linux/drivers/misc/cxl/irq.c
Michael Neuling ec249dd860 cxl: Move include file cxl.h -> cxl-base.h
This moves the current include file from cxl.h -> cxl-base.h.  This current
include file is used only to pass information between the base driver that
needs to be built into the kernel and the cxl module.

This is to make way for a new include/misc/cxl.h which will
contain just the kernel API for other driver to use

Signed-off-by: Michael Neuling <mikey@neuling.org>
Acked-by: Ian Munsie <imunsie@au1.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2015-06-03 13:27:19 +10:00

515 lines
14 KiB
C

/*
* Copyright 2014 IBM Corp.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*/
#include <linux/interrupt.h>
#include <linux/workqueue.h>
#include <linux/sched.h>
#include <linux/wait.h>
#include <linux/slab.h>
#include <linux/pid.h>
#include <asm/cputable.h>
#include <misc/cxl-base.h>
#include "cxl.h"
#include "trace.h"
/* XXX: This is implementation specific */
static irqreturn_t handle_psl_slice_error(struct cxl_context *ctx, u64 dsisr, u64 errstat)
{
u64 fir1, fir2, fir_slice, serr, afu_debug;
fir1 = cxl_p1_read(ctx->afu->adapter, CXL_PSL_FIR1);
fir2 = cxl_p1_read(ctx->afu->adapter, CXL_PSL_FIR2);
fir_slice = cxl_p1n_read(ctx->afu, CXL_PSL_FIR_SLICE_An);
serr = cxl_p1n_read(ctx->afu, CXL_PSL_SERR_An);
afu_debug = cxl_p1n_read(ctx->afu, CXL_AFU_DEBUG_An);
dev_crit(&ctx->afu->dev, "PSL ERROR STATUS: 0x%.16llx\n", errstat);
dev_crit(&ctx->afu->dev, "PSL_FIR1: 0x%.16llx\n", fir1);
dev_crit(&ctx->afu->dev, "PSL_FIR2: 0x%.16llx\n", fir2);
dev_crit(&ctx->afu->dev, "PSL_SERR_An: 0x%.16llx\n", serr);
dev_crit(&ctx->afu->dev, "PSL_FIR_SLICE_An: 0x%.16llx\n", fir_slice);
dev_crit(&ctx->afu->dev, "CXL_PSL_AFU_DEBUG_An: 0x%.16llx\n", afu_debug);
dev_crit(&ctx->afu->dev, "STOPPING CXL TRACE\n");
cxl_stop_trace(ctx->afu->adapter);
return cxl_ack_irq(ctx, 0, errstat);
}
irqreturn_t cxl_slice_irq_err(int irq, void *data)
{
struct cxl_afu *afu = data;
u64 fir_slice, errstat, serr, afu_debug;
WARN(irq, "CXL SLICE ERROR interrupt %i\n", irq);
serr = cxl_p1n_read(afu, CXL_PSL_SERR_An);
fir_slice = cxl_p1n_read(afu, CXL_PSL_FIR_SLICE_An);
errstat = cxl_p2n_read(afu, CXL_PSL_ErrStat_An);
afu_debug = cxl_p1n_read(afu, CXL_AFU_DEBUG_An);
dev_crit(&afu->dev, "PSL_SERR_An: 0x%.16llx\n", serr);
dev_crit(&afu->dev, "PSL_FIR_SLICE_An: 0x%.16llx\n", fir_slice);
dev_crit(&afu->dev, "CXL_PSL_ErrStat_An: 0x%.16llx\n", errstat);
dev_crit(&afu->dev, "CXL_PSL_AFU_DEBUG_An: 0x%.16llx\n", afu_debug);
cxl_p1n_write(afu, CXL_PSL_SERR_An, serr);
return IRQ_HANDLED;
}
static irqreturn_t cxl_irq_err(int irq, void *data)
{
struct cxl *adapter = data;
u64 fir1, fir2, err_ivte;
WARN(1, "CXL ERROR interrupt %i\n", irq);
err_ivte = cxl_p1_read(adapter, CXL_PSL_ErrIVTE);
dev_crit(&adapter->dev, "PSL_ErrIVTE: 0x%.16llx\n", err_ivte);
