linux/net/sched/sch_fq.c
Petr Machata ac5c66f261 Revert "net: sched: Pass root lock to Qdisc_ops.enqueue"
This reverts commit aebe4426cc.

Signed-off-by: Petr Machata <petrm@mellanox.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2020-07-16 16:48:34 -07:00

1079 lines
27 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* net/sched/sch_fq.c Fair Queue Packet Scheduler (per flow pacing)
*
* Copyright (C) 2013-2015 Eric Dumazet <edumazet@google.com>
*
* Meant to be mostly used for locally generated traffic :
* Fast classification depends on skb->sk being set before reaching us.
* If not, (router workload), we use rxhash as fallback, with 32 bits wide hash.
* All packets belonging to a socket are considered as a 'flow'.
*
* Flows are dynamically allocated and stored in a hash table of RB trees
* They are also part of one Round Robin 'queues' (new or old flows)
*
* Burst avoidance (aka pacing) capability :
*
* Transport (eg TCP) can set in sk->sk_pacing_rate a rate, enqueue a
* bunch of packets, and this packet scheduler adds delay between
* packets to respect rate limitation.
*
* enqueue() :
* - lookup one RB tree (out of 1024 or more) to find the flow.
* If non existent flow, create it, add it to the tree.
* Add skb to the per flow list of skb (fifo).
* - Use a special fifo for high prio packets
*
* dequeue() : serves flows in Round Robin
* Note : When a flow becomes empty, we do not immediately remove it from
* rb trees, for performance reasons (its expected to send additional packets,
* or SLAB cache will reuse socket for another flow)
*/
#include <linux/module.h>
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/jiffies.h>
#include <linux/string.h>
#include <linux/in.h>
#include <linux/errno.h>
#include <linux/init.h>
#include <linux/skbuff.h>
#include <linux/slab.h>
#include <linux/rbtree.h>
#include <linux/hash.h>
#include <linux/prefetch.h>
#include <linux/vmalloc.h>
#include <net/netlink.h>
#include <net/pkt_sched.h>
#include <net/sock.h>
#include <net/tcp_states.h>
#include <net/tcp.h>
struct fq_skb_cb {
u64 time_to_send;
};
static inline struct fq_skb_cb *fq_skb_cb(struct sk_buff *skb)
{
qdisc_cb_private_validate(skb, sizeof(struct fq_skb_cb));
return (struct fq_skb_cb *)qdisc_skb_cb(skb)->data;
}
/*
* Per flow structure, dynamically allocated.
* If packets have monotically increasing time_to_send, they are placed in O(1)
* in linear list (head,tail), otherwise are placed in a rbtree (t_root).
*/
struct fq_flow {
/* First cache line : used in fq_gc(), fq_enqueue(), fq_dequeue() */
struct rb_root t_root;
struct sk_buff *head; /* list of skbs for this flow : first skb */
union {
struct sk_buff *tail; /* last skb in the list */
unsigned long age; /* (jiffies | 1UL) when flow was emptied, for gc */
};
struct rb_node fq_node; /* anchor in fq_root[] trees */
struct sock *sk;
u32 socket_hash; /* sk_hash */
int qlen; /* number of packets in flow queue */
/* Second cache line, used in fq_dequeue() */
int credit;
/* 32bit hole on 64bit arches */
struct fq_flow *next; /* next pointer in RR lists */
struct rb_node rate_node; /* anchor in q->delayed tree */
u64 time_next_packet;
} ____cacheline_aligned_in_smp;
struct fq_flow_head {
struct fq_flow *first;
struct fq_flow *last;
};
struct fq_sched_data {
struct fq_flow_head new_flows;
struct fq_flow_head old_flows;
struct rb_root delayed; /* for rate limited flows */
u64 time_next_delayed_flow;
u64 ktime_cache; /* copy of last ktime_get_ns() */
unsigned long unthrottle_latency_ns;
struct fq_flow internal; /* for non classified or high prio packets */
u32 quantum;
u32 initial_quantum;
u32 flow_refill_delay;
u32 flow_plimit; /* max packets per flow */
unsigned long flow_max_rate; /* optional max rate per flow */
u64 ce_threshold;
u64 horizon; /* horizon in ns */
u32 orphan_mask; /* mask for orphaned skb */
u32 low_rate_threshold;
struct rb_root *fq_root;
u8 rate_enable;
u8 fq_trees_log;
u8 horizon_drop;
u32 flows;
u32 inactive_flows;
u32 throttled_flows;
u64 stat_gc_flows;
u64 stat_internal_packets;
u64 stat_throttled;
u64 stat_ce_mark;
u64 stat_horizon_drops;
u64 stat_horizon_caps;
u64 stat_flows_plimit;
u64 stat_pkts_too_long;
u64 stat_allocation_errors;
u32 timer_slack; /* hrtimer slack in ns */
struct qdisc_watchdog watchdog;
};
/*
* f->tail and f->age share the same location.
