linux/drivers/base/arch_topology.c
Morten Rasmussen bb1fbdd3c3 sched/topology, drivers/base/arch_topology: Rebuild the sched_domain hierarchy when capacities change
The setting of SD_ASYM_CPUCAPACITY depends on the per-CPU capacities.
These might not have their final values when the hierarchy is initially
built as the values depend on cpufreq to be initialized or the values
being set through sysfs. To ensure that the flags are set correctly we
need to rebuild the sched_domain hierarchy whenever the reported per-CPU
capacity (arch_scale_cpu_capacity()) changes.

This patch ensure that a full sched_domain rebuild happens when CPU
capacity changes occur.

Signed-off-by: Morten Rasmussen <morten.rasmussen@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: dietmar.eggemann@arm.com
Cc: valentin.schneider@arm.com
Cc: vincent.guittot@linaro.org
Link: http://lkml.kernel.org/r/1532093554-30504-3-git-send-email-morten.rasmussen@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-09-10 11:05:47 +02:00

281 lines
6.5 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Arch specific cpu topology information
*
* Copyright (C) 2016, ARM Ltd.
* Written by: Juri Lelli, ARM Ltd.
*/
#include <linux/acpi.h>
#include <linux/arch_topology.h>
#include <linux/cpu.h>
#include <linux/cpufreq.h>
#include <linux/device.h>
#include <linux/of.h>
#include <linux/slab.h>
#include <linux/string.h>
#include <linux/sched/topology.h>
#include <linux/cpuset.h>
DEFINE_PER_CPU(unsigned long, freq_scale) = SCHED_CAPACITY_SCALE;
void arch_set_freq_scale(struct cpumask *cpus, unsigned long cur_freq,
unsigned long max_freq)
{
unsigned long scale;
int i;
scale = (cur_freq << SCHED_CAPACITY_SHIFT) / max_freq;
for_each_cpu(i, cpus)
per_cpu(freq_scale, i) = scale;
}
static DEFINE_MUTEX(cpu_scale_mutex);
DEFINE_PER_CPU(unsigned long, cpu_scale) = SCHED_CAPACITY_SCALE;
void topology_set_cpu_scale(unsigned int cpu, unsigned long capacity)
{
per_cpu(cpu_scale, cpu) = capacity;
}
static ssize_t cpu_capacity_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct cpu *cpu = container_of(dev, struct cpu, dev);
return sprintf(buf, "%lu\n", topology_get_cpu_scale(NULL, cpu->dev.id));
}
static void update_topology_flags_workfn(struct work_struct *work);
static DECLARE_WORK(update_topology_flags_work, update_topology_flags_workfn);
static ssize_t cpu_capacity_store(struct device *dev,
struct device_attribute *attr,
const char *buf,
size_t count)
{
struct cpu *cpu = container_of(dev, struct cpu, dev);
int this_cpu = cpu->dev.id;
int i;
unsigned long new_capacity;
ssize_t ret;
if (!count)
return 0;
ret = kstrtoul(buf, 0, &new_capacity);
if (ret)
return ret;
if (new_capacity > SCHED_CAPACITY_SCALE)
return -EINVAL;
mutex_lock(&cpu_scale_mutex);
for_each_cpu(i, &cpu_topology[this_cpu].core_sibling)
topology_set_cpu_scale(i, new_capacity);
mutex_unlock(&cpu_scale_mutex);
schedule_work(&update_topology_flags_work);
return count;
}
static DEVICE_ATTR_RW(cpu_capacity);
static int register_cpu_capacity_sysctl(void)
{
int i;
struct device *cpu;
for_each_possible_cpu(i) {
cpu = get_cpu_device(i);
if (!cpu) {
pr_err("%s: too early to get CPU%d device!\n",
__func__, i);
continue;
}
device_create_file(cpu, &dev_attr_cpu_capacity);
}
return 0;
}
subsys_initcall(register_cpu_capacity_sysctl);
static int update_topology;
int topology_update_cpu_topology(void)
{
return update_topology;
}
/*
* Updating the sched_domains can't be done directly from cpufreq callbacks
* due to locking, so queue the work for later.
*/
static void update_topology_flags_workfn(struct work_struct *work)
{
update_topology = 1;
rebuild_sched_domains();
pr_debug("sched_domain hierarchy rebuilt, flags updated\n");
