mirror of
https://github.com/torvalds/linux.git
synced 2024-11-18 01:51:53 +00:00
136d737fd2
The THP code in KVM/ARM is a bit restrictive in not allowing a THP to be used if the VMA is not 2MB aligned. Actually, it is not so much the VMA that matters, but the associated memslot: A process can perfectly mmap a region with no particular alignment restriction, and then pass a 2MB aligned address to KVM. In this case, KVM will only use this 2MB aligned region, and will ignore the range between vma->vm_start and memslot->userspace_addr. It can also choose to place this memslot at whatever alignment it wants in the IPA space. In the end, what matters is the relative alignment of the user space and IPA mappings with respect to a 2M page. They absolutely must be the same if you want to use THP. Cc: Christoffer Dall <christoffer.dall@linaro.org> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com> Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
1006 lines
26 KiB
C
1006 lines
26 KiB
C
/*
|
|
* Copyright (C) 2012 - Virtual Open Systems and Columbia University
|
|
* Author: Christoffer Dall <c.dall@virtualopensystems.com>
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License, version 2, as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
|
*/
|
|
|
|
#include <linux/mman.h>
|
|
#include <linux/kvm_host.h>
|
|
#include <linux/io.h>
|
|
#include <linux/hugetlb.h>
|
|
#include <trace/events/kvm.h>
|
|
#include <asm/pgalloc.h>
|
|
#include <asm/cacheflush.h>
|
|
#include <asm/kvm_arm.h>
|
|
#include <asm/kvm_mmu.h>
|
|
#include <asm/kvm_mmio.h>
|
|
#include <asm/kvm_asm.h>
|
|
#include <asm/kvm_emulate.h>
|
|
|
|
#include "trace.h"
|
|
|
|
extern char __hyp_idmap_text_start[], __hyp_idmap_text_end[];
|
|
|
|
static pgd_t *boot_hyp_pgd;
|
|
static pgd_t *hyp_pgd;
|
|
static DEFINE_MUTEX(kvm_hyp_pgd_mutex);
|
|
|
|
static void *init_bounce_page;
|
|
static unsigned long hyp_idmap_start;
|
|
static unsigned long hyp_idmap_end;
|
|
static phys_addr_t hyp_idmap_vector;
|
|
|
|
#define kvm_pmd_huge(_x) (pmd_huge(_x) || pmd_trans_huge(_x))
|
|
|
|
static void kvm_tlb_flush_vmid_ipa(struct kvm *kvm, phys_addr_t ipa)
|
|
{
|
|
/*
|
|
* This function also gets called when dealing with HYP page
|
|
* tables. As HYP doesn't have an associated struct kvm (and
|
|
* the HYP page tables are fairly static), we don't do
|
|
* anything there.
|
|
*/
|
|
if (kvm)
|
|
kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, kvm, ipa);
|
|
}
|
|
|
|
static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
|
|
int min, int max)
|
|
{
|
|
void *page;
|
|
|
|
BUG_ON(max > KVM_NR_MEM_OBJS);
|
|
if (cache->nobjs >= min)
|
|
return 0;
|
|
while (cache->nobjs < max) {
|
|
page = (void *)__get_free_page(PGALLOC_GFP);
|
|
if (!page)
|
|
return -ENOMEM;
|
|
cache->objects[cache->nobjs++] = page;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
|
|
{
|
|
while (mc->nobjs)
|
|
free_page((unsigned long)mc->objects[--mc->nobjs]);
|
|
}
|
|
|
|
static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
|
|
{
|
|
void *p;
|
|
|
|
BUG_ON(!mc || !mc->nobjs);
|
|
p = mc->objects[--mc->nobjs];
|
|
return p;
|
|
}
|
|
|
|
static bool page_empty(void *ptr)
|
|
{
|
|
struct page *ptr_page = virt_to_page(ptr);
|
|