* We can use the low order bit to differentiate if this location points
* to a sk_buff or contains a jiffies value, if we force this value to be odd.
* This assumes f->tail low order bit must be 0 since alignof(struct sk_buff) >= 2
*/
static void fq_flow_set_detached(struct fq_flow *f)
{
f->age = jiffies | 1UL;
}
static bool fq_flow_is_detached(const struct fq_flow *f)
{
return !!(f->age & 1UL);
}
/* special value to mark a throttled flow (not on old/new list) */
static struct fq_flow throttled;
static bool fq_flow_is_throttled(const struct fq_flow *f)
{
return f->next == &throttled;
}
static void fq_flow_add_tail(struct fq_flow_head *head, struct fq_flow *flow)
{
if (head->first)
head->last->next = flow;
else
head->first = flow;
head->last = flow;
flow->next = NULL;
}
static void fq_flow_unset_throttled(struct fq_sched_data *q, struct fq_flow *f)
{
rb_erase(&f->rate_node, &q->delayed);
q->throttled_flows--;
fq_flow_add_tail(&q->old_flows, f);
}
static void fq_flow_set_throttled(struct fq_sched_data *q, struct fq_flow *f)
{
struct rb_node **p = &q->delayed.rb_node, *parent = NULL;
while (*p) {
struct fq_flow *aux;
parent = *p;
aux = rb_entry(parent, struct fq_flow, rate_node);
if (f->time_next_packet >= aux->time_next_packet)
p = &parent->rb_right;
else
p = &parent->rb_left;
}
rb_link_node(&f->rate_node, parent, p);
rb_insert_color(&f->rate_node, &q->delayed);
q->throttled_flows++;
q->stat_throttled++;
f->next = &throttled;
if (q->time_next_delayed_flow > f->time_next_packet)
q->time_next_delayed_flow = f->time_next_packet;
}
static struct kmem_cache *fq_flow_cachep __read_mostly;
/* limit number of collected flows per round */
#define FQ_GC_MAX 8
#define FQ_GC_AGE (3*HZ)
static bool fq_gc_candidate(const struct fq_flow *f)
{
return fq_flow_is_detached(f) &&
time_after(jiffies, f->age + FQ_GC_AGE);
}
static void fq_gc(struct fq_sched_data *q,
struct rb_root *root,
struct sock *sk)
{
struct rb_node **p, *parent;
void *tofree[FQ_GC_MAX];
struct fq_flow *f;
int i, fcnt = 0;
p = &root->rb_node;
parent = NULL;
while (*p) {
parent = *p;
f = rb_entry(parent, struct fq_flow, fq_node);
if (f->sk == sk)
break;
if (fq_gc_candidate(f)) {
tofree[fcnt++] = f;
if (fcnt == FQ_GC_MAX)
break;
}
if (f->sk > sk)
p = &parent->rb_right;
else
p = &parent->rb_left;
}
if (!fcnt)
return;
for (i = fcnt; i > 0; ) {
f = tofree[--i];
rb_erase(&f->fq_node, root);
}
q->flows -= fcnt;
q->inactive_flows -= fcnt;
q->stat_gc_flows += fcnt;
kmem_cache_free_bulk(fq_flow_cachep, fcnt, tofree);
}
static struct fq_flow *fq_classify(struct sk_buff *skb, struct fq_sched_data *q)
{
struct rb_node **p, *parent;
struct sock *sk = skb->sk;
struct rb_root *root;
struct fq_flow *f;
/* warning: no starvation prevention... */
if (unlikely((skb->priority & TC_PRIO_MAX) == TC_PRIO_CONTROL))
return &q->internal;
/* SYNACK messages are attached to a TCP_NEW_SYN_RECV request socket
* or a listener (SYNCOOKIE mode)
* 1) request sockets are not full blown,
* they do not contain sk_pacing_rate
* 2) They are not part of a 'flow' yet
* 3) We do not want to rate limit them (eg SYNFLOOD attack),
* especially if the listener set SO_MAX_PACING_RATE
* 4) We pretend they are orphaned
*/
if (!sk || sk_listener(sk)) {
unsigned long hash = skb_get_hash(skb) & q->orphan_mask;
/* By forcing low order bit to 1, we make sure to not
* collide with a local flow (socket pointers are word aligned)
*/
sk = (struct sock *)((hash << 1) | 1UL);
skb_orphan(skb);
} else if (sk->sk_state == TCP_CLOSE) {
unsigned long hash = skb_get_hash(skb) & q->orphan_mask;
/*
* Sockets in TCP_CLOSE are non connected.