update_topology = 0;
}
static u32 capacity_scale;
static u32 *raw_capacity;
static int free_raw_capacity(void)
{
kfree(raw_capacity);
raw_capacity = NULL;
return 0;
}
void topology_normalize_cpu_scale(void)
{
u64 capacity;
int cpu;
if (!raw_capacity)
return;
pr_debug("cpu_capacity: capacity_scale=%u\n", capacity_scale);
mutex_lock(&cpu_scale_mutex);
for_each_possible_cpu(cpu) {
pr_debug("cpu_capacity: cpu=%d raw_capacity=%u\n",
cpu, raw_capacity[cpu]);
capacity = (raw_capacity[cpu] << SCHED_CAPACITY_SHIFT)
/ capacity_scale;
topology_set_cpu_scale(cpu, capacity);
pr_debug("cpu_capacity: CPU%d cpu_capacity=%lu\n",
cpu, topology_get_cpu_scale(NULL, cpu));
}
mutex_unlock(&cpu_scale_mutex);
}
bool __init topology_parse_cpu_capacity(struct device_node *cpu_node, int cpu)
{
static bool cap_parsing_failed;
int ret;
u32 cpu_capacity;
if (cap_parsing_failed)
return false;
ret = of_property_read_u32(cpu_node, "capacity-dmips-mhz",
&cpu_capacity);
if (!ret) {
if (!raw_capacity) {
raw_capacity = kcalloc(num_possible_cpus(),
sizeof(*raw_capacity),
GFP_KERNEL);
if (!raw_capacity) {
pr_err("cpu_capacity: failed to allocate memory for raw capacities\n");
cap_parsing_failed = true;
return false;
}
}
capacity_scale = max(cpu_capacity, capacity_scale);
raw_capacity[cpu] = cpu_capacity;
pr_debug("cpu_capacity: %pOF cpu_capacity=%u (raw)\n",
cpu_node, raw_capacity[cpu]);
} else {
if (raw_capacity) {
pr_err("cpu_capacity: missing %pOF raw capacity\n",
cpu_node);
pr_err("cpu_capacity: partial information: fallback to 1024 for all CPUs\n");
}
cap_parsing_failed = true;
free_raw_capacity();
}
return !ret;
}
#ifdef CONFIG_CPU_FREQ
static cpumask_var_t cpus_to_visit;
static void parsing_done_workfn(struct work_struct *work);
static DECLARE_WORK(parsing_done_work, parsing_done_workfn);
static int
init_cpu_capacity_callback(struct notifier_block *nb,
unsigned long val,
void *data)
{
struct cpufreq_policy *policy = data;
int cpu;
if (!raw_capacity)
return 0;
if (val != CPUFREQ_NOTIFY)
return 0;
pr_debug("cpu_capacity: init cpu capacity for CPUs [%*pbl] (to_visit=%*pbl)\n",
cpumask_pr_args(policy->related_cpus),
cpumask_pr_args(cpus_to_visit));
cpumask_andnot(cpus_to_visit, cpus_to_visit, policy->related_cpus);
for_each_cpu(cpu, policy->related_cpus) {
raw_capacity[cpu] = topology_get_cpu_scale(NULL, cpu) *
policy->cpuinfo.max_freq / 1000UL;
capacity_scale = max(raw_capacity[cpu], capacity_scale);
}
if (cpumask_empty(cpus_to_visit)) {
topology_normalize_cpu_scale();
schedule_work(&update_topology_flags_work);
free_raw_capacity();
pr_debug("cpu_capacity: parsing done\n");
schedule_work(&parsing_done_work);
}
return 0;
}
static struct notifier_block init_cpu_capacity_notifier = {
.notifier_call = init_cpu_capacity_callback,
};
static int __init register_cpufreq_notifier(void)
{
int ret;
/*
* on ACPI-based systems we need to use the default cpu capacity
* until we have the necessary code to parse the cpu capacity, so
* skip registering cpufreq notifier.
*/
if (!acpi_disabled || !raw_capacity)
return -EINVAL;
if (!alloc_cpumask_var(&cpus_to_visit, GFP_KERNEL)) {
pr_err("cpu_capacity: failed to allocate memory for cpus_to_visit\n");
return -ENOMEM;
}
cpumask_copy(cpus_to_visit, cpu_possible_mask);
ret = cpufreq_register_notifier(&init_cpu_capacity_notifier,
CPUFREQ_POLICY_NOTIFIER);
if (ret)
free_cpumask_var(cpus_to_visit);
return ret;
}
core_initcall(register_cpufreq_notifier);
static void parsing_done_workfn(struct work_struct *work)
{
cpufreq_unregister_notifier(&init_cpu_capacity_notifier,
CPUFREQ_POLICY_NOTIFIER);
free_cpumask_var(cpus_to_visit);
}
#else
core_initcall(free_raw_capacity);
#endif