi_iter.bi_sector,
0, &dd_idx, NULL);
end_sector = bio_end_sector(align_bi);
rcu_read_lock();
rdev = rcu_dereference(conf->disks[dd_idx].replacement);
if (!rdev || test_bit(Faulty, &rdev->flags) ||
rdev->recovery_offset < end_sector) {
rdev = rcu_dereference(conf->disks[dd_idx].rdev);
if (rdev &&
(test_bit(Faulty, &rdev->flags) ||
!(test_bit(In_sync, &rdev->flags) ||
rdev->recovery_offset >= end_sector)))
rdev = NULL;
}
if (r5c_big_stripe_cached(conf, align_bi->bi_iter.bi_sector)) {
rcu_read_unlock();
bio_put(align_bi);
return 0;
}
if (rdev) {
sector_t first_bad;
int bad_sectors;
atomic_inc(&rdev->nr_pending);
rcu_read_unlock();
raid_bio->bi_next = (void*)rdev;
bio_set_dev(align_bi, rdev->bdev);
if (is_badblock(rdev, align_bi->bi_iter.bi_sector,
bio_sectors(align_bi),
&first_bad, &bad_sectors)) {
bio_put(align_bi);
rdev_dec_pending(rdev, mddev);
return 0;
}
/* No reshape active, so we can trust rdev->data_offset */
align_bi->bi_iter.bi_sector += rdev->data_offset;
spin_lock_irq(&conf->device_lock);
wait_event_lock_irq(conf->wait_for_quiescent,
conf->quiesce == 0,
conf->device_lock);
atomic_inc(&conf->active_aligned_reads);
spin_unlock_irq(&conf->device_lock);
if (mddev->gendisk)
trace_block_bio_remap(align_bi->bi_disk->queue,
align_bi, disk_devt(mddev->gendisk),
raid_bio->bi_iter.bi_sector);
generic_make_request(align_bi);
return 1;
} else {
rcu_read_unlock();
bio_put(align_bi);
return 0;
}
}
static struct bio *chunk_aligned_read(struct mddev *mddev, struct bio *raid_bio)
{
struct bio *split;
sector_t sector = raid_bio->bi_iter.bi_sector;
unsigned chunk_sects = mddev->chunk_sectors;
unsigned sectors = chunk_sects - (sector & (chunk_sects-1));
if (sectors < bio_sectors(raid_bio)) {
struct r5conf *conf = mddev->private;
split = bio_split(raid_bio, sectors, GFP_NOIO, &conf->bio_split);
bio_chain(split, raid_bio);
generic_make_request(raid_bio);
raid_bio = split;
}
if (!raid5_read_one_chunk(mddev, raid_bio))
return raid_bio;
return NULL;
}
/* __get_priority_stripe - get the next stripe to process
*
* Full stripe writes are allowed to pass preread active stripes up until
* the bypass_threshold is exceeded. In general the bypass_count
* increments when the handle_list is handled before the hold_list; however, it
* will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
* stripe with in flight i/o. The bypass_count will be reset when the
* head of the hold_list has changed, i.e. the head was promoted to the
* handle_list.
*/
static struct stripe_head *__get_priority_stripe(struct r5conf *conf, int group)
{
struct stripe_head *sh, *tmp;
struct list_head *handle_list = NULL;
struct r5worker_group *wg;
bool second_try = !r5c_is_writeback(conf->log) &&
!r5l_log_disk_error(conf);
bool try_loprio = test_bit(R5C_LOG_TIGHT, &conf->cache_state) ||
r5l_log_disk_error(conf);
again:
wg = NULL;
sh = NULL;
if (conf->worker_cnt_per_group == 0) {
handle_list = try_loprio ? &conf->loprio_list :
&conf->handle_list;
} else if (group != ANY_GROUP) {
handle_list = try_loprio ? &conf->worker_groups[group].loprio_list :
&conf->worker_groups[group].handle_list;
wg = &conf->worker_groups[group];
} else {
int i;
for (i = 0; i < conf->group_cnt; i++) {
handle_list = try_loprio ? &conf->worker_groups[i].loprio_list :
&conf->worker_groups[i].handle_list;
wg = &conf->worker_groups[i];
if (!list_empty(handle_list))
break;
}
}
pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
__func__,
list_empty(handle_list) ? "empty" : "busy",
list_empty(&conf->hold_list) ? "empty" : "busy",
atomic_read(&conf->pending_full_writes), conf->bypass_count);
if (!list_empty(handle_list)) {
sh = list_entry(handle_list->next, typeof(*sh), lru);
if (list_empty(&conf->hold_list))
conf->bypass_count = 0;
else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
if (conf->hold_list.next == conf->last_hold)
conf->bypass_count++;
else {
conf->last_hold = conf->hold_list.next;
conf->bypass_count -= conf->bypass_threshold;
if (conf->bypass_count < 0)
conf->bypass_count = 0;
}
}
} else if (!list_empty(&conf->hold_list) &&
((conf->bypass_threshold &&
conf->bypass_count > conf->bypass_threshold) ||
atomic_read(&conf->pending_full_writes) == 0)) {
list_for_each_entry(tmp, &conf->hold_list, lru) {
if (conf->worker_cnt_per_group == 0 ||
group == ANY_GROUP ||
!cpu_online(tmp->cpu) ||
cpu_to_group(tmp->cpu) == group) {
sh = tmp;
break;
}
}
if (sh) {
conf->bypass_count -= conf->bypass_threshold;
if (conf->bypass_count < 0)
conf->bypass_count = 0;
}
wg = NULL;
}
if (!sh) {
if (second_try)
return NULL;
second_try = true;
try_loprio = !try_loprio;
goto again;
}
if (wg) {
wg->stripes_cnt--;
sh->group = NULL;
}
list_del_init(&sh->lru);
BUG_ON(atomic_inc_return(&sh->count) != 1);
return sh;
}
struct raid5_plug_cb {
struct blk_plug_cb cb;
struct list_head list;
struct list_head temp_inactive_list[NR_STRIPE_HASH_LOCKS];
};
static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule)
{
struct raid5_plug_cb *cb = container_of(
blk_cb, struct raid5_plug_cb, cb);
struct stripe_head *sh;
struct mddev *mddev = cb->cb.data;
struct r5conf *conf = mddev->private;
int cnt = 0;
int hash;
if (cb->list.next && !list_empty(&cb->list)) {
spin_lock_irq(&conf->device_lock);
while (!list_empty(&cb->list)) {
sh = list_first_entry(&cb->list, struct stripe_head, lru);
list_del_init(&sh->lru);
/*
* avoid race release_stripe_plug() sees
* STRIPE_ON_UNPLUG_LIST clear but the stripe
* is still in our list
*/
smp_mb__before_atomic();
clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state);
/*
* STRIPE_ON_RELEASE_LIST could be set here. In that
* case, the count is always > 1 here
*/
hash = sh->hash_lock_index;
__release_stripe(conf, sh, &cb->temp_inactive_list[hash]);
cnt++;
}
spin_unlock_irq(&conf->device_lock);
}
release_inactive_stripe_list(conf, cb->temp_inactive_list,
NR_STRIPE_HASH_LOCKS);
if (mddev->queue)
trace_block_unplug(mddev->queue, cnt, !from_schedule);
kfree(cb);
}
static void release_stripe_plug(struct mddev *mddev,
struct stripe_head *sh)
{
struct blk_plug_cb *blk_cb = blk_check_plugged(
raid5_unplug, mddev,
sizeof(struct raid5_plug_cb));
struct raid5_plug_cb *cb;
if (!blk_cb) {
raid5_release_stripe(sh);
return;
}
cb = container_of(blk_cb, struct raid5_plug_cb, cb);
if (cb->list.next == NULL) {
int i;
INIT_LIST_HEAD(&cb->list);
for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
INIT_LIST_HEAD(cb->temp_inactive_list + i);
}
if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state))
list_add_tail(&sh->lru, &cb->list);
else
raid5_release_stripe(sh);
}
static void make_discard_request(struct mddev *mddev, struct bio *bi)
{
struct r5conf *conf = mddev->private;
sector_t logical_sector, last_sector;
struct stripe_head *sh;
int stripe_sectors;
if (mddev->reshape_position != MaxSector)
/* Skip discard while reshape is happening */
return;
logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
last_sector = bi->bi_iter.bi_sector + (bi->bi_iter.bi_size>>9);
bi->bi_next = NULL;
stripe_sectors = conf->chunk_sectors *
(conf->raid_disks - conf->max_degraded);
logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector,
stripe_sectors);
sector_div(last_sector, stripe_sectors);
logical_sector *= conf->chunk_sectors;
last_sector *= conf->chunk_sectors;
for (; logical_sector < last_sector;
logical_sector += STRIPE_SECTORS) {
DEFINE_WAIT(w);
int d;
again:
sh = raid5_get_active_stripe(conf, logical_sector, 0, 0, 0);
prepare_to_wait(&conf->wait_for_overlap, &w,
TASK_UNINTERRUPTIBLE);
set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
if (test_bit(STRIPE_SYNCING, &sh->state)) {
raid5_release_stripe(sh);
schedule();
goto again;
}
clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
spin_lock_irq(&sh->stripe_lock);
for (d = 0; d < conf->raid_disks; d++) {
if (d == sh->pd_idx || d == sh->qd_idx)
continue;
if (sh->dev[d].towrite || sh->dev[d].toread) {
set_bit(R5_Overlap, &sh->dev[d].flags);
spin_unlock_irq(&sh->stripe_lock);
raid5_release_stripe(sh);
schedule();
goto again;
}
}
set_bit(STRIPE_DISCARD, &sh->state);
finish_wait(&conf->wait_for_overlap, &w);
sh->overwrite_disks = 0;
for (d = 0; d < conf->raid_disks; d++) {
if (d == sh->pd_idx || d == sh->qd_idx)
continue;
sh->dev[d].towrite = bi;
set_bit(R5_OVERWRITE, &sh->dev[d].flags);
bio_inc_remaining(bi);
md_write_inc(mddev, bi);
sh->overwrite_disks++;
}
spin_unlock_irq(&sh->stripe_lock);
if (conf->mddev->bitmap) {
for (d = 0;
d < conf->raid_disks - conf->max_degraded;
d++)
md_bitmap_startwrite(mddev->bitmap,
sh->sector,
STRIPE_SECTORS,
0);
sh->bm_seq = conf->seq_flush + 1;
set_bit(STRIPE_BIT_DELAY, &sh->state);
}
set_bit(STRIPE_HANDLE, &sh->state);
clear_bit(STRIPE_DELAYED, &sh->state);
if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
atomic_inc(&conf->preread_active_stripes);
release_stripe_plug(mddev, sh);
}
bio_endio(bi);
}
static bool raid5_make_request(struct mddev *mddev, struct bio * bi)
{
struct r5conf *conf = mddev->private;
int dd_idx;
sector_t new_sector;
sector_t logical_sector, last_sector;
struct stripe_head *sh;
const int rw = bio_data_dir(bi);
DEFINE_WAIT(w);
bool do_prepare;
bool do_flush = false;
if (unlikely(bi->bi_opf & REQ_PREFLUSH)) {
int ret = log_handle_flush_request(conf, bi);
if (ret == 0)
return true;
if (ret == -ENODEV) {
md_flush_request(mddev, bi);
return true;
}
/* ret == -EAGAIN, fallback */
/*
* if r5l_handle_flush_request() didn't clear REQ_PREFLUSH,
* we need to flush journal device
*/
do_flush = bi->bi_opf & REQ_PREFLUSH;
}
if (!md_write_start(mddev, bi))
return false;
/*
* If array is degraded, better not do chunk aligned read because
* later we might have to read it again in order to reconstruct
* data on failed drives.
*/
if (rw == READ && mddev->degraded == 0 &&
mddev->reshape_position == MaxSector) {
bi = chunk_aligned_read(mddev, bi);
if (!bi)
return true;
}
if (unlikely(bio_op(bi) == REQ_OP_DISCARD)) {
make_discard_request(mddev, bi);
md_write_end(mddev);
return true;
}
logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
last_sector = bio_end_sector(bi);
bi->bi_next = NULL;
prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
int previous;
int seq;
do_prepare = false;
retry:
seq = read_seqcount_begin(&conf->gen_lock);
previous = 0;
if (do_prepare)
prepare_to_wait(&conf->wait_for_overlap, &w,
TASK_UNINTERRUPTIBLE);
if (unlikely(conf->reshape_progress != MaxSector)) {
/* spinlock is needed as reshape_progress may be
* 64bit on a 32bit platform, and so it might be
* possible to see a half-updated value
* Of course reshape_progress could change after
* the lock is dropped, so once we get a reference
* to the stripe that we think it is, we will have
* to check again.