* Typical use case is UDP sockets, they can send packets
* with sendto() to many different destinations.
* We probably could use a generic bit advertising
* non connected sockets, instead of sk_state == TCP_CLOSE,
* if we care enough.
*/
sk = (struct sock *)((hash << 1) | 1UL);
}
root = &q->fq_root[hash_ptr(sk, q->fq_trees_log)];
if (q->flows >= (2U << q->fq_trees_log) &&
q->inactive_flows > q->flows/2)
fq_gc(q, root, sk);
p = &root->rb_node;
parent = NULL;
while (*p) {
parent = *p;
f = rb_entry(parent, struct fq_flow, fq_node);
if (f->sk == sk) {
/* socket might have been reallocated, so check
* if its sk_hash is the same.
* It not, we need to refill credit with
* initial quantum
*/
if (unlikely(skb->sk == sk &&
f->socket_hash != sk->sk_hash)) {
f->credit = q->initial_quantum;
f->socket_hash = sk->sk_hash;
if (q->rate_enable)
smp_store_release(&sk->sk_pacing_status,
SK_PACING_FQ);
if (fq_flow_is_throttled(f))
fq_flow_unset_throttled(q, f);
f->time_next_packet = 0ULL;
}
return f;
}
if (f->sk > sk)
p = &parent->rb_right;
else
p = &parent->rb_left;
}
f = kmem_cache_zalloc(fq_flow_cachep, GFP_ATOMIC | __GFP_NOWARN);
if (unlikely(!f)) {
q->stat_allocation_errors++;
return &q->internal;
}
/* f->t_root is already zeroed after kmem_cache_zalloc() */
fq_flow_set_detached(f);
f->sk = sk;
if (skb->sk == sk) {
f->socket_hash = sk->sk_hash;
if (q->rate_enable)
smp_store_release(&sk->sk_pacing_status,
SK_PACING_FQ);
}
f->credit = q->initial_quantum;
rb_link_node(&f->fq_node, parent, p);
rb_insert_color(&f->fq_node, root);
q->flows++;
q->inactive_flows++;
return f;
}
static struct sk_buff *fq_peek(struct fq_flow *flow)
{
struct sk_buff *skb = skb_rb_first(&flow->t_root);
struct sk_buff *head = flow->head;
if (!skb)
return head;
if (!head)
return skb;
if (fq_skb_cb(skb)->time_to_send < fq_skb_cb(head)->time_to_send)
return skb;
return head;
}
static void fq_erase_head(struct Qdisc *sch, struct fq_flow *flow,
struct sk_buff *skb)
{
if (skb == flow->head) {
flow->head = skb->next;
} else {
rb_erase(&skb->rbnode, &flow->t_root);
skb->dev = qdisc_dev(sch);
}
}
/* Remove one skb from flow queue.
* This skb must be the return value of prior fq_peek().
*/
static void fq_dequeue_skb(struct Qdisc *sch, struct fq_flow *flow,
struct sk_buff *skb)
{
fq_erase_head(sch, flow, skb);
skb_mark_not_on_list(skb);
flow->qlen--;
qdisc_qstats_backlog_dec(sch, skb);
sch->q.qlen--;
}
static void flow_queue_add(struct fq_flow *flow, struct sk_buff *skb)
{
struct rb_node **p, *parent;
struct sk_buff *head, *aux;
head = flow->head;
if (!head ||
fq_skb_cb(skb)->time_to_send >= fq_skb_cb(flow->tail)->time_to_send) {
if (!head)
flow->head = skb;
else
flow->tail->next = skb;
flow->tail = skb;
skb->next = NULL;
return;
}
p = &flow->t_root.rb_node;
parent = NULL;
while (*p) {
parent = *p;
aux = rb_to_skb(parent);
if (fq_skb_cb(skb)->time_to_send >= fq_skb_cb(aux)->time_to_send)
p = &parent->rb_right;
else
p = &parent->rb_left;
}
rb_link_node(&skb->rbnode, parent, p);
rb_insert_color(&skb->rbnode, &flow->t_root);
}
static bool fq_packet_beyond_horizon(const struct sk_buff *skb,
const struct fq_sched_data *q)
{
return unlikely((s64)skb->tstamp > (s64)(q->ktime_cache + q->horizon));
}
static int fq_enqueue(struct sk_buff *skb, struct Qdisc *sch,
struct sk_buff **to_free)
{
struct fq_sched_data *q = qdisc_priv(sch);
struct fq_flow *f;
if (unlikely(sch->q.qlen >= sch->limit))
return qdisc_drop(skb, sch, to_free);
if (!skb->tstamp) {
fq_skb_cb(skb)->time_to_send = q->ktime_cache = ktime_get_ns();
} else {
/* Check if packet timestamp is too far in the future.