return page_count(ptr_page) == 1;
|
|
}
|
|
|
|
static void clear_pud_entry(struct kvm *kvm, pud_t *pud, phys_addr_t addr)
|
|
{
|
|
if (pud_huge(*pud)) {
|
|
pud_clear(pud);
|
|
kvm_tlb_flush_vmid_ipa(kvm, addr);
|
|
} else {
|
|
pmd_t *pmd_table = pmd_offset(pud, 0);
|
|
pud_clear(pud);
|
|
kvm_tlb_flush_vmid_ipa(kvm, addr);
|
|
pmd_free(NULL, pmd_table);
|
|
}
|
|
put_page(virt_to_page(pud));
|
|
}
|
|
|
|
static void clear_pmd_entry(struct kvm *kvm, pmd_t *pmd, phys_addr_t addr)
|
|
{
|
|
if (kvm_pmd_huge(*pmd)) {
|
|
pmd_clear(pmd);
|
|
kvm_tlb_flush_vmid_ipa(kvm, addr);
|
|
} else {
|
|
pte_t *pte_table = pte_offset_kernel(pmd, 0);
|
|
pmd_clear(pmd);
|
|
kvm_tlb_flush_vmid_ipa(kvm, addr);
|
|
pte_free_kernel(NULL, pte_table);
|
|
}
|
|
put_page(virt_to_page(pmd));
|
|
}
|
|
|
|
static void clear_pte_entry(struct kvm *kvm, pte_t *pte, phys_addr_t addr)
|
|
{
|
|
if (pte_present(*pte)) {
|
|
kvm_set_pte(pte, __pte(0));
|
|
put_page(virt_to_page(pte));
|
|
kvm_tlb_flush_vmid_ipa(kvm, addr);
|
|
}
|
|
}
|
|
|
|
static void unmap_range(struct kvm *kvm, pgd_t *pgdp,
|
|
unsigned long long start, u64 size)
|
|
{
|
|
pgd_t *pgd;
|
|
pud_t *pud;
|
|
pmd_t *pmd;
|
|
pte_t *pte;
|
|
unsigned long long addr = start, end = start + size;
|
|
u64 next;
|
|
|
|
while (addr < end) {
|
|
pgd = pgdp + pgd_index(addr);
|
|
pud = pud_offset(pgd, addr);
|
|
if (pud_none(*pud)) {
|
|
addr = pud_addr_end(addr, end);
|
|
continue;
|
|
}
|
|
|
|
if (pud_huge(*pud)) {
|
|
/*
|
|
* If we are dealing with a huge pud, just clear it and
|
|
* move on.
|
|
*/
|
|
clear_pud_entry(kvm, pud, addr);
|
|
addr = pud_addr_end(addr, end);
|
|
continue;
|
|
}
|
|
|
|
pmd = pmd_offset(pud, addr);
|
|
if (pmd_none(*pmd)) {
|
|
addr = pmd_addr_end(addr, end);
|
|
continue;
|
|
}
|
|
|
|
if (!kvm_pmd_huge(*pmd)) {
|
|
pte = pte_offset_kernel(pmd, addr);
|
|
clear_pte_entry(kvm, pte, addr);
|
|
next = addr + PAGE_SIZE;
|
|
}
|
|
|
|
/*
|
|
* If the pmd entry is to be cleared, walk back up the ladder
|
|
*/
|
|
if (kvm_pmd_huge(*pmd) || page_empty(pte)) {
|
|
clear_pmd_entry(kvm, pmd, addr);
|
|
next = pmd_addr_end(addr, end);
|
|
if (page_empty(pmd) && !page_empty(pud)) {
|
|
clear_pud_entry(kvm, pud, addr);
|
|
next = pud_addr_end(addr, end);
|
|
}
|
|
}
|
|
|
|
addr = next;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* free_boot_hyp_pgd - free HYP boot page tables
|
|
*
|
|
* Free the HYP boot page tables. The bounce page is also freed.
|
|
*/
|
|
void free_boot_hyp_pgd(void)
|
|
{
|
|
mutex_lock(&kvm_hyp_pgd_mutex);
|
|
|
|
if (boot_hyp_pgd) {
|
|
unmap_range(NULL, boot_hyp_pgd, hyp_idmap_start, PAGE_SIZE);
|
|
unmap_range(NULL, boot_hyp_pgd, TRAMPOLINE_VA, PAGE_SIZE);
|
|
kfree(boot_hyp_pgd);
|
|
boot_hyp_pgd = NULL;
|
|
}
|
|
|
|
if (hyp_pgd)
|
|
unmap_range(NULL, hyp_pgd, TRAMPOLINE_VA, PAGE_SIZE);
|
|
|
|
kfree(init_bounce_page);
|
|
init_bounce_page = NULL;
|
|
|
|
mutex_unlock(&kvm_hyp_pgd_mutex);
|
|
}
|
|
|
|
/**
|
|
* free_hyp_pgds - free Hyp-mode page tables
|
|
*
|
|
* Assumes hyp_pgd is a page table used strictly in Hyp-mode and
|
|
* therefore contains either mappings in the kernel memory area (above
|
|
* PAGE_OFFSET), or device mappings in the vmalloc range (from
|
|
* VMALLOC_START to VMALLOC_END).