*/
spin_lock_irq(&conf->device_lock);
if (mddev->reshape_backwards
? logical_sector < conf->reshape_progress
: logical_sector >= conf->reshape_progress) {
previous = 1;
} else {
if (mddev->reshape_backwards
? logical_sector < conf->reshape_safe
: logical_sector >= conf->reshape_safe) {
spin_unlock_irq(&conf->device_lock);
schedule();
do_prepare = true;
goto retry;
}
}
spin_unlock_irq(&conf->device_lock);
}
new_sector = raid5_compute_sector(conf, logical_sector,
previous,
&dd_idx, NULL);
pr_debug("raid456: raid5_make_request, sector %llu logical %llu\n",
(unsigned long long)new_sector,
(unsigned long long)logical_sector);
sh = raid5_get_active_stripe(conf, new_sector, previous,
(bi->bi_opf & REQ_RAHEAD), 0);
if (sh) {
if (unlikely(previous)) {
/* expansion might have moved on while waiting for a
* stripe, so we must do the range check again.
* Expansion could still move past after this
* test, but as we are holding a reference to
* 'sh', we know that if that happens,
* STRIPE_EXPANDING will get set and the expansion
* won't proceed until we finish with the stripe.
*/
int must_retry = 0;
spin_lock_irq(&conf->device_lock);
if (mddev->reshape_backwards
? logical_sector >= conf->reshape_progress
: logical_sector < conf->reshape_progress)
/* mismatch, need to try again */
must_retry = 1;
spin_unlock_irq(&conf->device_lock);
if (must_retry) {
raid5_release_stripe(sh);
schedule();
do_prepare = true;
goto retry;
}
}
if (read_seqcount_retry(&conf->gen_lock, seq)) {
/* Might have got the wrong stripe_head
* by accident
*/
raid5_release_stripe(sh);
goto retry;
}
if (test_bit(STRIPE_EXPANDING, &sh->state) ||
!add_stripe_bio(sh, bi, dd_idx, rw, previous)) {
/* Stripe is busy expanding or
* add failed due to overlap. Flush everything
* and wait a while
*/
md_wakeup_thread(mddev->thread);
raid5_release_stripe(sh);
schedule();
do_prepare = true;
goto retry;
}
if (do_flush) {
set_bit(STRIPE_R5C_PREFLUSH, &sh->state);
/* we only need flush for one stripe */
do_flush = false;
}
set_bit(STRIPE_HANDLE, &sh->state);
clear_bit(STRIPE_DELAYED, &sh->state);
if ((!sh->batch_head || sh == sh->batch_head) &&
(bi->bi_opf & REQ_SYNC) &&
!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
atomic_inc(&conf->preread_active_stripes);
release_stripe_plug(mddev, sh);
} else {
/* cannot get stripe for read-ahead, just give-up */
bi->bi_status = BLK_STS_IOERR;
break;
}
}
finish_wait(&conf->wait_for_overlap, &w);
if (rw == WRITE)
md_write_end(mddev);
bio_endio(bi);
return true;
}
static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
{
/* reshaping is quite different to recovery/resync so it is
* handled quite separately ... here.
*
* On each call to sync_request, we gather one chunk worth of
* destination stripes and flag them as expanding.
* Then we find all the source stripes and request reads.
* As the reads complete, handle_stripe will copy the data
* into the destination stripe and release that stripe.
*/
struct r5conf *conf = mddev->private;
struct stripe_head *sh;
struct md_rdev *rdev;
sector_t first_sector, last_sector;
int raid_disks = conf->previous_raid_disks;
int data_disks = raid_disks - conf->max_degraded;
int new_data_disks = conf->raid_disks - conf->max_degraded;
int i;
int dd_idx;
sector_t writepos, readpos, safepos;
sector_t stripe_addr;
int reshape_sectors;
struct list_head stripes;
sector_t retn;
if (sector_nr == 0) {
/* If restarting in the middle, skip the initial sectors */
if (mddev->reshape_backwards &&
conf->reshape_progress < raid5_size(mddev, 0, 0)) {
sector_nr = raid5_size(mddev, 0, 0)
- conf->reshape_progress;
} else if (mddev->reshape_backwards &&
conf->reshape_progress == MaxSector) {
/* shouldn't happen, but just in case, finish up.*/
sector_nr = MaxSector;
} else if (!mddev->reshape_backwards &&
conf->reshape_progress > 0)
sector_nr = conf->reshape_progress;
sector_div(sector_nr, new_data_disks);
if (sector_nr) {
mddev->curr_resync_completed = sector_nr;
sysfs_notify(&mddev->kobj, NULL, "sync_completed");
*skipped = 1;
retn = sector_nr;
goto finish;
}
}
/* We need to process a full chunk at a time.
* If old and new chunk sizes differ, we need to process the
* largest of these
*/
reshape_sectors = max(conf->chunk_sectors, conf->prev_chunk_sectors);
/* We update the metadata at least every 10 seconds, or when
* the data about to be copied would over-write the source of
* the data at the front of the range. i.e. one new_stripe
* along from reshape_progress new_maps to after where
* reshape_safe old_maps to
*/
writepos = conf->reshape_progress;
sector_div(writepos, new_data_disks);
readpos = conf->reshape_progress;
sector_div(readpos, data_disks);
safepos = conf->reshape_safe;
sector_div(safepos, data_disks);
if (mddev->reshape_backwards) {
BUG_ON(writepos < reshape_sectors);
writepos -= reshape_sectors;
readpos += reshape_sectors;
safepos += reshape_sectors;
} else {
writepos += reshape_sectors;
/* readpos and safepos are worst-case calculations.
* A negative number is overly pessimistic, and causes
* obvious problems for unsigned storage. So clip to 0.
*/
readpos -= min_t(sector_t, reshape_sectors, readpos);
safepos -= min_t(sector_t, reshape_sectors, safepos);
}
/* Having calculated the 'writepos' possibly use it
* to set 'stripe_addr' which is where we will write to.
*/
if (mddev->reshape_backwards) {
BUG_ON(conf->reshape_progress == 0);
stripe_addr = writepos;
BUG_ON((mddev->dev_sectors &
~((sector_t)reshape_sectors - 1))
- reshape_sectors - stripe_addr
!= sector_nr);
} else {
BUG_ON(writepos != sector_nr + reshape_sectors);
stripe_addr = sector_nr;
}
/* 'writepos' is the most advanced device address we might write.
* 'readpos' is the least advanced device address we might read.
* 'safepos' is the least address recorded in the metadata as having
* been reshaped.
* If there is a min_offset_diff, these are adjusted either by
* increasing the safepos/readpos if diff is negative, or
* increasing writepos if diff is positive.
* If 'readpos' is then behind 'writepos', there is no way that we can
* ensure safety in the face of a crash - that must be done by userspace
* making a backup of the data. So in that case there is no particular
* rush to update metadata.
* Otherwise if 'safepos' is behind 'writepos', then we really need to
* update the metadata to advance 'safepos' to match 'readpos' so that
* we can be safe in the event of a crash.
* So we insist on updating metadata if safepos is behind writepos and
* readpos is beyond writepos.
* In any case, update the metadata every 10 seconds.
* Maybe that number should be configurable, but I'm not sure it is
* worth it.... maybe it could be a multiple of safemode_delay???
*/
if (conf->min_offset_diff < 0) {
safepos += -conf->min_offset_diff;
readpos += -conf->min_offset_diff;
} else
writepos += conf->min_offset_diff;
if ((mddev->reshape_backwards
? (safepos > writepos && readpos < writepos)
: (safepos < writepos && readpos > writepos)) ||
time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
/* Cannot proceed until we've updated the superblock... */
wait_event(conf->wait_for_overlap,
atomic_read(&conf->reshape_stripes)==0
|| test_bit(MD_RECOVERY_INTR, &mddev->recovery));
if (atomic_read(&conf->reshape_stripes) != 0)
return 0;
mddev->reshape_position = conf->reshape_progress;
mddev->curr_resync_completed = sector_nr;
if (!mddev->reshape_backwards)
/* Can update recovery_offset */
rdev_for_each(rdev, mddev)
if (rdev->raid_disk >= 0 &&
!test_bit(Journal, &rdev->flags) &&
!test_bit(In_sync, &rdev->flags) &&
rdev->recovery_offset < sector_nr)
rdev->recovery_offset = sector_nr;
conf->reshape_checkpoint = jiffies;
set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
md_wakeup_thread(mddev->thread);
wait_event(mddev->sb_wait, mddev->sb_flags == 0 ||
test_bit(MD_RECOVERY_INTR, &mddev->recovery));
if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
return 0;
spin_lock_irq(&conf->device_lock);
conf->reshape_safe = mddev->reshape_position;
spin_unlock_irq(&conf->device_lock);
wake_up(&conf->wait_for_overlap);
sysfs_notify(&mddev->kobj, NULL, "sync_completed");
}
INIT_LIST_HEAD(&stripes);
for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
int j;
int skipped_disk = 0;
sh = raid5_get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
set_bit(STRIPE_EXPANDING, &sh->state);
atomic_inc(&conf->reshape_stripes);
/* If any of this stripe is beyond the end of the old
* array, then we need to zero those blocks
*/
for (j=sh->disks; j--;) {
sector_t s;
if (j == sh->pd_idx)
continue;
if (conf->level == 6 &&
j == sh->qd_idx)
continue;
s = raid5_compute_blocknr(sh, j, 0);
if (s < raid5_size(mddev, 0, 0)) {
skipped_disk = 1;
continue;
}
memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
set_bit(R5_Expanded, &sh->dev[j].flags);
set_bit(R5_UPTODATE, &sh->dev[j].flags);
}
if (!skipped_disk) {
set_bit(STRIPE_EXPAND_READY, &sh->state);
set_bit(STRIPE_HANDLE, &sh->state);
}
list_add(&sh->lru, &stripes);
}
spin_lock_irq(&conf->device_lock);
if (mddev->reshape_backwards)
conf->reshape_progress -= reshape_sectors * new_data_disks;
else
conf->reshape_progress += reshape_sectors * new_data_disks;
spin_unlock_irq(&conf->device_lock);
/* Ok, those stripe are ready. We can start scheduling
* reads on the source stripes.
* The source stripes are determined by mapping the first and last
* block on the destination stripes.
*/
first_sector =
raid5_compute_sector(conf, stripe_addr*(new_data_disks),
1, &dd_idx, NULL);
last_sector =
raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
* new_data_disks - 1),
1, &dd_idx, NULL);
if (last_sector >= mddev->dev_sectors)
last_sector = mddev->dev_sectors - 1;
while (first_sector <= last_sector) {
sh = raid5_get_active_stripe(conf, first_sector, 1, 0, 1);
set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
set_bit(STRIPE_HANDLE, &sh->state);
raid5_release_stripe(sh);
first_sector += STRIPE_SECTORS;
}
/* Now that the sources are clearly marked, we can release
* the destination stripes
*/
while (!list_empty(&stripes)) {
sh = list_entry(stripes.next, struct stripe_head, lru);
list_del_init(&sh->lru);
raid5_release_stripe(sh);
}
/* If this takes us to the resync_max point where we have to pause,
* then we need to write out the superblock.