* Try first if our cached value, to avoid ktime_get_ns()
* cost in most cases.
*/
if (fq_packet_beyond_horizon(skb, q)) {
/* Refresh our cache and check another time */
q->ktime_cache = ktime_get_ns();
if (fq_packet_beyond_horizon(skb, q)) {
if (q->horizon_drop) {
q->stat_horizon_drops++;
return qdisc_drop(skb, sch, to_free);
}
q->stat_horizon_caps++;
skb->tstamp = q->ktime_cache + q->horizon;
}
}
fq_skb_cb(skb)->time_to_send = skb->tstamp;
}
f = fq_classify(skb, q);
if (unlikely(f->qlen >= q->flow_plimit && f != &q->internal)) {
q->stat_flows_plimit++;
return qdisc_drop(skb, sch, to_free);
}
f->qlen++;
qdisc_qstats_backlog_inc(sch, skb);
if (fq_flow_is_detached(f)) {
fq_flow_add_tail(&q->new_flows, f);
if (time_after(jiffies, f->age + q->flow_refill_delay))
f->credit = max_t(u32, f->credit, q->quantum);
q->inactive_flows--;
}
/* Note: this overwrites f->age */
flow_queue_add(f, skb);
if (unlikely(f == &q->internal)) {
q->stat_internal_packets++;
}
sch->q.qlen++;
return NET_XMIT_SUCCESS;
}
static void fq_check_throttled(struct fq_sched_data *q, u64 now)
{
unsigned long sample;
struct rb_node *p;
if (q->time_next_delayed_flow > now)
return;
/* Update unthrottle latency EWMA.
* This is cheap and can help diagnosing timer/latency problems.
*/
sample = (unsigned long)(now - q->time_next_delayed_flow);
q->unthrottle_latency_ns -= q->unthrottle_latency_ns >> 3;
q->unthrottle_latency_ns += sample >> 3;
q->time_next_delayed_flow = ~0ULL;
while ((p = rb_first(&q->delayed)) != NULL) {
struct fq_flow *f = rb_entry(p, struct fq_flow, rate_node);
if (f->time_next_packet > now) {
q->time_next_delayed_flow = f->time_next_packet;
break;
}
fq_flow_unset_throttled(q, f);
}
}
static struct sk_buff *fq_dequeue(struct Qdisc *sch)
{
struct fq_sched_data *q = qdisc_priv(sch);
struct fq_flow_head *head;
struct sk_buff *skb;
struct fq_flow *f;
unsigned long rate;
u32 plen;
u64 now;
if (!sch->q.qlen)
return NULL;
skb = fq_peek(&q->internal);
if (unlikely(skb)) {
fq_dequeue_skb(sch, &q->internal, skb);
goto out;
}
q->ktime_cache = now = ktime_get_ns();
fq_check_throttled(q, now);
begin:
head = &q->new_flows;
if (!head->first) {
head = &q->old_flows;
if (!head->first) {
if (q->time_next_delayed_flow != ~0ULL)
qdisc_watchdog_schedule_range_ns(&q->watchdog,
q->time_next_delayed_flow,
q->timer_slack);
return NULL;
}
}
f = head->first;
if (f->credit <= 0) {
f->credit += q->quantum;
head->first = f->next;
fq_flow_add_tail(&q->old_flows, f);
goto begin;
}
skb = fq_peek(f);
if (skb) {
u64 time_next_packet = max_t(u64, fq_skb_cb(skb)->time_to_send,
f->time_next_packet);
if (now < time_next_packet) {
head->first = f->next;
f->time_next_packet = time_next_packet;
fq_flow_set_throttled(q, f);
goto begin;
}
prefetch(&skb->end);
if ((s64)(now - time_next_packet - q->ce_threshold) > 0) {
INET_ECN_set_ce(skb);
q->stat_ce_mark++;
}
fq_dequeue_skb(sch, f, skb);
} else {
head->first = f->next;
/* force a pass through old_flows to prevent starvation */
if ((head == &q->new_flows) && q->old_flows.first) {
fq_flow_add_tail(&q->old_flows, f);
} else {
fq_flow_set_detached(f);
q->inactive_flows++;
}
goto begin;
}
plen = qdisc_pkt_len(skb);
f->credit -= plen;
if (!q->rate_enable)
goto out;
rate = q->flow_max_rate;
/* If EDT time was provided for this skb, we need to
* update f->time_next_packet only if this qdisc enforces
* a flow max rate.