dev_crit(&adapter->dev, "STOPPING CXL TRACE\n");
cxl_stop_trace(adapter);
fir1 = cxl_p1_read(adapter, CXL_PSL_FIR1);
fir2 = cxl_p1_read(adapter, CXL_PSL_FIR2);
dev_crit(&adapter->dev, "PSL_FIR1: 0x%.16llx\nPSL_FIR2: 0x%.16llx\n", fir1, fir2);
return IRQ_HANDLED;
}
static irqreturn_t schedule_cxl_fault(struct cxl_context *ctx, u64 dsisr, u64 dar)
{
ctx->dsisr = dsisr;
ctx->dar = dar;
schedule_work(&ctx->fault_work);
return IRQ_HANDLED;
}
static irqreturn_t cxl_irq(int irq, void *data, struct cxl_irq_info *irq_info)
{
struct cxl_context *ctx = data;
u64 dsisr, dar;
dsisr = irq_info->dsisr;
dar = irq_info->dar;
trace_cxl_psl_irq(ctx, irq, dsisr, dar);
pr_devel("CXL interrupt %i for afu pe: %i DSISR: %#llx DAR: %#llx\n", irq, ctx->pe, dsisr, dar);
if (dsisr & CXL_PSL_DSISR_An_DS) {
/*
* We don't inherently need to sleep to handle this, but we do
* need to get a ref to the task's mm, which we can't do from
* irq context without the potential for a deadlock since it
* takes the task_lock. An alternate option would be to keep a
* reference to the task's mm the entire time it has cxl open,
* but to do that we need to solve the issue where we hold a
* ref to the mm, but the mm can hold a ref to the fd after an
* mmap preventing anything from being cleaned up.
*/
pr_devel("Scheduling segment miss handling for later pe: %i\n", ctx->pe);
return schedule_cxl_fault(ctx, dsisr, dar);
}
if (dsisr & CXL_PSL_DSISR_An_M)
pr_devel("CXL interrupt: PTE not found\n");
if (dsisr & CXL_PSL_DSISR_An_P)
pr_devel("CXL interrupt: Storage protection violation\n");
if (dsisr & CXL_PSL_DSISR_An_A)
pr_devel("CXL interrupt: AFU lock access to write through or cache inhibited storage\n");
if (dsisr & CXL_PSL_DSISR_An_S)
pr_devel("CXL interrupt: Access was afu_wr or afu_zero\n");
if (dsisr & CXL_PSL_DSISR_An_K)
pr_devel("CXL interrupt: Access not permitted by virtual page class key protection\n");
if (dsisr & CXL_PSL_DSISR_An_DM) {
/*
* In some cases we might be able to handle the fault
* immediately if hash_page would succeed, but we still need
* the task's mm, which as above we can't get without a lock
*/
pr_devel("Scheduling page fault handling for later pe: %i\n", ctx->pe);
return schedule_cxl_fault(ctx, dsisr, dar);
}
if (dsisr & CXL_PSL_DSISR_An_ST)
WARN(1, "CXL interrupt: Segment Table PTE not found\n");
if (dsisr & CXL_PSL_DSISR_An_UR)
pr_devel("CXL interrupt: AURP PTE not found\n");
if (dsisr & CXL_PSL_DSISR_An_PE)
return handle_psl_slice_error(ctx, dsisr, irq_info->errstat);
if (dsisr & CXL_PSL_DSISR_An_AE) {
pr_devel("CXL interrupt: AFU Error %.llx\n", irq_info->afu_err);
if (ctx->pending_afu_err) {
/*
* This shouldn't happen - the PSL treats these errors
* as fatal and will have reset the AFU, so there's not
* much point buffering multiple AFU errors.