*/
sector_nr += reshape_sectors;
retn = reshape_sectors;
finish:
if (mddev->curr_resync_completed > mddev->resync_max ||
(sector_nr - mddev->curr_resync_completed) * 2
>= mddev->resync_max - mddev->curr_resync_completed) {
/* Cannot proceed until we've updated the superblock... */
wait_event(conf->wait_for_overlap,
atomic_read(&conf->reshape_stripes) == 0
|| test_bit(MD_RECOVERY_INTR, &mddev->recovery));
if (atomic_read(&conf->reshape_stripes) != 0)
goto ret;
mddev->reshape_position = conf->reshape_progress;
mddev->curr_resync_completed = sector_nr;
if (!mddev->reshape_backwards)
/* Can update recovery_offset */
rdev_for_each(rdev, mddev)
if (rdev->raid_disk >= 0 &&
!test_bit(Journal, &rdev->flags) &&
!test_bit(In_sync, &rdev->flags) &&
rdev->recovery_offset < sector_nr)
rdev->recovery_offset = sector_nr;
conf->reshape_checkpoint = jiffies;
set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
md_wakeup_thread(mddev->thread);
wait_event(mddev->sb_wait,
!test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)
|| test_bit(MD_RECOVERY_INTR, &mddev->recovery));
if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
goto ret;
spin_lock_irq(&conf->device_lock);
conf->reshape_safe = mddev->reshape_position;
spin_unlock_irq(&conf->device_lock);
wake_up(&conf->wait_for_overlap);
sysfs_notify(&mddev->kobj, NULL, "sync_completed");
}
ret:
return retn;
}
static inline sector_t raid5_sync_request(struct mddev *mddev, sector_t sector_nr,
int *skipped)
{
struct r5conf *conf = mddev->private;
struct stripe_head *sh;
sector_t max_sector = mddev->dev_sectors;
sector_t sync_blocks;
int still_degraded = 0;
int i;
if (sector_nr >= max_sector) {
/* just being told to finish up .. nothing much to do */
if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
end_reshape(conf);
return 0;
}
if (mddev->curr_resync < max_sector) /* aborted */
md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
&sync_blocks, 1);
else /* completed sync */
conf->fullsync = 0;
md_bitmap_close_sync(mddev->bitmap);
return 0;
}
/* Allow raid5_quiesce to complete */
wait_event(conf->wait_for_overlap, conf->quiesce != 2);
if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
return reshape_request(mddev, sector_nr, skipped);
/* No need to check resync_max as we never do more than one
* stripe, and as resync_max will always be on a chunk boundary,
* if the check in md_do_sync didn't fire, there is no chance
* of overstepping resync_max here
*/
/* if there is too many failed drives and we are trying
* to resync, then assert that we are finished, because there is
* nothing we can do.
*/
if (mddev->degraded >= conf->max_degraded &&
test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
sector_t rv = mddev->dev_sectors - sector_nr;
*skipped = 1;
return rv;
}
if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
!conf->fullsync &&
!md_bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
sync_blocks >= STRIPE_SECTORS) {
/* we can skip this block, and probably more */
sync_blocks /= STRIPE_SECTORS;
*skipped = 1;
return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
}
md_bitmap_cond_end_sync(mddev->bitmap, sector_nr, false);
sh = raid5_get_active_stripe(conf, sector_nr, 0, 1, 0);
if (sh == NULL) {
sh = raid5_get_active_stripe(conf, sector_nr, 0, 0, 0);
/* make sure we don't swamp the stripe cache if someone else
* is trying to get access
*/
schedule_timeout_uninterruptible(1);
}
/* Need to check if array will still be degraded after recovery/resync
* Note in case of > 1 drive failures it's possible we're rebuilding
* one drive while leaving another faulty drive in array.
*/
rcu_read_lock();
for (i = 0; i < conf->raid_disks; i++) {
struct md_rdev *rdev = READ_ONCE(conf->disks[i].rdev);
if (rdev == NULL || test_bit(Faulty, &rdev->flags))
still_degraded = 1;
}
rcu_read_unlock();
md_bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
set_bit(STRIPE_HANDLE, &sh->state);
raid5_release_stripe(sh);
return STRIPE_SECTORS;
}
static int retry_aligned_read(struct r5conf *conf, struct bio *raid_bio,
unsigned int offset)
{
/* We may not be able to submit a whole bio at once as there
* may not be enough stripe_heads available.
* We cannot pre-allocate enough stripe_heads as we may need
* more than exist in the cache (if we allow ever large chunks).
* So we do one stripe head at a time and record in
* ->bi_hw_segments how many have been done.
*
* We *know* that this entire raid_bio is in one chunk, so
* it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
*/
struct stripe_head *sh;
int dd_idx;
sector_t sector, logical_sector, last_sector;
int scnt = 0;
int handled = 0;
logical_sector = raid_bio->bi_iter.bi_sector &
~((sector_t)STRIPE_SECTORS-1);
sector = raid5_compute_sector(conf, logical_sector,
0, &dd_idx, NULL);
last_sector = bio_end_sector(raid_bio);
for (; logical_sector < last_sector;
logical_sector += STRIPE_SECTORS,
sector += STRIPE_SECTORS,
scnt++) {
if (scnt < offset)
/* already done this stripe */
continue;
sh = raid5_get_active_stripe(conf, sector, 0, 1, 1);
if (!sh) {
/* failed to get a stripe - must wait */
conf->retry_read_aligned = raid_bio;
conf->retry_read_offset = scnt;
return handled;
}
if (!add_stripe_bio(sh, raid_bio, dd_idx, 0, 0)) {
raid5_release_stripe(sh);
conf->retry_read_aligned = raid_bio;
conf->retry_read_offset = scnt;
return handled;
}
set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags);
handle_stripe(sh);
raid5_release_stripe(sh);
handled++;
}
bio_endio(raid_bio);
if (atomic_dec_and_test(&conf->active_aligned_reads))
wake_up(&conf->wait_for_quiescent);
return handled;
}
static int handle_active_stripes(struct r5conf *conf, int group,
struct r5worker *worker,
struct list_head *temp_inactive_list)
__releases(&conf->device_lock)
__acquires(&conf->device_lock)
{
struct stripe_head *batch[MAX_STRIPE_BATCH], *sh;
int i, batch_size = 0, hash;
bool release_inactive = false;
while (batch_size < MAX_STRIPE_BATCH &&
(sh = __get_priority_stripe(conf, group)) != NULL)
batch[batch_size++] = sh;
if (batch_size == 0) {
for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
if (!list_empty(temp_inactive_list + i))
break;
if (i == NR_STRIPE_HASH_LOCKS) {
spin_unlock_irq(&conf->device_lock);
log_flush_stripe_to_raid(conf);
spin_lock_irq(&conf->device_lock);
return batch_size;
}
release_inactive = true;
}
spin_unlock_irq(&conf->device_lock);
release_inactive_stripe_list(conf, temp_inactive_list,
NR_STRIPE_HASH_LOCKS);
r5l_flush_stripe_to_raid(conf->log);
if (release_inactive) {
spin_lock_irq(&conf->device_lock);
return 0;
}
for (i = 0; i < batch_size; i++)
handle_stripe(batch[i]);
log_write_stripe_run(conf);
cond_resched();
spin_lock_irq(&conf->device_lock);
for (i = 0; i < batch_size; i++) {
hash = batch[i]->hash_lock_index;
__release_stripe(conf, batch[i], &temp_inactive_list[hash]);
}
return batch_size;
}
static void raid5_do_work(struct work_struct *work)
{
struct r5worker *worker = container_of(work, struct r5worker, work);
struct r5worker_group *group = worker->group;
struct r5conf *conf = group->conf;
struct mddev *mddev = conf->mddev;
int group_id = group - conf->worker_groups;
int handled;
struct blk_plug plug;
pr_debug("+++ raid5worker active\n");
blk_start_plug(&plug);
handled = 0;
spin_lock_irq(&conf->device_lock);
while (1) {
int batch_size, released;
released = release_stripe_list(conf, worker->temp_inactive_list);
batch_size = handle_active_stripes(conf, group_id, worker,
worker->temp_inactive_list);
worker->working = false;
if (!batch_size && !released)
break;
handled += batch_size;
wait_event_lock_irq(mddev->sb_wait,
!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags),
conf->device_lock);
}
pr_debug("%d stripes handled\n", handled);
spin_unlock_irq(&conf->device_lock);
flush_deferred_bios(conf);
r5l_flush_stripe_to_raid(conf->log);
async_tx_issue_pending_all();
blk_finish_plug(&plug);
pr_debug("--- raid5worker inactive\n");
}
/*
* This is our raid5 kernel thread.
*
* We scan the hash table for stripes which can be handled now.
* During the scan, completed stripes are saved for us by the interrupt
* handler, so that they will not have to wait for our next wakeup.
*/
static void raid5d(struct md_thread *thread)
{
struct mddev *mddev = thread->mddev;
struct r5conf *conf = mddev->private;
int handled;
struct blk_plug plug;
pr_debug("+++ raid5d active\n");
md_check_recovery(mddev);
blk_start_plug(&plug);
handled = 0;
spin_lock_irq(&conf->device_lock);
while (1) {
struct bio *bio;
int batch_size, released;
unsigned int offset;
released = release_stripe_list(conf, conf->temp_inactive_list);
if (released)
clear_bit(R5_DID_ALLOC, &conf->cache_state);
if (
!list_empty(&conf->bitmap_list)) {
/* Now is a good time to flush some bitmap updates */
conf->seq_flush++;
spin_unlock_irq(&conf->device_lock);
md_bitmap_unplug(mddev->bitmap);
spin_lock_irq(&conf->device_lock);
conf->seq_write = conf->seq_flush;
activate_bit_delay(conf, conf->temp_inactive_list);
}
raid5_activate_delayed(conf);
while ((bio = remove_bio_from_retry(conf, &offset))) {
int ok;
spin_unlock_irq(&conf->device_lock);
ok = retry_aligned_read(conf, bio, offset);
spin_lock_irq(&conf->device_lock);
if (!ok)
break;
handled++;
}
batch_size = handle_active_stripes(conf, ANY_GROUP, NULL,
conf->temp_inactive_list);
if (!batch_size && !released)
break;
handled += batch_size;
if (mddev->sb_flags & ~(1 << MD_SB_CHANGE_PENDING)) {
spin_unlock_irq(&conf->device_lock);
md_check_recovery(mddev);
spin_lock_irq(&conf->device_lock);
}
}
pr_debug("%d stripes handled\n", handled);
spin_unlock_irq(&conf->device_lock);
if (test_and_clear_bit(R5_ALLOC_MORE, &conf->cache_state) &&
mutex_trylock(&conf->cache_size_mutex)) {
grow_one_stripe(conf, __GFP_NOWARN);
/* Set flag even if allocation failed. This helps
* slow down allocation requests when mem is short
*/
set_bit(R5_DID_ALLOC, &conf->cache_state);
mutex_unlock(&conf->cache_size_mutex);
}
flush_deferred_bios(conf);
r5l_flush_stripe_to_raid(conf->log);
async_tx_issue_pending_all();
blk_finish_plug(&plug);
pr_debug("--- raid5d inactive\n");
}
static ssize_t
raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
{
struct r5conf *conf;
int ret = 0;
spin_lock(&mddev->lock);
conf = mddev->private;
if (conf)
ret = sprintf(page, "%d\n", conf->min_nr_stripes);
spin_unlock(&mddev->lock);
return ret;
}
int
raid5_set_cache_size(struct mddev *mddev, int size)
{
int result = 0;
struct r5conf *conf = mddev->private;
if (size <= 16 || size > 32768)
return -EINVAL;
conf->min_nr_stripes = size;
mutex_lock(&conf->cache_size_mutex);
while (size < conf->max_nr_stripes &&
drop_one_stripe(conf))
;
mutex_unlock(&conf->cache_size_mutex);
md_allow_write(mddev);
mutex_lock(&conf->cache_size_mutex);
while (size > conf->max_nr_stripes)
if (!grow_one_stripe(conf, GFP_KERNEL)) {
conf->min_nr_stripes = conf->max_nr_stripes;
result = -ENOMEM;
break;
}
mutex_unlock(&conf->cache_size_mutex);
return result;
}
EXPORT_SYMBOL(raid5_set_cache_size);
static ssize_t
raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
{
struct r5conf *conf;
unsigned long new;
int err;
if (len >= PAGE_SIZE)
return -EINVAL;
if (kstrtoul(page, 10, &new))
return -EINVAL;
err = mddev_lock(mddev);
if (err)
return err;
conf = mddev->private;
if (!conf)
err = -ENODEV;
else
err = raid5_set_cache_size(mddev, new);
mddev_unlock(mddev);
return err ?: len;
}
static struct md_sysfs_entry
raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
raid5_show_stripe_cache_size,
raid5_store_stripe_cache_size);
static ssize_t
raid5_show_rmw_level(struct mddev *mddev, char *page)
{
struct r5conf *conf = mddev->private;
if (conf)
return sprintf(page, "%d\n", conf->rmw_level);
else
return 0;
}
static ssize_t
raid5_store_rmw_level(struct mddev *mddev, const char *page, size_t len)
{
struct r5conf *conf = mddev->private;
unsigned long new;
if (!conf)
return -ENODEV;
if (len >= PAGE_SIZE)
return -EINVAL;
if (kstrtoul(page, 10, &new))
return -EINVAL;
if (new != PARITY_DISABLE_RMW && !raid6_call.xor_syndrome)
return -EINVAL;
if (new != PARITY_DISABLE_RMW &&
new != PARITY_ENABLE_RMW &&
new != PARITY_PREFER_RMW)
return -EINVAL;
conf->rmw_level = new;
return len;
}
static struct md_sysfs_entry
raid5_rmw_level = __ATTR(rmw_level, S_IRUGO | S_IWUSR,
raid5_show_rmw_level,
raid5_store_rmw_level);
static ssize_t