*/
if (!skb->tstamp) {
if (skb->sk)
rate = min(skb->sk->sk_pacing_rate, rate);
if (rate <= q->low_rate_threshold) {
f->credit = 0;
} else {
plen = max(plen, q->quantum);
if (f->credit > 0)
goto out;
}
}
if (rate != ~0UL) {
u64 len = (u64)plen * NSEC_PER_SEC;
if (likely(rate))
len = div64_ul(len, rate);
/* Since socket rate can change later,
* clamp the delay to 1 second.
* Really, providers of too big packets should be fixed !
*/
if (unlikely(len > NSEC_PER_SEC)) {
len = NSEC_PER_SEC;
q->stat_pkts_too_long++;
}
/* Account for schedule/timers drifts.
* f->time_next_packet was set when prior packet was sent,
* and current time (@now) can be too late by tens of us.
*/
if (f->time_next_packet)
len -= min(len/2, now - f->time_next_packet);
f->time_next_packet = now + len;
}
out:
qdisc_bstats_update(sch, skb);
return skb;
}
static void fq_flow_purge(struct fq_flow *flow)
{
struct rb_node *p = rb_first(&flow->t_root);
while (p) {
struct sk_buff *skb = rb_to_skb(p);
p = rb_next(p);
rb_erase(&skb->rbnode, &flow->t_root);
rtnl_kfree_skbs(skb, skb);
}
rtnl_kfree_skbs(flow->head, flow->tail);
flow->head = NULL;
flow->qlen = 0;
}
static void fq_reset(struct Qdisc *sch)
{
struct fq_sched_data *q = qdisc_priv(sch);
struct rb_root *root;
struct rb_node *p;
struct fq_flow *f;
unsigned int idx;
sch->q.qlen = 0;
sch->qstats.backlog = 0;
fq_flow_purge(&q->internal);
if (!q->fq_root)
return;
for (idx = 0; idx < (1U << q->fq_trees_log); idx++) {
root = &q->fq_root[idx];
while ((p = rb_first(root)) != NULL) {
f = rb_entry(p, struct fq_flow, fq_node);
rb_erase(p, root);
fq_flow_purge(f);
kmem_cache_free(fq_flow_cachep, f);
}
}
q->new_flows.first = NULL;
q->old_flows.first = NULL;
q->delayed = RB_ROOT;
q->flows = 0;
q->inactive_flows = 0;
q->throttled_flows = 0;
}
static void fq_rehash(struct fq_sched_data *q,
struct rb_root *old_array, u32 old_log,
struct rb_root *new_array, u32 new_log)
{
struct rb_node *op, **np, *parent;
struct rb_root *oroot, *nroot;
struct fq_flow *of, *nf;
int fcnt = 0;
u32 idx;
for (idx = 0; idx < (1U << old_log); idx++) {
oroot = &old_array[idx];
while ((op = rb_first(oroot)) != NULL) {
rb_erase(op, oroot);
of = rb_entry(op, struct fq_flow, fq_node);
if (fq_gc_candidate(of)) {
fcnt++;
kmem_cache_free(fq_flow_cachep, of);
continue;
}
nroot = &new_array[hash_ptr(of->sk, new_log)];
np = &nroot->rb_node;
parent = NULL;
while (*np) {
parent = *np;
nf = rb_entry(parent, struct fq_flow, fq_node);
BUG_ON(nf->sk == of->sk);
if (nf->sk > of->sk)
np = &parent->rb_right;
else
np = &parent->rb_left;
}
rb_link_node(&of->fq_node, parent, np);
rb_insert_color(&of->fq_node, nroot);
}
}
q->flows -= fcnt;
q->inactive_flows -= fcnt;
q->stat_gc_flows += fcnt;
}
static void fq_free(void *addr)
{
kvfree(addr);
}