* OTOH if we DO ever see a storm of these come in it's
* probably best that we log them somewhere:
*/
dev_err_ratelimited(&ctx->afu->dev, "CXL AFU Error "
"undelivered to pe %i: %.llx\n",
ctx->pe, irq_info->afu_err);
} else {
spin_lock(&ctx->lock);
ctx->afu_err = irq_info->afu_err;
ctx->pending_afu_err = 1;
spin_unlock(&ctx->lock);
wake_up_all(&ctx->wq);
}
cxl_ack_irq(ctx, CXL_PSL_TFC_An_A, 0);
return IRQ_HANDLED;
}
if (dsisr & CXL_PSL_DSISR_An_OC)
pr_devel("CXL interrupt: OS Context Warning\n");
WARN(1, "Unhandled CXL PSL IRQ\n");
return IRQ_HANDLED;
}
static irqreturn_t fail_psl_irq(struct cxl_afu *afu, struct cxl_irq_info *irq_info)
{
if (irq_info->dsisr & CXL_PSL_DSISR_TRANS)
cxl_p2n_write(afu, CXL_PSL_TFC_An, CXL_PSL_TFC_An_AE);
else
cxl_p2n_write(afu, CXL_PSL_TFC_An, CXL_PSL_TFC_An_A);
return IRQ_HANDLED;
}
static irqreturn_t cxl_irq_multiplexed(int irq, void *data)
{
struct cxl_afu *afu = data;
struct cxl_context *ctx;
struct cxl_irq_info irq_info;
int ph = cxl_p2n_read(afu, CXL_PSL_PEHandle_An) & 0xffff;
int ret;
if ((ret = cxl_get_irq(afu, &irq_info))) {
WARN(1, "Unable to get CXL IRQ Info: %i\n", ret);
return fail_psl_irq(afu, &irq_info);
}
rcu_read_lock();
ctx = idr_find(&afu->contexts_idr, ph);
if (ctx) {
ret = cxl_irq(irq, ctx, &irq_info);
rcu_read_unlock();
return ret;
}
rcu_read_unlock();
WARN(1, "Unable to demultiplex CXL PSL IRQ for PE %i DSISR %.16llx DAR"
" %.16llx\n(Possible AFU HW issue - was a term/remove acked"
" with outstanding transactions?)\n", ph, irq_info.dsisr,
irq_info.dar);
return fail_psl_irq(afu, &irq_info);
}
static irqreturn_t cxl_irq_afu(int irq, void *data)
{
struct cxl_context *ctx = data;
irq_hw_number_t hwirq = irqd_to_hwirq(irq_get_irq_data(irq));
int irq_off, afu_irq = 1;
__u16 range;
int r;
for (r = 1; r < CXL_IRQ_RANGES; r++) {
irq_off = hwirq - ctx->irqs.offset[r];
range = ctx->irqs.range[r];
if (irq_off >= 0 && irq_off < range) {
afu_irq += irq_off;
break;
}
afu_irq += range;
}
if (unlikely(r >= CXL_IRQ_RANGES)) {
WARN(1, "Recieved AFU IRQ out of range for pe %i (virq %i hwirq %lx)\n",
ctx->pe, irq, hwirq);
return IRQ_HANDLED;
}
trace_cxl_afu_irq(ctx, afu_irq, irq, hwirq);
pr_devel("Received AFU interrupt %i for pe: %i (virq %i hwirq %lx)\n",
afu_irq, ctx->pe, irq, hwirq);
if (unlikely(!ctx->irq_bitmap)) {
WARN(1, "Recieved AFU IRQ for context with no IRQ bitmap\n");
return IRQ_HANDLED;
}
spin_lock(&ctx->lock);
set_bit(afu_irq - 1, ctx->irq_bitmap);
ctx->pending_irq = true;
spin_unlock(&ctx->lock);
wake_up_all(&ctx->wq);
return IRQ_HANDLED;
}
unsigned int cxl_map_irq(struct cxl *adapter, irq_hw_number_t hwirq,
irq_handler_t handler, void *cookie, const char *name)