raid5_show_preread_threshold(struct mddev *mddev, char *page)
{
struct r5conf *conf;
int ret = 0;
spin_lock(&mddev->lock);
conf = mddev->private;
if (conf)
ret = sprintf(page, "%d\n", conf->bypass_threshold);
spin_unlock(&mddev->lock);
return ret;
}
static ssize_t
raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
{
struct r5conf *conf;
unsigned long new;
int err;
if (len >= PAGE_SIZE)
return -EINVAL;
if (kstrtoul(page, 10, &new))
return -EINVAL;
err = mddev_lock(mddev);
if (err)
return err;
conf = mddev->private;
if (!conf)
err = -ENODEV;
else if (new > conf->min_nr_stripes)
err = -EINVAL;
else
conf->bypass_threshold = new;
mddev_unlock(mddev);
return err ?: len;
}
static struct md_sysfs_entry
raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
S_IRUGO | S_IWUSR,
raid5_show_preread_threshold,
raid5_store_preread_threshold);
static ssize_t
raid5_show_skip_copy(struct mddev *mddev, char *page)
{
struct r5conf *conf;
int ret = 0;
spin_lock(&mddev->lock);
conf = mddev->private;
if (conf)
ret = sprintf(page, "%d\n", conf->skip_copy);
spin_unlock(&mddev->lock);
return ret;
}
static ssize_t
raid5_store_skip_copy(struct mddev *mddev, const char *page, size_t len)
{
struct r5conf *conf;
unsigned long new;
int err;
if (len >= PAGE_SIZE)
return -EINVAL;
if (kstrtoul(page, 10, &new))
return -EINVAL;
new = !!new;
err = mddev_lock(mddev);
if (err)
return err;
conf = mddev->private;
if (!conf)
err = -ENODEV;
else if (new != conf->skip_copy) {
mddev_suspend(mddev);
conf->skip_copy = new;
if (new)
mddev->queue->backing_dev_info->capabilities |=
BDI_CAP_STABLE_WRITES;
else
mddev->queue->backing_dev_info->capabilities &=
~BDI_CAP_STABLE_WRITES;
mddev_resume(mddev);
}
mddev_unlock(mddev);
return err ?: len;
}
static struct md_sysfs_entry
raid5_skip_copy = __ATTR(skip_copy, S_IRUGO | S_IWUSR,
raid5_show_skip_copy,
raid5_store_skip_copy);
static ssize_t
stripe_cache_active_show(struct mddev *mddev, char *page)
{
struct r5conf *conf = mddev->private;
if (conf)
return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
else
return 0;
}
static struct md_sysfs_entry
raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
static ssize_t
raid5_show_group_thread_cnt(struct mddev *mddev, char *page)
{
struct r5conf *conf;
int ret = 0;
spin_lock(&mddev->lock);
conf = mddev->private;
if (conf)
ret = sprintf(page, "%d\n", conf->worker_cnt_per_group);
spin_unlock(&mddev->lock);
return ret;
}
static int alloc_thread_groups(struct r5conf *conf, int cnt,
int *group_cnt,
int *worker_cnt_per_group,
struct r5worker_group **worker_groups);
static ssize_t
raid5_store_group_thread_cnt(struct mddev *mddev, const char *page, size_t len)
{
struct r5conf *conf;
unsigned int new;
int err;
struct r5worker_group *new_groups, *old_groups;
int group_cnt, worker_cnt_per_group;
if (len >= PAGE_SIZE)
return -EINVAL;
if (kstrtouint(page, 10, &new))
return -EINVAL;
/* 8192 should be big enough */
if (new > 8192)
return -EINVAL;
err = mddev_lock(mddev);
if (err)
return err;
conf = mddev->private;
if (!conf)
err = -ENODEV;
else if (new != conf->worker_cnt_per_group) {
mddev_suspend(mddev);
old_groups = conf->worker_groups;
if (old_groups)
flush_workqueue(raid5_wq);
err = alloc_thread_groups(conf, new,
&group_cnt, &worker_cnt_per_group,
&new_groups);
if (!err) {
spin_lock_irq(&conf->device_lock);
conf->group_cnt = group_cnt;
conf->worker_cnt_per_group = worker_cnt_per_group;
conf->worker_groups = new_groups;
spin_unlock_irq(&conf->device_lock);
if (old_groups)
kfree(old_groups[0].workers);
kfree(old_groups);
}
mddev_resume(mddev);
}
mddev_unlock(mddev);
return err ?: len;
}
static struct md_sysfs_entry
raid5_group_thread_cnt = __ATTR(group_thread_cnt, S_IRUGO | S_IWUSR,
raid5_show_group_thread_cnt,
raid5_store_group_thread_cnt);
static struct attribute *raid5_attrs[] = {
&raid5_stripecache_size.attr,
&raid5_stripecache_active.attr,
&raid5_preread_bypass_threshold.attr,
&raid5_group_thread_cnt.attr,
&raid5_skip_copy.attr,
&raid5_rmw_level.attr,
&r5c_journal_mode.attr,
&ppl_write_hint.attr,
NULL,
};
static struct attribute_group raid5_attrs_group = {
.name = NULL,
.attrs = raid5_attrs,
};
static int alloc_thread_groups(struct r5conf *conf, int cnt,
int *group_cnt,
int *worker_cnt_per_group,
struct r5worker_group **worker_groups)
{
int i, j, k;
ssize_t size;
struct r5worker *workers;
*worker_cnt_per_group = cnt;
if (cnt == 0) {
*group_cnt = 0;
*worker_groups = NULL;
return 0;
}
*group_cnt = num_possible_nodes();
size = sizeof(struct r5worker) * cnt;
workers = kcalloc(size, *group_cnt, GFP_NOIO);
*worker_groups = kcalloc(*group_cnt, sizeof(struct r5worker_group),
GFP_NOIO);
if (!*worker_groups || !workers) {
kfree(workers);
kfree(*worker_groups);
return -ENOMEM;
}
for (i = 0; i < *group_cnt; i++) {
struct r5worker_group *group;
group = &(*worker_groups)[i];
INIT_LIST_HEAD(&group->handle_list);
INIT_LIST_HEAD(&group->loprio_list);
group->conf = conf;
group->workers = workers + i * cnt;
for (j = 0; j < cnt; j++) {
struct r5worker *worker = group->workers + j;
worker->group = group;
INIT_WORK(&worker->work, raid5_do_work);
for (k = 0; k < NR_STRIPE_HASH_LOCKS; k++)
INIT_LIST_HEAD(worker->temp_inactive_list + k);
}
}
return 0;
}
static void free_thread_groups(struct r5conf *conf)
{
if (conf->worker_groups)
kfree(conf->worker_groups[0].workers);
kfree(conf->worker_groups);
conf->worker_groups = NULL;
}
static sector_t
raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
{
struct r5conf *conf = mddev->private;
if (!sectors)
sectors = mddev->dev_sectors;
if (!raid_disks)
/* size is defined by the smallest of previous and new size */
raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
sectors &= ~((sector_t)conf->chunk_sectors - 1);
sectors &= ~((sector_t)conf->prev_chunk_sectors - 1);
return sectors * (raid_disks - conf->max_degraded);
}
static void free_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
{
safe_put_page(percpu->spare_page);
percpu->spare_page = NULL;
kvfree(percpu->scribble);
percpu->scribble = NULL;
}
static int alloc_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
{
if (conf->level == 6 && !percpu->spare_page) {
percpu->spare_page = alloc_page(GFP_KERNEL);
if (!percpu->spare_page)
return -ENOMEM;
}
if (scribble_alloc(percpu,
max(conf->raid_disks,
conf->previous_raid_disks),
max(conf->chunk_sectors,
conf->prev_chunk_sectors)
/ STRIPE_SECTORS,
GFP_KERNEL)) {
free_scratch_buffer(conf, percpu);
return -ENOMEM;
}
return 0;
}
static int raid456_cpu_dead(unsigned int cpu, struct hlist_node *node)
{
struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node);
free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
return 0;
}
static void raid5_free_percpu(struct r5conf *conf)
{
if (!conf->percpu)
return;
cpuhp_state_remove_instance(CPUHP_MD_RAID5_PREPARE, &conf->node);
free_percpu(conf->percpu);
}
static void free_conf(struct r5conf *conf)
{
int i;
log_exit(conf);
unregister_shrinker(&conf->shrinker);
free_thread_groups(conf);
shrink_stripes(conf);
raid5_free_percpu(conf);
for (i = 0; i < conf->pool_size; i++)
if (conf->disks[i].extra_page)
put_page(conf->disks[i].extra_page);
kfree(conf->disks);
bioset_exit(&conf->bio_split);
kfree(conf->stripe_hashtbl);
kfree(conf->pending_data);
kfree(conf);
}
static int raid456_cpu_up_prepare(unsigned int cpu, struct hlist_node *node)
{
struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node);
struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
if (alloc_scratch_buffer(conf, percpu)) {
pr_warn("%s: failed memory allocation for cpu%u\n",
__func__, cpu);
return -ENOMEM;
}
return 0;
}
static int raid5_alloc_percpu(struct r5conf *conf)
{
int err = 0;
conf->percpu = alloc_percpu(struct raid5_percpu);
if (!conf->percpu)
return -ENOMEM;
err = cpuhp_state_add_instance(CPUHP_MD_RAID5_PREPARE, &conf->node);
if (!err) {
conf->scribble_disks = max(conf->raid_disks,
conf->previous_raid_disks);
conf->scribble_sectors = max(conf->chunk_sectors,
conf->prev_chunk_sectors);
}
return err;
}
static unsigned long raid5_cache_scan(struct shrinker *shrink,
struct shrink_control *sc)
{
struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
unsigned long ret = SHRINK_STOP;
if (mutex_trylock(&conf->cache_size_mutex)) {
ret= 0;
while (ret < sc->nr_to_scan &&
conf->max_nr_stripes > conf->min_nr_stripes) {
if (drop_one_stripe(conf) == 0) {
ret = SHRINK_STOP;
break;
}
ret++;
}
mutex_unlock(&conf->cache_size_mutex);
}
return ret;
}
static unsigned long raid5_cache_count(struct shrinker *shrink,
struct shrink_control *sc)
{
struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
if (conf->max_nr_stripes < conf->min_nr_stripes)
/* unlikely, but not impossible */
return 0;
return conf->max_nr_stripes - conf->min_nr_stripes;
}
static struct r5conf *setup_conf(struct mddev *mddev)
{
struct r5conf *conf;
int raid_disk, memory, max_disks;
struct md_rdev *rdev;
struct disk_info *disk;
char pers_name[6];
int i;
int group_cnt, worker_cnt_per_group;
struct r5worker_group *new_group;
int ret;
if (mddev->new_level != 5
&& mddev->new_level != 4
&& mddev->new_level != 6) {
pr_warn("md/raid:%s: raid level not set to 4/5/6 (%d)\n",
mdname(mddev), mddev->new_level);
return ERR_PTR(-EIO);
}
if ((mddev->new_level == 5
&& !algorithm_valid_raid5(mddev->new_layout)) ||
(mddev->new_level == 6
&& !algorithm_valid_raid6(mddev->new_layout))) {
pr_warn("md/raid:%s: layout %d not supported\n",
mdname(mddev), mddev->new_layout);
return ERR_PTR(-EIO);
}
if (mddev->new_level == 6 && mddev->raid_disks < 4) {
pr_warn("md/raid:%s: not enough configured devices (%d, minimum 4)\n",
mdname(mddev), mddev->raid_disks);
return ERR_PTR(-EINVAL);
}
if (!mddev->new_chunk_sectors ||
(mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
!is_power_of_2(mddev->new_chunk_sectors)) {
pr_warn("md/raid:%s: invalid chunk size %d\n",
mdname(mddev), mddev->new_chunk_sectors << 9);
return ERR_PTR(-EINVAL);
}
conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
if (conf == NULL)
goto abort;
INIT_LIST_HEAD(&conf->free_list);
INIT_LIST_HEAD(&conf->pending_list);
conf->pending_data = kcalloc(PENDING_IO_MAX,
sizeof(struct r5pending_data),
GFP_KERNEL);
if (!conf->pending_data)
goto abort;
for (i = 0; i < PENDING_IO_MAX; i++)
list_add(&conf->pending_data[i].sibling, &conf->free_list);
/* Don't enable multi-threading by default*/
if (!alloc_thread_groups(conf, 0, &group_cnt, &worker_cnt_per_group,
&new_group)) {
conf->group_cnt = group_cnt;
conf->worker_cnt_per_group = worker_cnt_per_group;
conf->worker_groups = new_group;
} else
goto abort;
spin_lock_init(&conf->device_lock);
seqcount_init(&conf->gen_lock);
mutex_init(&conf->cache_size_mutex);
init_waitqueue_head(&conf->wait_for_quiescent);
init_waitqueue_head(&conf->wait_for_stripe);
init_waitqueue_head(&conf->wait_for_overlap);
INIT_LIST_HEAD(&conf->handle_list);
INIT_LIST_HEAD(&conf->loprio_list);
INIT_LIST_HEAD(&conf->hold_list);
INIT_LIST_HEAD(&conf->delayed_list);
INIT_LIST_HEAD(&conf->bitmap_list);
init_llist_head(&conf->released_stripes);
atomic_set(&conf->active_stripes, 0);
atomic_set(&conf->preread_active_stripes, 0);
atomic_set(&conf->active_aligned_reads, 0);
spin_lock_init(&conf->pending_bios_lock);
conf->batch_bio_dispatch = true;
rdev_for_each(rdev, mddev) {
if (test_bit(Journal, &rdev->flags))
continue;
if (blk_queue_nonrot(bdev_get_queue(rdev->bdev))) {
conf->batch_bio_dispatch = false;
break;
}
}
conf->bypass_threshold = BYPASS_THRESHOLD;
conf->recovery_disabled = mddev->recovery_disabled - 1;
conf->raid_disks = mddev->raid_disks;
if (mddev->reshape_position == MaxSector)
conf->previous_raid_disks = mddev->raid_disks;
else
conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
max_disks = max(conf->raid_disks, conf->previous_raid_disks);
conf->disks = kcalloc(max_disks, sizeof(struct disk_info),
GFP_KERNEL);
if (!conf->disks)
goto abort;
for (i = 0; i < max_disks; i++) {
conf->disks[i].extra_page = alloc_page(GFP_KERNEL);
if (!conf->disks[i].extra_page)
goto abort;
}
ret = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0);
if (ret)
goto abort;
conf->mddev = mddev;
if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
goto abort;
/* We init hash_locks[0] separately to that it can be used
* as the reference lock in the spin_lock_nest_lock() call
* in lock_all_device_hash_locks_irq in order to convince
* lockdep that we know what we are doing.