static int fq_resize(struct Qdisc *sch, u32 log)
{
struct fq_sched_data *q = qdisc_priv(sch);
struct rb_root *array;
void *old_fq_root;
u32 idx;
if (q->fq_root && log == q->fq_trees_log)
return 0;
/* If XPS was setup, we can allocate memory on right NUMA node */
array = kvmalloc_node(sizeof(struct rb_root) << log, GFP_KERNEL | __GFP_RETRY_MAYFAIL,
netdev_queue_numa_node_read(sch->dev_queue));
if (!array)
return -ENOMEM;
for (idx = 0; idx < (1U << log); idx++)
array[idx] = RB_ROOT;
sch_tree_lock(sch);
old_fq_root = q->fq_root;
if (old_fq_root)
fq_rehash(q, old_fq_root, q->fq_trees_log, array, log);
q->fq_root = array;
q->fq_trees_log = log;
sch_tree_unlock(sch);
fq_free(old_fq_root);
return 0;
}
static const struct nla_policy fq_policy[TCA_FQ_MAX + 1] = {
[TCA_FQ_UNSPEC] = { .strict_start_type = TCA_FQ_TIMER_SLACK },
[TCA_FQ_PLIMIT] = { .type = NLA_U32 },
[TCA_FQ_FLOW_PLIMIT] = { .type = NLA_U32 },
[TCA_FQ_QUANTUM] = { .type = NLA_U32 },
[TCA_FQ_INITIAL_QUANTUM] = { .type = NLA_U32 },
[TCA_FQ_RATE_ENABLE] = { .type = NLA_U32 },
[TCA_FQ_FLOW_DEFAULT_RATE] = { .type = NLA_U32 },
[TCA_FQ_FLOW_MAX_RATE] = { .type = NLA_U32 },
[TCA_FQ_BUCKETS_LOG] = { .type = NLA_U32 },
[TCA_FQ_FLOW_REFILL_DELAY] = { .type = NLA_U32 },
[TCA_FQ_ORPHAN_MASK] = { .type = NLA_U32 },
[TCA_FQ_LOW_RATE_THRESHOLD] = { .type = NLA_U32 },
[TCA_FQ_CE_THRESHOLD] = { .type = NLA_U32 },
[TCA_FQ_TIMER_SLACK] = { .type = NLA_U32 },
[TCA_FQ_HORIZON] = { .type = NLA_U32 },
[TCA_FQ_HORIZON_DROP] = { .type = NLA_U8 },
};
static int fq_change(struct Qdisc *sch, struct nlattr *opt,
struct netlink_ext_ack *extack)
{
struct fq_sched_data *q = qdisc_priv(sch);
struct nlattr *tb[TCA_FQ_MAX + 1];
int err, drop_count = 0;
unsigned drop_len = 0;
u32 fq_log;
if (!opt)
return -EINVAL;
err = nla_parse_nested_deprecated(tb, TCA_FQ_MAX, opt, fq_policy,
NULL);
if (err < 0)
return err;
sch_tree_lock(sch);
fq_log = q->fq_trees_log;
if (tb[TCA_FQ_BUCKETS_LOG]) {
u32 nval = nla_get_u32(tb[TCA_FQ_BUCKETS_LOG]);
if (nval >= 1 && nval <= ilog2(256*1024))
fq_log = nval;
else
err = -EINVAL;
}
if (tb[TCA_FQ_PLIMIT])
sch->limit = nla_get_u32(tb[TCA_FQ_PLIMIT]);
if (tb[TCA_FQ_FLOW_PLIMIT])
q->flow_plimit = nla_get_u32(tb[TCA_FQ_FLOW_PLIMIT]);
if (tb[TCA_FQ_QUANTUM]) {
u32 quantum = nla_get_u32(tb[TCA_FQ_QUANTUM]);
if (quantum > 0 && quantum <= (1 << 20)) {
q->quantum = quantum;
} else {
NL_SET_ERR_MSG_MOD(extack, "invalid quantum");
err = -EINVAL;
}
}
if (tb[TCA_FQ_INITIAL_QUANTUM])
q->initial_quantum = nla_get_u32(tb[TCA_FQ_INITIAL_QUANTUM]);
if (tb[TCA_FQ_FLOW_DEFAULT_RATE])
pr_warn_ratelimited("sch_fq: defrate %u ignored.\n",
nla_get_u32(tb[TCA_FQ_FLOW_DEFAULT_RATE]));
if (tb[TCA_FQ_FLOW_MAX_RATE]) {
u32 rate = nla_get_u32(tb[TCA_FQ_FLOW_MAX_RATE]);
q->flow_max_rate = (rate == ~0U) ? ~0UL : rate;