|
|
*
|
|
* boot_hyp_pgd should only map two pages for the init code.
|
|
*/
|
|
void free_hyp_pgds(void)
|
|
{
|
|
unsigned long addr;
|
|
|
|
free_boot_hyp_pgd();
|
|
|
|
mutex_lock(&kvm_hyp_pgd_mutex);
|
|
|
|
if (hyp_pgd) {
|
|
for (addr = PAGE_OFFSET; virt_addr_valid(addr); addr += PGDIR_SIZE)
|
|
unmap_range(NULL, hyp_pgd, KERN_TO_HYP(addr), PGDIR_SIZE);
|
|
for (addr = VMALLOC_START; is_vmalloc_addr((void*)addr); addr += PGDIR_SIZE)
|
|
unmap_range(NULL, hyp_pgd, KERN_TO_HYP(addr), PGDIR_SIZE);
|
|
|
|
kfree(hyp_pgd);
|
|
hyp_pgd = NULL;
|
|
}
|
|
|
|
mutex_unlock(&kvm_hyp_pgd_mutex);
|
|
}
|
|
|
|
static void create_hyp_pte_mappings(pmd_t *pmd, unsigned long start,
|
|
unsigned long end, unsigned long pfn,
|
|
pgprot_t prot)
|
|
{
|
|
pte_t *pte;
|
|
unsigned long addr;
|
|
|
|
addr = start;
|
|
do {
|
|
pte = pte_offset_kernel(pmd, addr);
|
|
kvm_set_pte(pte, pfn_pte(pfn, prot));
|
|
get_page(virt_to_page(pte));
|
|
kvm_flush_dcache_to_poc(pte, sizeof(*pte));
|
|
pfn++;
|
|
} while (addr += PAGE_SIZE, addr != end);
|
|
}
|
|
|
|
static int create_hyp_pmd_mappings(pud_t *pud, unsigned long start,
|
|
unsigned long end, unsigned long pfn,
|
|
pgprot_t prot)
|
|
{
|
|
pmd_t *pmd;
|
|
pte_t *pte;
|
|
unsigned long addr, next;
|
|
|
|
addr = start;
|
|
do {
|
|
pmd = pmd_offset(pud, addr);
|
|
|
|
BUG_ON(pmd_sect(*pmd));
|
|
|
|
if (pmd_none(*pmd)) {
|
|
pte = pte_alloc_one_kernel(NULL, addr);
|
|
if (!pte) {
|
|
kvm_err("Cannot allocate Hyp pte\n");
|
|
return -ENOMEM;
|
|
}
|
|
pmd_populate_kernel(NULL, pmd, pte);
|
|
get_page(virt_to_page(pmd));
|
|
kvm_flush_dcache_to_poc(pmd, sizeof(*pmd));
|
|
}
|
|
|
|
next = pmd_addr_end(addr, end);
|
|
|
|
create_hyp_pte_mappings(pmd, addr, next, pfn, prot);
|
|
pfn += (next - addr) >> PAGE_SHIFT;
|
|
} while (addr = next, addr != end);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int __create_hyp_mappings(pgd_t *pgdp,
|
|
unsigned long start, unsigned long end,
|
|
unsigned long pfn, pgprot_t prot)
|
|
{
|
|
pgd_t *pgd;
|
|
pud_t *pud;
|
|
pmd_t *pmd;
|
|
unsigned long addr, next;
|
|
int err = 0;
|
|
|
|
mutex_lock(&kvm_hyp_pgd_mutex);
|
|
addr = start & PAGE_MASK;
|
|
end = PAGE_ALIGN(end);
|
|
do {
|
|
pgd = pgdp + pgd_index(addr);
|
|
pud = pud_offset(pgd, addr);
|
|
|
|
if (pud_none_or_clear_bad(pud)) {
|
|
pmd = pmd_alloc_one(NULL, addr);
|
|
if (!pmd) {
|
|
kvm_err("Cannot allocate Hyp pmd\n");
|
|
err = -ENOMEM;
|
|
goto out;
|
|
}
|
|
pud_populate(NULL, pud, pmd);
|
|
get_page(virt_to_page(pud));
|
|
kvm_flush_dcache_to_poc(pud, sizeof(*pud));
|
|
}
|
|
|
|
next = pgd_addr_end(addr, end);
|
|
err = create_hyp_pmd_mappings(pud, addr, next, pfn, prot);
|
|
if (err)
|
|
goto out;
|
|
pfn += (next - addr) >> PAGE_SHIFT;
|
|
} while (addr = next, addr != end);
|