*/
spin_lock_init(conf->hash_locks);
for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
spin_lock_init(conf->hash_locks + i);
for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
INIT_LIST_HEAD(conf->inactive_list + i);
for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
INIT_LIST_HEAD(conf->temp_inactive_list + i);
atomic_set(&conf->r5c_cached_full_stripes, 0);
INIT_LIST_HEAD(&conf->r5c_full_stripe_list);
atomic_set(&conf->r5c_cached_partial_stripes, 0);
INIT_LIST_HEAD(&conf->r5c_partial_stripe_list);
atomic_set(&conf->r5c_flushing_full_stripes, 0);
atomic_set(&conf->r5c_flushing_partial_stripes, 0);
conf->level = mddev->new_level;
conf->chunk_sectors = mddev->new_chunk_sectors;
if (raid5_alloc_percpu(conf) != 0)
goto abort;
pr_debug("raid456: run(%s) called.\n", mdname(mddev));
rdev_for_each(rdev, mddev) {
raid_disk = rdev->raid_disk;
if (raid_disk >= max_disks
|| raid_disk < 0 || test_bit(Journal, &rdev->flags))
continue;
disk = conf->disks + raid_disk;
if (test_bit(Replacement, &rdev->flags)) {
if (disk->replacement)
goto abort;
disk->replacement = rdev;
} else {
if (disk->rdev)
goto abort;
disk->rdev = rdev;
}
if (test_bit(In_sync, &rdev->flags)) {
char b[BDEVNAME_SIZE];
pr_info("md/raid:%s: device %s operational as raid disk %d\n",
mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
} else if (rdev->saved_raid_disk != raid_disk)
/* Cannot rely on bitmap to complete recovery */
conf->fullsync = 1;
}
conf->level = mddev->new_level;
if (conf->level == 6) {
conf->max_degraded = 2;
if (raid6_call.xor_syndrome)
conf->rmw_level = PARITY_ENABLE_RMW;
else
conf->rmw_level = PARITY_DISABLE_RMW;
} else {
conf->max_degraded = 1;
conf->rmw_level = PARITY_ENABLE_RMW;
}
conf->algorithm = mddev->new_layout;
conf->reshape_progress = mddev->reshape_position;
if (conf->reshape_progress != MaxSector) {
conf->prev_chunk_sectors = mddev->chunk_sectors;
conf->prev_algo = mddev->layout;
} else {
conf->prev_chunk_sectors = conf->chunk_sectors;
conf->prev_algo = conf->algorithm;
}
conf->min_nr_stripes = NR_STRIPES;
if (mddev->reshape_position != MaxSector) {
int stripes = max_t(int,
((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4,
((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4);
conf->min_nr_stripes = max(NR_STRIPES, stripes);
if (conf->min_nr_stripes != NR_STRIPES)
pr_info("md/raid:%s: force stripe size %d for reshape\n",
mdname(mddev), conf->min_nr_stripes);
}
memory = conf->min_nr_stripes * (sizeof(struct stripe_head) +
max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
atomic_set(&conf->empty_inactive_list_nr, NR_STRIPE_HASH_LOCKS);
if (grow_stripes(conf, conf->min_nr_stripes)) {
pr_warn("md/raid:%s: couldn't allocate %dkB for buffers\n",
mdname(mddev), memory);
goto abort;
} else
pr_debug("md/raid:%s: allocated %dkB\n", mdname(mddev), memory);
/*
* Losing a stripe head costs more than the time to refill it,
* it reduces the queue depth and so can hurt throughput.
* So set it rather large, scaled by number of devices.
*/
conf->shrinker.seeks = DEFAULT_SEEKS * conf->raid_disks * 4;
conf->shrinker.scan_objects = raid5_cache_scan;
conf->shrinker.count_objects = raid5_cache_count;
conf->shrinker.batch = 128;
conf->shrinker.flags = 0;
if (register_shrinker(&conf->shrinker)) {
pr_warn("md/raid:%s: couldn't register shrinker.\n",
mdname(mddev));
goto abort;
}
sprintf(pers_name, "raid%d", mddev->new_level);
conf->thread = md_register_thread(raid5d, mddev, pers_name);
if (!conf->thread) {
pr_warn("md/raid:%s: couldn't allocate thread.\n",
mdname(mddev));
goto abort;
}
return conf;
abort:
if (conf) {
free_conf(conf);
return ERR_PTR(-EIO);
} else
return ERR_PTR(-ENOMEM);
}
static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
{
switch (algo) {
case ALGORITHM_PARITY_0:
if (raid_disk < max_degraded)
return 1;
break;
case ALGORITHM_PARITY_N:
if (raid_disk >= raid_disks - max_degraded)
return 1;
break;
case ALGORITHM_PARITY_0_6:
if (raid_disk == 0 ||
raid_disk == raid_disks - 1)
return 1;
break;
case ALGORITHM_LEFT_ASYMMETRIC_6:
case ALGORITHM_RIGHT_ASYMMETRIC_6:
case ALGORITHM_LEFT_SYMMETRIC_6:
case ALGORITHM_RIGHT_SYMMETRIC_6:
if (raid_disk == raid_disks - 1)
return 1;
}
return 0;
}
static int raid5_run(struct mddev *mddev)
{
struct r5conf *conf;
int working_disks = 0;
int dirty_parity_disks = 0;
struct md_rdev *rdev;
struct md_rdev *journal_dev = NULL;
sector_t reshape_offset = 0;
int i;
long long min_offset_diff = 0;
int first = 1;
if (mddev_init_writes_pending(mddev) < 0)
return -ENOMEM;
if (mddev->recovery_cp != MaxSector)
pr_notice("md/raid:%s: not clean -- starting background reconstruction\n",
mdname(mddev));
rdev_for_each(rdev, mddev) {
long long diff;
if (test_bit(Journal, &rdev->flags)) {
journal_dev = rdev;
continue;
}
if (rdev->raid_disk < 0)
continue;
diff = (rdev->new_data_offset - rdev->data_offset);
if (first) {
min_offset_diff = diff;
first = 0;
} else if (mddev->reshape_backwards &&
diff < min_offset_diff)
min_offset_diff = diff;
else if (!mddev->reshape_backwards &&
diff > min_offset_diff)
min_offset_diff = diff;
}
if ((test_bit(MD_HAS_JOURNAL, &mddev->flags) || journal_dev) &&
(mddev->bitmap_info.offset || mddev->bitmap_info.file)) {
pr_notice("md/raid:%s: array cannot have both journal and bitmap\n",
mdname(mddev));
return -EINVAL;
}
if (mddev->reshape_position != MaxSector) {
/* Check that we can continue the reshape.
* Difficulties arise if the stripe we would write to
* next is at or after the stripe we would read from next.
* For a reshape that changes the number of devices, this
* is only possible for a very short time, and mdadm makes
* sure that time appears to have past before assembling
* the array. So we fail if that time hasn't passed.
* For a reshape that keeps the number of devices the same
* mdadm must be monitoring the reshape can keeping the
* critical areas read-only and backed up. It will start
* the array in read-only mode, so we check for that.
*/
sector_t here_new, here_old;
int old_disks;
int max_degraded = (mddev->level == 6 ? 2 : 1);
int chunk_sectors;
int new_data_disks;
if (journal_dev) {
pr_warn("md/raid:%s: don't support reshape with journal - aborting.\n",
mdname(mddev));
return -EINVAL;
}
if (mddev->new_level != mddev->level) {
pr_warn("md/raid:%s: unsupported reshape required - aborting.\n",
mdname(mddev));
return -EINVAL;
}
old_disks = mddev->raid_disks - mddev->delta_disks;
/* reshape_position must be on a new-stripe boundary, and one
* further up in new geometry must map after here in old
* geometry.
* If the chunk sizes are different, then as we perform reshape
* in units of the largest of the two, reshape_position needs
* be a multiple of the largest chunk size times new data disks.
*/
here_new = mddev->reshape_position;
chunk_sectors = max(mddev->chunk_sectors, mddev->new_chunk_sectors);
new_data_disks = mddev->raid_disks - max_degraded;
if (sector_div(here_new, chunk_sectors * new_data_disks)) {
pr_warn("md/raid:%s: reshape_position not on a stripe boundary\n",
mdname(mddev));
return -EINVAL;
}
reshape_offset = here_new * chunk_sectors;
/* here_new is the stripe we will write to */
here_old = mddev->reshape_position;
sector_div(here_old, chunk_sectors * (old_disks-max_degraded));
/* here_old is the first stripe that we might need to read
* from */
if (mddev->delta_disks == 0) {
/* We cannot be sure it is safe to start an in-place
* reshape. It is only safe if user-space is monitoring
* and taking constant backups.
* mdadm always starts a situation like this in
* readonly mode so it can take control before
* allowing any writes. So just check for that.