}
if (tb[TCA_FQ_LOW_RATE_THRESHOLD])
q->low_rate_threshold =
nla_get_u32(tb[TCA_FQ_LOW_RATE_THRESHOLD]);
if (tb[TCA_FQ_RATE_ENABLE]) {
u32 enable = nla_get_u32(tb[TCA_FQ_RATE_ENABLE]);
if (enable <= 1)
q->rate_enable = enable;
else
err = -EINVAL;
}
if (tb[TCA_FQ_FLOW_REFILL_DELAY]) {
u32 usecs_delay = nla_get_u32(tb[TCA_FQ_FLOW_REFILL_DELAY]) ;
q->flow_refill_delay = usecs_to_jiffies(usecs_delay);
}
if (tb[TCA_FQ_ORPHAN_MASK])
q->orphan_mask = nla_get_u32(tb[TCA_FQ_ORPHAN_MASK]);
if (tb[TCA_FQ_CE_THRESHOLD])
q->ce_threshold = (u64)NSEC_PER_USEC *
nla_get_u32(tb[TCA_FQ_CE_THRESHOLD]);
if (tb[TCA_FQ_TIMER_SLACK])
q->timer_slack = nla_get_u32(tb[TCA_FQ_TIMER_SLACK]);
if (tb[TCA_FQ_HORIZON])
q->horizon = (u64)NSEC_PER_USEC *
nla_get_u32(tb[TCA_FQ_HORIZON]);
if (tb[TCA_FQ_HORIZON_DROP])
q->horizon_drop = nla_get_u8(tb[TCA_FQ_HORIZON_DROP]);
if (!err) {
sch_tree_unlock(sch);
err = fq_resize(sch, fq_log);
sch_tree_lock(sch);
}
while (sch->q.qlen > sch->limit) {
struct sk_buff *skb = fq_dequeue(sch);
if (!skb)
break;
drop_len += qdisc_pkt_len(skb);
rtnl_kfree_skbs(skb, skb);
drop_count++;
}
qdisc_tree_reduce_backlog(sch, drop_count, drop_len);
sch_tree_unlock(sch);
return err;
}
static void fq_destroy(struct Qdisc *sch)
{
struct fq_sched_data *q = qdisc_priv(sch);
fq_reset(sch);
fq_free(q->fq_root);
qdisc_watchdog_cancel(&q->watchdog);
}
static int fq_init(struct Qdisc *sch, struct nlattr *opt,
struct netlink_ext_ack *extack)
{
struct fq_sched_data *q = qdisc_priv(sch);
int err;
sch->limit = 10000;
q->flow_plimit = 100;
q->quantum = 2 * psched_mtu(qdisc_dev(sch));
q->initial_quantum = 10 * psched_mtu(qdisc_dev(sch));
q->flow_refill_delay = msecs_to_jiffies(40);
q->flow_max_rate = ~0UL;
q->time_next_delayed_flow = ~0ULL;
q->rate_enable = 1;
q->new_flows.first = NULL;
q->old_flows.first = NULL;
q->delayed = RB_ROOT;
q->fq_root = NULL;
q->fq_trees_log = ilog2(1024);
q->orphan_mask = 1024 - 1;
q->low_rate_threshold = 550000 / 8;
q->timer_slack = 10 * NSEC_PER_USEC; /* 10 usec of hrtimer slack */
q->horizon = 10ULL * NSEC_PER_SEC; /* 10 seconds */
q->horizon_drop = 1; /* by default, drop packets beyond horizon */
/* Default ce_threshold of 4294 seconds */
q->ce_threshold = (u64)NSEC_PER_USEC * ~0U;
qdisc_watchdog_init_clockid(&q->watchdog, sch, CLOCK_MONOTONIC);
if (opt)
err = fq_change(sch, opt, extack);
else
err = fq_resize(sch, q->fq_trees_log);
return err;
}
static int fq_dump(struct Qdisc *sch, struct sk_buff *skb)
{
struct fq_sched_data *q = qdisc_priv(sch);
u64 ce_threshold = q->ce_threshold;
u64 horizon = q->horizon;
struct nlattr *opts;
opts = nla_nest_start_noflag(skb, TCA_OPTIONS);
if (opts == NULL)
goto nla_put_failure;
/* TCA_FQ_FLOW_DEFAULT_RATE is not used anymore */
do_div(ce_threshold, NSEC_PER_USEC);