{
unsigned int virq;
int result;
/* IRQ Domain? */
virq = irq_create_mapping(NULL, hwirq);
if (!virq) {
dev_warn(&adapter->dev, "cxl_map_irq: irq_create_mapping failed\n");
return 0;
}
cxl_setup_irq(adapter, hwirq, virq);
pr_devel("hwirq %#lx mapped to virq %u\n", hwirq, virq);
result = request_irq(virq, handler, 0, name, cookie);
if (result) {
dev_warn(&adapter->dev, "cxl_map_irq: request_irq failed: %i\n", result);
return 0;
}
return virq;
}
void cxl_unmap_irq(unsigned int virq, void *cookie)
{
free_irq(virq, cookie);
irq_dispose_mapping(virq);
}
static int cxl_register_one_irq(struct cxl *adapter,
irq_handler_t handler,
void *cookie,
irq_hw_number_t *dest_hwirq,
unsigned int *dest_virq,
const char *name)
{
int hwirq, virq;
if ((hwirq = cxl_alloc_one_irq(adapter)) < 0)
return hwirq;
if (!(virq = cxl_map_irq(adapter, hwirq, handler, cookie, name)))
goto err;
*dest_hwirq = hwirq;
*dest_virq = virq;
return 0;
err:
cxl_release_one_irq(adapter, hwirq);
return -ENOMEM;
}
int cxl_register_psl_err_irq(struct cxl *adapter)
{
int rc;
adapter->irq_name = kasprintf(GFP_KERNEL, "cxl-%s-err",
dev_name(&adapter->dev));
if (!adapter->irq_name)
return -ENOMEM;
if ((rc = cxl_register_one_irq(adapter, cxl_irq_err, adapter,
&adapter->err_hwirq,
&adapter->err_virq,
adapter->irq_name))) {
kfree(adapter->irq_name);
adapter->irq_name = NULL;
return rc;
}
cxl_p1_write(adapter, CXL_PSL_ErrIVTE, adapter->err_hwirq & 0xffff);
return 0;
}
void cxl_release_psl_err_irq(struct cxl *adapter)
{
cxl_p1_write(adapter, CXL_PSL_ErrIVTE, 0x0000000000000000);
cxl_unmap_irq(adapter->err_virq, adapter);
cxl_release_one_irq(adapter, adapter->err_hwirq);
kfree(adapter->irq_name);
}
int cxl_register_serr_irq(struct cxl_afu *afu)
{
u64 serr;
int rc;
afu->err_irq_name = kasprintf(GFP_KERNEL, "cxl-%s-err",
dev_name(&afu->dev));
if (!afu->err_irq_name)
return -ENOMEM;
if ((rc = cxl_register_one_irq(afu->adapter, cxl_slice_irq_err, afu,
&afu->serr_hwirq,
&afu->serr_virq, afu->err_irq_name))) {
kfree(afu->err_irq_name);
afu->err_irq_name = NULL;
return rc;
}
serr = cxl_p1n_read(afu, CXL_PSL_SERR_An);
serr = (serr & 0x00ffffffffff0000ULL) | (afu->serr_hwirq & 0xffff);
cxl_p1n_write(afu, CXL_PSL_SERR_An, serr);
return 0;
}
void cxl_release_serr_irq(struct cxl_afu *afu)
{
cxl_p1n_write(afu, CXL_PSL_SERR_An, 0x0000000000000000);
cxl_unmap_irq(afu->serr_virq, afu);
cxl_release_one_irq(afu->adapter, afu->serr_hwirq);
kfree(afu->err_irq_name);
}
int cxl_register_psl_irq(struct cxl_afu *afu)
{
int rc;
afu->psl_irq_name = kasprintf(GFP_KERNEL, "cxl-%s",
dev_name(&afu->dev));
if (!afu->psl_irq_name)
return -ENOMEM;
if ((rc = cxl_register_one_irq(afu->adapter, cxl_irq_multiplexed, afu,