*/
if (abs(min_offset_diff) >= mddev->chunk_sectors &&
abs(min_offset_diff) >= mddev->new_chunk_sectors)
/* not really in-place - so OK */;
else if (mddev->ro == 0) {
pr_warn("md/raid:%s: in-place reshape must be started in read-only mode - aborting\n",
mdname(mddev));
return -EINVAL;
}
} else if (mddev->reshape_backwards
? (here_new * chunk_sectors + min_offset_diff <=
here_old * chunk_sectors)
: (here_new * chunk_sectors >=
here_old * chunk_sectors + (-min_offset_diff))) {
/* Reading from the same stripe as writing to - bad */
pr_warn("md/raid:%s: reshape_position too early for auto-recovery - aborting.\n",
mdname(mddev));
return -EINVAL;
}
pr_debug("md/raid:%s: reshape will continue\n", mdname(mddev));
/* OK, we should be able to continue; */
} else {
BUG_ON(mddev->level != mddev->new_level);
BUG_ON(mddev->layout != mddev->new_layout);
BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
BUG_ON(mddev->delta_disks != 0);
}
if (test_bit(MD_HAS_JOURNAL, &mddev->flags) &&
test_bit(MD_HAS_PPL, &mddev->flags)) {
pr_warn("md/raid:%s: using journal device and PPL not allowed - disabling PPL\n",
mdname(mddev));
clear_bit(MD_HAS_PPL, &mddev->flags);
clear_bit(MD_HAS_MULTIPLE_PPLS, &mddev->flags);
}
if (mddev->private == NULL)
conf = setup_conf(mddev);
else
conf = mddev->private;
if (IS_ERR(conf))
return PTR_ERR(conf);
if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) {
if (!journal_dev) {
pr_warn("md/raid:%s: journal disk is missing, force array readonly\n",
mdname(mddev));
mddev->ro = 1;
set_disk_ro(mddev->gendisk, 1);
} else if (mddev->recovery_cp == MaxSector)
set_bit(MD_JOURNAL_CLEAN, &mddev->flags);
}
conf->min_offset_diff = min_offset_diff;
mddev->thread = conf->thread;
conf->thread = NULL;
mddev->private = conf;
for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
i++) {
rdev = conf->disks[i].rdev;
if (!rdev && conf->disks[i].replacement) {
/* The replacement is all we have yet */
rdev = conf->disks[i].replacement;
conf->disks[i].replacement = NULL;
clear_bit(Replacement, &rdev->flags);
conf->disks[i].rdev = rdev;
}
if (!rdev)
continue;
if (conf->disks[i].replacement &&
conf->reshape_progress != MaxSector) {
/* replacements and reshape simply do not mix. */
pr_warn("md: cannot handle concurrent replacement and reshape.\n");
goto abort;
}
if (test_bit(In_sync, &rdev->flags)) {
working_disks++;
continue;
}
/* This disc is not fully in-sync. However if it
* just stored parity (beyond the recovery_offset),
* when we don't need to be concerned about the
* array being dirty.
* When reshape goes 'backwards', we never have
* partially completed devices, so we only need
* to worry about reshape going forwards.
*/
/* Hack because v0.91 doesn't store recovery_offset properly. */
if (mddev->major_version == 0 &&
mddev->minor_version > 90)
rdev->recovery_offset = reshape_offset;
if (rdev->recovery_offset < reshape_offset) {
/* We need to check old and new layout */
if (!only_parity(rdev->raid_disk,
conf->algorithm,
conf->raid_disks,
conf->max_degraded))
continue;
}
if (!only_parity(rdev->raid_disk,
conf->prev_algo,
conf->previous_raid_disks,
conf->max_degraded))
continue;
dirty_parity_disks++;
}
/*
* 0 for a fully functional array, 1 or 2 for a degraded array.
*/
mddev->degraded = raid5_calc_degraded(conf);
if (has_failed(conf)) {
pr_crit("md/raid:%s: not enough operational devices (%d/%d failed)\n",
mdname(mddev), mddev->degraded, conf->raid_disks);
goto abort;
}
/* device size must be a multiple of chunk size */
mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
mddev->resync_max_sectors = mddev->dev_sectors;
if (mddev->degraded > dirty_parity_disks &&
mddev->recovery_cp != MaxSector) {
if (test_bit(MD_HAS_PPL, &mddev->flags))
pr_crit("md/raid:%s: starting dirty degraded array with PPL.\n",
mdname(mddev));
else if (mddev->ok_start_degraded)
pr_crit("md/raid:%s: starting dirty degraded array - data corruption possible.\n",
mdname(mddev));
else {
pr_crit("md/raid:%s: cannot start dirty degraded array.\n",
mdname(mddev));
goto abort;
}
}
pr_info("md/raid:%s: raid level %d active with %d out of %d devices, algorithm %d\n",
mdname(mddev), conf->level,
mddev->raid_disks-mddev->degraded, mddev->raid_disks,
mddev->new_layout);
print_raid5_conf(conf);
if (conf->reshape_progress != MaxSector) {
conf->reshape_safe = conf->reshape_progress;
atomic_set(&conf->reshape_stripes, 0);
clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
mddev->sync_thread = md_register_thread(md_do_sync, mddev,
"reshape");
if (!mddev->sync_thread)
goto abort;
}
/* Ok, everything is just fine now */
if (mddev->to_remove == &raid5_attrs_group)
mddev->to_remove = NULL;
else if (mddev->kobj.sd &&
sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
pr_warn("raid5: failed to create sysfs attributes for %s\n",
mdname(mddev));
md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
if (mddev->queue) {
int chunk_size;
/* read-ahead size must cover two whole stripes, which
* is 2 * (datadisks) * chunksize where 'n' is the
* number of raid devices
*/
int data_disks = conf->previous_raid_disks - conf->max_degraded;
int stripe = data_disks *
((mddev->chunk_sectors << 9) / PAGE_SIZE);
if (mddev->queue->backing_dev_info->ra_pages < 2 * stripe)
mddev->queue->backing_dev_info->ra_pages = 2 * stripe;
chunk_size = mddev->chunk_sectors << 9;
blk_queue_io_min(mddev->queue, chunk_size);
blk_queue_io_opt(mddev->queue, chunk_size *
(conf->raid_disks - conf->max_degraded));
mddev->queue->limits.raid_partial_stripes_expensive = 1;
/*
* We can only discard a whole stripe. It doesn't make sense to
* discard data disk but write parity disk
*/
stripe = stripe * PAGE_SIZE;
/* Round up to power of 2, as discard handling
* currently assumes that */
while ((stripe-1) & stripe)
stripe = (stripe | (stripe-1)) + 1;
mddev->queue->limits.discard_alignment = stripe;
mddev->queue->limits.discard_granularity = stripe;
blk_queue_max_write_same_sectors(mddev->queue, 0);
blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
rdev_for_each(rdev, mddev) {
disk_stack_limits(mddev->gendisk, rdev->bdev,
rdev->data_offset << 9);
disk_stack_limits(mddev->gendisk, rdev->bdev,
rdev->new_data_offset << 9);
}
/*
* zeroing is required, otherwise data
* could be lost. Consider a scenario: discard a stripe
* (the stripe could be inconsistent if
* discard_zeroes_data is 0); write one disk of the
* stripe (the stripe could be inconsistent again
* depending on which disks are used to calculate
* parity); the disk is broken; The stripe data of this
* disk is lost.
*
* We only allow DISCARD if the sysadmin has confirmed that
* only safe devices are in use by setting a module parameter.
* A better idea might be to turn DISCARD into WRITE_ZEROES
* requests, as that is required to be safe.
*/
if (devices_handle_discard_safely &&
mddev->queue->limits.max_discard_sectors >= (stripe >> 9) &&
mddev->queue->limits.discard_granularity >= stripe)
blk_queue_flag_set(QUEUE_FLAG_DISCARD,
mddev->queue);
else
blk_queue_flag_clear(QUEUE_FLAG_DISCARD,
mddev->queue);
blk_queue_max_hw_sectors(mddev->queue, UINT_MAX);
}
if (log_init(conf, journal_dev, raid5_has_ppl(conf)))
goto abort;
return 0;
abort:
md_unregister_thread(&mddev->thread);
print_raid5_conf(conf);
free_conf(conf);
mddev->private = NULL;
pr_warn("md/raid:%s: failed to run raid set.\n", mdname(mddev));
return -EIO;
}
static void raid5_free(struct mddev *mddev, void *priv)
{
struct r5conf *conf = priv;
free_conf(conf);
mddev->to_remove = &raid5_attrs_group;
}
static void raid5_status(struct seq_file *seq, struct mddev *mddev)
{
struct r5conf *conf = mddev->private;
int i;
seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
conf->chunk_sectors / 2, mddev->layout);
seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
rcu_read_lock();
for (i = 0; i < conf->raid_disks; i++) {
struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
seq_printf (seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
}
rcu_read_unlock();
seq_printf (seq, "]");
}
static void print_raid5_conf (struct r5conf *conf)
{
int i;
struct disk_info *tmp;
pr_debug("RAID conf printout:\n");
if (!conf) {
pr_debug("(conf==NULL)\n");
return;
}
pr_debug(" --- level:%d rd:%d wd:%d\n", conf->level,
conf->raid_disks,
conf->raid_disks - conf->mddev->degraded);
for (i = 0; i < conf->raid_disks; i++) {
char b[BDEVNAME_SIZE];
tmp = conf->disks + i;
if (tmp->rdev)
pr_debug(" disk %d, o:%d, dev:%s\n",
i, !test_bit(Faulty, &tmp->rdev->flags),
bdevname(tmp->rdev->bdev, b));
}
}
static int raid5_spare_active(struct mddev *mddev)
{
int i;
struct r5conf *conf = mddev->private;
struct disk_info *tmp;
int count = 0;
unsigned long flags;
for (i = 0; i < conf->raid_disks; i++) {
tmp = conf->disks + i;
if (tmp->replacement
&& tmp->replacement->recovery_offset == MaxSector
&& !test_bit(Faulty, &tmp->replacement->flags)
&& !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
/* Replacement has just become active. */
if (!tmp->rdev
|| !test_and_clear_bit(In_sync, &tmp->rdev->flags))
count++;
if (tmp->rdev) {
/* Replaced device not technically faulty,
* but we need to be sure it gets removed
* and never re-added.
*/
set_bit(Faulty, &tmp->rdev->flags);
sysfs_notify_dirent_safe(
tmp->rdev->sysfs_state);
}
sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
} else if (tmp->rdev
&& tmp->rdev->recovery_offset == MaxSector
&& !test_bit(Faulty, &tmp->rdev->flags)
&& !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
count++;
sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
}
}
spin_lock_irqsave(&conf->device_lock, flags);
mddev->degraded = raid5_calc_degraded(conf);
spin_unlock_irqrestore(&conf->device_lock, flags);
print_raid5_conf(conf);
return count;
}
static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
{
struct r5conf *conf = mddev->private;
int err = 0;
int number = rdev->raid_disk;
struct md_rdev **rdevp;
struct disk_info *p = conf->disks + number;
print_raid5_conf(conf);
if (test_bit(Journal, &rdev->flags) && conf->log) {
/*
* we can't wait pending write here, as this is called in
* raid5d, wait will deadlock.
* neilb: there is no locking about new writes here,
* so this cannot be safe.
*/
if (atomic_read(&conf->active_stripes) ||
atomic_read(&conf->r5c_cached_full_stripes) ||
atomic_read(&conf->r5c_cached_partial_stripes)) {
return -EBUSY;
}
log_exit(conf);
return 0;
}
if (rdev == p->rdev)
rdevp = &p->rdev;
else if (rdev == p->replacement)
rdevp = &p->replacement;
else
return 0;
if (number >= conf->raid_disks &&
conf->reshape_progress == MaxSector)
clear_bit(In_sync, &rdev->flags);
if (test_bit(In_sync, &rdev->flags) ||
atomic_read(&rdev->nr_pending)) {
err = -EBUSY;
goto abort;
}
/* Only remove non-faulty devices if recovery
* isn't possible.
*/
if (!test_bit(Faulty, &rdev->flags) &&
mddev->recovery_disabled != conf->recovery_disabled &&
!has_failed(conf) &&
(!p->replacement || p->replacement == rdev) &&
number < conf->raid_disks) {
err = -EBUSY;
goto abort;
}
*rdevp = NULL;
if (!test_bit(RemoveSynchronized, &rdev->flags)) {
synchronize_rcu();
if (atomic_read(&rdev->nr_pending)) {
/* lost the race, try later */
err = -EBUSY;
*rdevp = rdev;
}
}
if (!err) {
err = log_modify(conf, rdev, false);
if (err)
goto abort;
}
if (p->replacement) {
/* We must have just cleared 'rdev' */
p->rdev = p->replacement;
clear_bit(Replacement, &p->replacement->flags);
smp_mb(); /* Make sure other CPUs may see both as identical
* but will never see neither - if they are careful
*/
p->replacement = NULL;
if (!err)
err = log_modify(conf, p->rdev, true);
}
clear_bit(WantReplacement, &rdev->flags);
abort:
print_raid5_conf(conf);
return err;
}
static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
{
struct r5conf *conf = mddev->private;
int ret, err = -EEXIST;
int disk;
struct disk_info *p;
int first = 0;
int last = conf->raid_disks - 1;
if (test_bit(Journal, &rdev->flags)) {
if (conf->log)
return -EBUSY;
rdev->raid_disk = 0;
/*
* The array is in readonly mode if journal is missing, so no
* write requests running. We should be safe
*/
ret = log_init(conf, rdev, false);
if (ret)
return ret;
ret = r5l_start(conf->log);
if (ret)
return ret;
return 0;
}
if (mddev->recovery_disabled == conf->recovery_disabled)
return -EBUSY;
if (rdev->saved_raid_disk < 0 && has_failed(conf))
/* no point adding a device */
return -EINVAL;
if (rdev->raid_disk >= 0)
first = last = rdev->raid_disk;
/*
* find the disk ... but prefer rdev->saved_raid_disk
* if possible.