do_div(horizon, NSEC_PER_USEC);
if (nla_put_u32(skb, TCA_FQ_PLIMIT, sch->limit) ||
nla_put_u32(skb, TCA_FQ_FLOW_PLIMIT, q->flow_plimit) ||
nla_put_u32(skb, TCA_FQ_QUANTUM, q->quantum) ||
nla_put_u32(skb, TCA_FQ_INITIAL_QUANTUM, q->initial_quantum) ||
nla_put_u32(skb, TCA_FQ_RATE_ENABLE, q->rate_enable) ||
nla_put_u32(skb, TCA_FQ_FLOW_MAX_RATE,
min_t(unsigned long, q->flow_max_rate, ~0U)) ||
nla_put_u32(skb, TCA_FQ_FLOW_REFILL_DELAY,
jiffies_to_usecs(q->flow_refill_delay)) ||
nla_put_u32(skb, TCA_FQ_ORPHAN_MASK, q->orphan_mask) ||
nla_put_u32(skb, TCA_FQ_LOW_RATE_THRESHOLD,
q->low_rate_threshold) ||
nla_put_u32(skb, TCA_FQ_CE_THRESHOLD, (u32)ce_threshold) ||
nla_put_u32(skb, TCA_FQ_BUCKETS_LOG, q->fq_trees_log) ||
nla_put_u32(skb, TCA_FQ_TIMER_SLACK, q->timer_slack) ||
nla_put_u32(skb, TCA_FQ_HORIZON, (u32)horizon) ||
nla_put_u8(skb, TCA_FQ_HORIZON_DROP, q->horizon_drop))
goto nla_put_failure;
return nla_nest_end(skb, opts);
nla_put_failure:
return -1;
}
static int fq_dump_stats(struct Qdisc *sch, struct gnet_dump *d)
{
struct fq_sched_data *q = qdisc_priv(sch);
struct tc_fq_qd_stats st;
sch_tree_lock(sch);
st.gc_flows = q->stat_gc_flows;
st.highprio_packets = q->stat_internal_packets;
st.tcp_retrans = 0;
st.throttled = q->stat_throttled;
st.flows_plimit = q->stat_flows_plimit;
st.pkts_too_long = q->stat_pkts_too_long;
st.allocation_errors = q->stat_allocation_errors;
st.time_next_delayed_flow = q->time_next_delayed_flow + q->timer_slack -
ktime_get_ns();
st.flows = q->flows;
st.inactive_flows = q->inactive_flows;
st.throttled_flows = q->throttled_flows;
st.unthrottle_latency_ns = min_t(unsigned long,
q->unthrottle_latency_ns, ~0U);
st.ce_mark = q->stat_ce_mark;
st.horizon_drops = q->stat_horizon_drops;
st.horizon_caps = q->stat_horizon_caps;
sch_tree_unlock(sch);
return gnet_stats_copy_app(d, &st, sizeof(st));
}
static struct Qdisc_ops fq_qdisc_ops __read_mostly = {
.id = "fq",
.priv_size = sizeof(struct fq_sched_data),
.enqueue = fq_enqueue,
.dequeue = fq_dequeue,
.peek = qdisc_peek_dequeued,
.init = fq_init,
.reset = fq_reset,
.destroy = fq_destroy,
.change = fq_change,
.dump = fq_dump,
.dump_stats = fq_dump_stats,
.owner = THIS_MODULE,
};
static int __init fq_module_init(void)
{
int ret;
fq_flow_cachep = kmem_cache_create("fq_flow_cache",
sizeof(struct fq_flow),
0, 0, NULL);
if (!fq_flow_cachep)
return -ENOMEM;
ret = register_qdisc(&fq_qdisc_ops);
if (ret)
kmem_cache_destroy(fq_flow_cachep);
return ret;
}
static void __exit fq_module_exit(void)
{
unregister_qdisc(&fq_qdisc_ops);
kmem_cache_destroy(fq_flow_cachep);
}
module_init(fq_module_init)
module_exit(fq_module_exit)
MODULE_AUTHOR("Eric Dumazet");
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("Fair Queue Packet Scheduler");