&afu->psl_hwirq, &afu->psl_virq,
afu->psl_irq_name))) {
kfree(afu->psl_irq_name);
afu->psl_irq_name = NULL;
}
return rc;
}
void cxl_release_psl_irq(struct cxl_afu *afu)
{
cxl_unmap_irq(afu->psl_virq, afu);
cxl_release_one_irq(afu->adapter, afu->psl_hwirq);
kfree(afu->psl_irq_name);
}
void afu_irq_name_free(struct cxl_context *ctx)
{
struct cxl_irq_name *irq_name, *tmp;
list_for_each_entry_safe(irq_name, tmp, &ctx->irq_names, list) {
kfree(irq_name->name);
list_del(&irq_name->list);
kfree(irq_name);
}
}
int afu_allocate_irqs(struct cxl_context *ctx, u32 count)
{
int rc, r, i, j = 1;
struct cxl_irq_name *irq_name;
if ((rc = cxl_alloc_irq_ranges(&ctx->irqs, ctx->afu->adapter, count)))
return rc;
/* Multiplexed PSL Interrupt */
ctx->irqs.offset[0] = ctx->afu->psl_hwirq;
ctx->irqs.range[0] = 1;
ctx->irq_count = count;
ctx->irq_bitmap = kcalloc(BITS_TO_LONGS(count),
sizeof(*ctx->irq_bitmap), GFP_KERNEL);
if (!ctx->irq_bitmap)
return -ENOMEM;
/*
* Allocate names first. If any fail, bail out before allocating
* actual hardware IRQs.
*/
INIT_LIST_HEAD(&ctx->irq_names);
for (r = 1; r < CXL_IRQ_RANGES; r++) {
for (i = 0; i < ctx->irqs.range[r]; i++) {
irq_name = kmalloc(sizeof(struct cxl_irq_name),
GFP_KERNEL);
if (!irq_name)
goto out;
irq_name->name = kasprintf(GFP_KERNEL, "cxl-%s-pe%i-%i",
dev_name(&ctx->afu->dev),
ctx->pe, j);
if (!irq_name->name) {
kfree(irq_name);
goto out;
}
/* Add to tail so next look get the correct order */
list_add_tail(&irq_name->list, &ctx->irq_names);
j++;
}
}
return 0;
out:
afu_irq_name_free(ctx);
return -ENOMEM;
}
void afu_register_hwirqs(struct cxl_context *ctx)
{
irq_hw_number_t hwirq;
struct cxl_irq_name *irq_name;
int r,i;
/* We've allocated all memory now, so let's do the irq allocations */
irq_name = list_first_entry(&ctx->irq_names, struct cxl_irq_name, list);
for (r = 1; r < CXL_IRQ_RANGES; r++) {
hwirq = ctx->irqs.offset[r];
for (i = 0; i < ctx->irqs.range[r]; hwirq++, i++) {
cxl_map_irq(ctx->afu->adapter, hwirq,
cxl_irq_afu, ctx, irq_name->name);
irq_name = list_next_entry(irq_name, list);
}
}
}
int afu_register_irqs(struct cxl_context *ctx, u32 count)
{
int rc;
rc = afu_allocate_irqs(ctx, count);
if (rc)
return rc;
afu_register_hwirqs(ctx);
return 0;
}
void afu_release_irqs(struct cxl_context *ctx, void *cookie)
{
irq_hw_number_t hwirq;
unsigned int virq;
int r, i;
for (r = 1; r < CXL_IRQ_RANGES; r++) {
hwirq = ctx->irqs.offset[r];
for (i = 0; i < ctx->irqs.range[r]; hwirq++, i++) {
virq = irq_find_mapping(NULL, hwirq);
if (virq)
cxl_unmap_irq(virq, cookie);
}
}
afu_irq_name_free(ctx);
cxl_release_irq_ranges(&ctx->irqs, ctx->afu->adapter);
}