*/
if (rdev->saved_raid_disk >= 0 &&
rdev->saved_raid_disk >= first &&
conf->disks[rdev->saved_raid_disk].rdev == NULL)
first = rdev->saved_raid_disk;
for (disk = first; disk <= last; disk++) {
p = conf->disks + disk;
if (p->rdev == NULL) {
clear_bit(In_sync, &rdev->flags);
rdev->raid_disk = disk;
if (rdev->saved_raid_disk != disk)
conf->fullsync = 1;
rcu_assign_pointer(p->rdev, rdev);
err = log_modify(conf, rdev, true);
goto out;
}
}
for (disk = first; disk <= last; disk++) {
p = conf->disks + disk;
if (test_bit(WantReplacement, &p->rdev->flags) &&
p->replacement == NULL) {
clear_bit(In_sync, &rdev->flags);
set_bit(Replacement, &rdev->flags);
rdev->raid_disk = disk;
err = 0;
conf->fullsync = 1;
rcu_assign_pointer(p->replacement, rdev);
break;
}
}
out:
print_raid5_conf(conf);
return err;
}
static int raid5_resize(struct mddev *mddev, sector_t sectors)
{
/* no resync is happening, and there is enough space
* on all devices, so we can resize.
* We need to make sure resync covers any new space.
* If the array is shrinking we should possibly wait until
* any io in the removed space completes, but it hardly seems
* worth it.
*/
sector_t newsize;
struct r5conf *conf = mddev->private;
if (raid5_has_log(conf) || raid5_has_ppl(conf))
return -EINVAL;
sectors &= ~((sector_t)conf->chunk_sectors - 1);
newsize = raid5_size(mddev, sectors, mddev->raid_disks);
if (mddev->external_size &&
mddev->array_sectors > newsize)
return -EINVAL;
if (mddev->bitmap) {
int ret = md_bitmap_resize(mddev->bitmap, sectors, 0, 0);
if (ret)
return ret;
}
md_set_array_sectors(mddev, newsize);
if (sectors > mddev->dev_sectors &&
mddev->recovery_cp > mddev->dev_sectors) {
mddev->recovery_cp = mddev->dev_sectors;
set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
}
mddev->dev_sectors = sectors;
mddev->resync_max_sectors = sectors;
return 0;
}
static int check_stripe_cache(struct mddev *mddev)
{
/* Can only proceed if there are plenty of stripe_heads.
* We need a minimum of one full stripe,, and for sensible progress
* it is best to have about 4 times that.
* If we require 4 times, then the default 256 4K stripe_heads will
* allow for chunk sizes up to 256K, which is probably OK.
* If the chunk size is greater, user-space should request more
* stripe_heads first.
*/
struct r5conf *conf = mddev->private;
if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
> conf->min_nr_stripes ||
((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
> conf->min_nr_stripes) {
pr_warn("md/raid:%s: reshape: not enough stripes. Needed %lu\n",
mdname(mddev),
((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
/ STRIPE_SIZE)*4);
return 0;
}
return 1;
}
static int check_reshape(struct mddev *mddev)
{
struct r5conf *conf = mddev->private;
if (raid5_has_log(conf) || raid5_has_ppl(conf))
return -EINVAL;
if (mddev->delta_disks == 0 &&
mddev->new_layout == mddev->layout &&
mddev->new_chunk_sectors == mddev->chunk_sectors)
return 0; /* nothing to do */
if (has_failed(conf))
return -EINVAL;
if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) {
/* We might be able to shrink, but the devices must
* be made bigger first.
* For raid6, 4 is the minimum size.
* Otherwise 2 is the minimum
*/
int min = 2;
if (mddev->level == 6)
min = 4;
if (mddev->raid_disks + mddev->delta_disks < min)
return -EINVAL;
}
if (!check_stripe_cache(mddev))
return -ENOSPC;
if (mddev->new_chunk_sectors > mddev->chunk_sectors ||
mddev->delta_disks > 0)
if (resize_chunks(conf,
conf->previous_raid_disks
+ max(0, mddev->delta_disks),
max(mddev->new_chunk_sectors,
mddev->chunk_sectors)
) < 0)
return -ENOMEM;
if (conf->previous_raid_disks + mddev->delta_disks <= conf->pool_size)
return 0; /* never bother to shrink */
return resize_stripes(conf, (conf->previous_raid_disks
+ mddev->delta_disks));
}
static int raid5_start_reshape(struct mddev *mddev)
{
struct r5conf *conf = mddev->private;
struct md_rdev *rdev;
int spares = 0;
unsigned long flags;
if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
return -EBUSY;
if (!check_stripe_cache(mddev))
return -ENOSPC;
if (has_failed(conf))
return -EINVAL;
rdev_for_each(rdev, mddev) {
if (!test_bit(In_sync, &rdev->flags)
&& !test_bit(Faulty, &rdev->flags))
spares++;
}
if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
/* Not enough devices even to make a degraded array
* of that size
*/
return -EINVAL;
/* Refuse to reduce size of the array. Any reductions in
* array size must be through explicit setting of array_size
* attribute.
*/
if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
< mddev->array_sectors) {
pr_warn("md/raid:%s: array size must be reduced before number of disks\n",
mdname(mddev));
return -EINVAL;
}
atomic_set(&conf->reshape_stripes, 0);
spin_lock_irq(&conf->device_lock);
write_seqcount_begin(&conf->gen_lock);
conf->previous_raid_disks = conf->raid_disks;
conf->raid_disks += mddev->delta_disks;
conf->prev_chunk_sectors = conf->chunk_sectors;
conf->chunk_sectors = mddev->new_chunk_sectors;
conf->prev_algo = conf->algorithm;
conf->algorithm = mddev->new_layout;
conf->generation++;
/* Code that selects data_offset needs to see the generation update
* if reshape_progress has been set - so a memory barrier needed.
*/
smp_mb();
if (mddev->reshape_backwards)
conf->reshape_progress = raid5_size(mddev, 0, 0);
else
conf->reshape_progress = 0;
conf->reshape_safe = conf->reshape_progress;
write_seqcount_end(&conf->gen_lock);
spin_unlock_irq(&conf->device_lock);
/* Now make sure any requests that proceeded on the assumption
* the reshape wasn't running - like Discard or Read - have
* completed.
*/
mddev_suspend(mddev);
mddev_resume(mddev);
/* Add some new drives, as many as will fit.
* We know there are enough to make the newly sized array work.
* Don't add devices if we are reducing the number of
* devices in the array. This is because it is not possible
* to correctly record the "partially reconstructed" state of
* such devices during the reshape and confusion could result.
*/
if (mddev->delta_disks >= 0) {
rdev_for_each(rdev, mddev)
if (rdev->raid_disk < 0 &&
!test_bit(Faulty, &rdev->flags)) {
if (raid5_add_disk(mddev, rdev) == 0) {
if (rdev->raid_disk
>= conf->previous_raid_disks)
set_bit(In_sync, &rdev->flags);
else
rdev->recovery_offset = 0;
if (sysfs_link_rdev(mddev, rdev))
/* Failure here is OK */;
}
} else if (rdev->raid_disk >= conf->previous_raid_disks
&& !test_bit(Faulty, &rdev->flags)) {
/* This is a spare that was manually added */
set_bit(In_sync, &rdev->flags);
}
/* When a reshape changes the number of devices,
* ->degraded is measured against the larger of the
* pre and post number of devices.
*/
spin_lock_irqsave(&conf->device_lock, flags);
mddev->degraded = raid5_calc_degraded(conf);
spin_unlock_irqrestore(&conf->device_lock, flags);
}
mddev->raid_disks = conf->raid_disks;
mddev->reshape_position = conf->reshape_progress;
set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
mddev->sync_thread = md_register_thread(md_do_sync, mddev,
"reshape");
if (!mddev->sync_thread) {
mddev->recovery = 0;
spin_lock_irq(&conf->device_lock);
write_seqcount_begin(&conf->gen_lock);
mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
mddev->new_chunk_sectors =
conf->chunk_sectors = conf->prev_chunk_sectors;
mddev->new_layout = conf->algorithm = conf->prev_algo;
rdev_for_each(rdev, mddev)
rdev->new_data_offset = rdev->data_offset;
smp_wmb();
conf->generation --;
conf->reshape_progress = MaxSector;
mddev->reshape_position = MaxSector;
write_seqcount_end(&conf->gen_lock);
spin_unlock_irq(&conf->device_lock);
return -EAGAIN;
}
conf->reshape_checkpoint = jiffies;
md_wakeup_thread(mddev->sync_thread);
md_new_event(mddev);
return 0;
}
/* This is called from the reshape thread and should make any
* changes needed in 'conf'
*/
static void end_reshape(struct r5conf *conf)
{
if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
struct md_rdev *rdev;
spin_lock_irq(&conf->device_lock);
conf->previous_raid_disks = conf->raid_disks;
md_finish_reshape(conf->mddev);
smp_wmb();
conf->reshape_progress = MaxSector;
conf->mddev->reshape_position = MaxSector;
rdev_for_each(rdev, conf->mddev)
if (rdev->raid_disk >= 0 &&
!test_bit(Journal, &rdev->flags) &&
!test_bit(In_sync, &rdev->flags))
rdev->recovery_offset = MaxSector;
spin_unlock_irq(&conf->device_lock);
wake_up(&conf->wait_for_overlap);
/* read-ahead size must cover two whole stripes, which is
* 2 * (datadisks) * chunksize where 'n' is the number of raid devices
*/
if (conf->mddev->queue) {
int data_disks = conf->raid_disks - conf->max_degraded;
int stripe = data_disks * ((conf->chunk_sectors << 9)
/ PAGE_SIZE);
if (conf->mddev->queue->backing_dev_info->ra_pages < 2 * stripe)
conf->mddev->queue->backing_dev_info->ra_pages = 2 * stripe;
}
}
}
/* This is called from the raid5d thread with mddev_lock held.
* It makes config changes to the device.
*/
static void raid5_finish_reshape(struct mddev *mddev)
{
struct r5conf *conf = mddev->private;
if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
if (mddev->delta_disks <= 0) {
int d;
spin_lock_irq(&conf->device_lock);
mddev->degraded = raid5_calc_degraded(conf);
spin_unlock_irq(&conf->device_lock);
for (d = conf->raid_disks ;
d < conf->raid_disks - mddev->delta_disks;
d++) {
struct md_rdev *rdev = conf->disks[d].rdev;
if (rdev)
clear_bit(In_sync, &rdev->flags);
rdev = conf->disks[d].replacement;
if (rdev)
clear_bit(In_sync, &rdev->flags);
}
}
mddev->layout = conf->algorithm;
mddev->chunk_sectors = conf->chunk_sectors;
mddev->reshape_position = MaxSector;
mddev->delta_disks = 0;
mddev->reshape_backwards = 0;
}
}
static void raid5_quiesce(struct mddev *mddev, int quiesce)
{
struct r5conf *conf = mddev->private;
if (quiesce) {
/* stop all writes */
lock_all_device_hash_locks_irq(conf);
/* '2' tells resync/reshape to pause so that all
* active stripes can drain
*/
r5c_flush_cache(conf, INT_MAX);
conf->quiesce = 2;
wait_event_cmd(conf->wait_for_quiescent,
atomic_read(&conf->active_stripes) == 0 &&
atomic_read(&conf->active_aligned_reads) == 0,
unlock_all_device_hash_locks_irq(conf),
lock_all_device_hash_locks_irq(conf));
conf->quiesce = 1;
unlock_all_device_hash_locks_irq(conf);
/* allow reshape to continue */
wake_up(&conf->wait_for_overlap);
} else {
/* re-enable writes */
lock_all_device_hash_locks_irq(conf);
conf->quiesce = 0;
wake_up(&conf->wait_for_quiescent);
wake_up(&conf->wait_for_overlap);
unlock_all_device_hash_locks_irq(conf);
}
log_quiesce(conf, quiesce);
}
static void *raid45_takeover_raid0(struct mddev *mddev, int level)
{
struct r0conf *raid0_conf = mddev->private;
sector_t sectors;
/* for raid0 takeover only one zone is supported */
if (raid0_conf->nr_strip_zones > 1) {
pr_warn("md/raid:%s: cannot takeover raid0 with more than one zone.\n",
mdname(mddev));
return ERR_PTR(-EINVAL);
}
sectors = raid0_conf->strip_zone[0].zone_end;
sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
mddev->dev_sectors = sectors;
mddev->new_level = level;
mddev->new_layout = ALGORITHM_PARITY_N;
mddev->new_chunk_sectors = mddev->chunk_sectors;
mddev->raid_disks += 1;
mddev->delta_disks = 1;
/* make sure it will be not marked as dirty */
mddev->recovery_cp = MaxSector;
return setup_conf(mddev);
}
static void *raid5_takeover_raid1(struct mddev *mddev)
{
int chunksect;
void *ret;
if (mddev->raid_disks != 2 ||
mddev->degraded > 1)
return ERR_PTR(-EINVAL);
/* Should check if there are write-behind devices? */
chunksect = 64*2; /* 64K by default */
/* The array must be an exact multiple of chunksize */
while (chunksect && (mddev->array_sectors & (chunksect-1)))
chunksect >>= 1;
if ((chunksect<<9) < STRIPE_SIZE)
/* array size does not allow a suitable chunk size */
return ERR_PTR(-EINVAL);
mddev->new_level = 5;
mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
mddev->new_chunk_sectors = chunksect;
ret = setup_conf(mddev);
if (!IS_ERR(ret))
mddev_clear_unsupported_flags(mddev,
UNSUPPORTED_MDDEV_FLAGS);
return ret;
}
static void *raid5_takeover_raid6(struct mddev *mddev)
{
int new_layout;
switch (mddev->layout) {
case ALGORITHM_LEFT_ASYMMETRIC_6:
new_layout = ALGORITHM_LEFT_ASYMMETRIC;
break;
case ALGORITHM_RIGHT_ASYMMETRIC_6:
new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
break;
case ALGORITHM_LEFT_SYMMETRIC_6:
new_layout = ALGORITHM_LEFT_SYMMETRIC;
break;
case ALGORITHM_RIGHT_SYMMETRIC_6:
new_layout = ALGORITHM_RIGHT_SYMMETRIC;
break;
case ALGORITHM_PARITY_0_6:
new_layout = ALGORITHM_PARITY_0;
break;
case ALGORITHM_PARITY_N:
new_layout = ALGORITHM_PARITY_N;
break;
default:
return ERR_PTR(-EINVAL);
}
mddev->new_level = 5;
mddev->new_layout = new_layout;
mddev->delta_disks = -1;
mddev->raid_disks -= 1;
return setup_conf(mddev);
}
static int raid5_check_reshape(struct mddev *mddev)
{
/* For a 2-drive array, the layout and chunk size can be changed
* immediately as not restriping is needed.
* For larger arrays we record the new value - after validation
* to be used by a reshape pass.
*/
struct r5conf *conf = mddev->private;
int new_chunk = mddev->new_chunk_sectors;
if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
return -EINVAL;
if (new_chunk > 0) {
if (!is_power_of_2(new_chunk))
return -EINVAL;
if (new_chunk < (PAGE_SIZE>>9))
return -EINVAL;
if (mddev->array_sectors & (new_chunk-1))
/* not factor of array size */
return -EINVAL;
}
/* They look valid */
if (mddev->raid_disks == 2) {
/* can make the change immediately */
if (mddev->new_layout >= 0) {
conf->algorithm = mddev->new_layout;
mddev->layout = mddev->new_layout;
}
if (new_chunk > 0) {
conf->chunk_sectors = new_chunk ;
mddev->chunk_sectors = new_chunk;
}
set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
md_wakeup_thread(mddev->thread);
}
return check_reshape(mddev);
}
static int raid6_check_reshape(struct mddev *mddev)
{
int new_chunk = mddev->new_chunk_sectors;
if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
return -EINVAL;
if (new_chunk > 0) {
if (!is_power_of_2(new_chunk))
return -EINVAL;
if (new_chunk < (PAGE_SIZE >> 9))
return -EINVAL;
if (mddev->array_sectors & (new_chunk-1))
/* not factor of array size */
return -EINVAL;
}
/* They look valid */
return check_reshape(mddev);
}
static void *raid5_takeover(struct mddev *mddev)
{
/* raid5 can take over:
* raid0 - if there is only one strip zone - make it a raid4 layout
* raid1 - if there are two drives. We need to know the chunk size
* raid4 - trivial - just use a raid4 layout.
* raid6 - Providing it is a *_6 layout
*/
if (mddev->level == 0)
return raid45_takeover_raid0(mddev, 5);
if (mddev->level == 1)
return raid5_takeover_raid1(mddev);
if (mddev->level == 4) {
mddev->new_layout = ALGORITHM_PARITY_N;
mddev->new_level = 5;
return setup_conf(mddev);
}
if (mddev->level == 6)
return raid5_takeover_raid6(mddev);
return ERR_PTR(-EINVAL);
}
static void *raid4_takeover(struct mddev *mddev)
{
/* raid4 can take over:
* raid0 - if there is only one strip zone
* raid5 - if layout is right
*/
if (mddev->level == 0)
return raid45_takeover_raid0(mddev, 4);
if (mddev->level == 5 &&
mddev->layout == ALGORITHM_PARITY_N) {
mddev->new_layout = 0;
mddev->new_level = 4;
return setup_conf(mddev);
}
return ERR_PTR(-EINVAL);
}
static struct md_personality raid5_personality;
static void *raid6_takeover(struct mddev *mddev)
{
/* Currently can only take over a raid5. We map the
* personality to an equivalent raid6 personality
* with the Q block at the end.
*/
int new_layout;
if (mddev->pers != &raid5_personality)
return ERR_PTR(-EINVAL);
if (mddev->degraded > 1)
return ERR_PTR(-EINVAL);
if (mddev->raid_disks > 253)
return ERR_PTR(-EINVAL);
if (mddev->raid_disks < 3)
return ERR_PTR(-EINVAL);
switch (mddev->layout) {
case ALGORITHM_LEFT_ASYMMETRIC:
new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
break;
case ALGORITHM_RIGHT_ASYMMETRIC:
new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
break;
case ALGORITHM_LEFT_SYMMETRIC:
new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
break;
case ALGORITHM_RIGHT_SYMMETRIC:
new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
break;
case ALGORITHM_PARITY_0:
new_layout = ALGORITHM_PARITY_0_6;
break;
case ALGORITHM_PARITY_N:
new_layout = ALGORITHM_PARITY_N;
break;
default:
return ERR_PTR(-EINVAL);
}
mddev->new_level = 6;
mddev->new_layout = new_layout;
mddev->delta_disks = 1;
mddev->raid_disks += 1;
return setup_conf(mddev);
}
static int raid5_change_consistency_policy(struct mddev *mddev, const char *buf)
{
struct r5conf *conf;
int err;
err = mddev_lock(mddev);
if (err)
return err;
conf = mddev->private;
if (!conf) {
mddev_unlock(mddev);
return -ENODEV;
}
if (strncmp(buf, "ppl", 3) == 0) {
/* ppl only works with RAID 5 */
if (!raid5_has_ppl(conf) && conf->level == 5) {
err = log_init(conf, NULL, true);
if (!err) {
err = resize_stripes(conf, conf->pool_size);
if (err)
log_exit(conf);
}
} else
err = -EINVAL;
} else if (strncmp(buf, "resync", 6) == 0) {
if (raid5_has_ppl(conf)) {
mddev_suspend(mddev);
log_exit(conf);
mddev_resume(mddev);
err = resize_stripes(conf, conf->pool_size);
} else if (test_bit(MD_HAS_JOURNAL, &conf->mddev->flags) &&
r5l_log_disk_error(conf)) {
bool journal_dev_exists = false;
struct md_rdev *rdev;
rdev_for_each(rdev, mddev)
if (test_bit(Journal, &rdev->flags)) {
journal_dev_exists = true;
break;
}
if (!journal_dev_exists) {
mddev_suspend(mddev);
clear_bit(MD_HAS_JOURNAL, &mddev->flags);
mddev_resume(mddev);
} else /* need remove journal device first */
err = -EBUSY;
} else
err = -EINVAL;
} else {
err = -EINVAL;
}
if (!err)
md_update_sb(mddev, 1);
mddev_unlock(mddev);
return err;
}
static int raid5_start(struct mddev *mddev)
{
struct r5conf *conf = mddev->private;
return r5l_start(conf->log);
}
static struct md_personality raid6_personality =
{
.name = "raid6",
.level = 6,
.owner = THIS_MODULE,
.make_request = raid5_make_request,
.run = raid5_run,
.start = raid5_start,
.free = raid5_free,
.status = raid5_status,
.error_handler = raid5_error,
.hot_add_disk = raid5_add_disk,
.hot_remove_disk= raid5_remove_disk,
.spare_active = raid5_spare_active,
.sync_request = raid5_sync_request,
.resize = raid5_resize,
.size = raid5_size,
.check_reshape = raid6_check_reshape,
.start_reshape = raid5_start_reshape,
.finish_reshape = raid5_finish_reshape,
.quiesce = raid5_quiesce,
.takeover = raid6_takeover,
.congested = raid5_congested,
.change_consistency_policy = raid5_change_consistency_policy,
};
static struct md_personality raid5_personality =
{
.name = "raid5",
.level = 5,
.owner = THIS_MODULE,
.make_request = raid5_make_request,
.run = raid5_run,
.start = raid5_start,
.free = raid5_free,
.status = raid5_status,
.error_handler = raid5_error,
.hot_add_disk = raid5_add_disk,
.hot_remove_disk= raid5_remove_disk,
.spare_active = raid5_spare_active,
.sync_request = raid5_sync_request,
.resize = raid5_resize,
.size = raid5_size,
.check_reshape = raid5_check_reshape,
.start_reshape = raid5_start_reshape,
.finish_reshape = raid5_finish_reshape,
.quiesce = raid5_quiesce,
.takeover = raid5_takeover,
.congested = raid5_congested,
.change_consistency_policy = raid5_change_consistency_policy,
};
static struct md_personality raid4_personality =
{
.name = "raid4",
.level = 4,
.owner = THIS_MODULE,
.make_request = raid5_make_request,
.run = raid5_run,
.start = raid5_start,
.free = raid5_free,
.status = raid5_status,
.error_handler = raid5_error,
.hot_add_disk = raid5_add_disk,
.hot_remove_disk= raid5_remove_disk,
.spare_active = raid5_spare_active,
.sync_request = raid5_sync_request,
.resize = raid5_resize,
.size = raid5_size,
.check_reshape = raid5_check_reshape,
.start_reshape = raid5_start_reshape,
.finish_reshape = raid5_finish_reshape,
.quiesce = raid5_quiesce,
.takeover = raid4_takeover,
.congested = raid5_congested,
.change_consistency_policy = raid5_change_consistency_policy,
};
static int __init raid5_init(void)
{
int ret;
raid5_wq = alloc_workqueue("raid5wq",
WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE|WQ_SYSFS, 0);
if (!raid5_wq)
return -ENOMEM;
ret = cpuhp_setup_state_multi(CPUHP_MD_RAID5_PREPARE,
"md/raid5:prepare",
raid456_cpu_up_prepare,
raid456_cpu_dead);
if (ret) {
destroy_workqueue(raid5_wq);
return ret;
}
register_md_personality(&raid6_personality);
register_md_personality(&raid5_personality);
register_md_personality(&raid4_personality);
return 0;
}
static void raid5_exit(void)
{
unregister_md_personality(&raid6_personality);
unregister_md_personality(&raid5_personality);
unregister_md_personality(&raid4_personality);
cpuhp_remove_multi_state(CPUHP_MD_RAID5_PREPARE);
destroy_workqueue(raid5_wq);
}
module_init(raid5_init);
module_exit(raid5_exit);
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
MODULE_ALIAS("md-personality-4"); /* RAID5 */
MODULE_ALIAS("md-raid5");
MODULE_ALIAS("md-raid4");
MODULE_ALIAS("md-level-5");
MODULE_ALIAS("md-level-4");
MODULE_ALIAS("md-personality-8"); /* RAID6 */
MODULE_ALIAS("md-raid6");
MODULE_ALIAS("md-level-6");
/* This used to be two separate modules, they were: */
MODULE_ALIAS("raid5");
MODULE_ALIAS("raid6");