|
out:
|
|
mutex_unlock(&kvm_hyp_pgd_mutex);
|
|
return err;
|
|
}
|
|
|
|
static phys_addr_t kvm_kaddr_to_phys(void *kaddr)
|
|
{
|
|
if (!is_vmalloc_addr(kaddr)) {
|
|
BUG_ON(!virt_addr_valid(kaddr));
|
|
return __pa(kaddr);
|
|
} else {
|
|
return page_to_phys(vmalloc_to_page(kaddr)) +
|
|
offset_in_page(kaddr);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* create_hyp_mappings - duplicate a kernel virtual address range in Hyp mode
|
|
* @from: The virtual kernel start address of the range
|
|
* @to: The virtual kernel end address of the range (exclusive)
|
|
*
|
|
* The same virtual address as the kernel virtual address is also used
|
|
* in Hyp-mode mapping (modulo HYP_PAGE_OFFSET) to the same underlying
|
|
* physical pages.
|
|
*/
|
|
int create_hyp_mappings(void *from, void *to)
|
|
{
|
|
phys_addr_t phys_addr;
|
|
unsigned long virt_addr;
|
|
unsigned long start = KERN_TO_HYP((unsigned long)from);
|
|
unsigned long end = KERN_TO_HYP((unsigned long)to);
|
|
|
|
start = start & PAGE_MASK;
|
|
end = PAGE_ALIGN(end);
|
|
|
|
for (virt_addr = start; virt_addr < end; virt_addr += PAGE_SIZE) {
|
|
int err;
|
|
|
|
phys_addr = kvm_kaddr_to_phys(from + virt_addr - start);
|
|
err = __create_hyp_mappings(hyp_pgd, virt_addr,
|
|
virt_addr + PAGE_SIZE,
|
|
__phys_to_pfn(phys_addr),
|
|
PAGE_HYP);
|
|
if (err)
|
|
return err;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* create_hyp_io_mappings - duplicate a kernel IO mapping into Hyp mode
|
|
* @from: The kernel start VA of the range
|
|
* @to: The kernel end VA of the range (exclusive)
|
|
* @phys_addr: The physical start address which gets mapped
|
|
*
|
|
* The resulting HYP VA is the same as the kernel VA, modulo
|
|
* HYP_PAGE_OFFSET.
|
|
*/
|
|
int create_hyp_io_mappings(void *from, void *to, phys_addr_t phys_addr)
|
|
{
|
|
unsigned long start = KERN_TO_HYP((unsigned long)from);
|
|
unsigned long end = KERN_TO_HYP((unsigned long)to);
|
|
|
|
/* Check for a valid kernel IO mapping */
|
|
if (!is_vmalloc_addr(from) || !is_vmalloc_addr(to - 1))
|
|
return -EINVAL;
|
|
|
|
return __create_hyp_mappings(hyp_pgd, start, end,
|
|
__phys_to_pfn(phys_addr), PAGE_HYP_DEVICE);
|
|
}
|
|
|
|
/**
|
|
* kvm_alloc_stage2_pgd - allocate level-1 table for stage-2 translation.
|
|
* @kvm: The KVM struct pointer for the VM.
|
|
*
|
|
* Allocates the 1st level table only of size defined by S2_PGD_ORDER (can
|
|
* support either full 40-bit input addresses or limited to 32-bit input
|
|
* addresses). Clears the allocated pages.
|
|
*
|
|
* Note we don't need locking here as this is only called when the VM is
|
|
* created, which can only be done once.
|
|
*/
|
|
int kvm_alloc_stage2_pgd(struct kvm *kvm)
|
|
{
|
|
pgd_t *pgd;
|
|
|
|
if (kvm->arch.pgd != NULL) {
|
|
kvm_err("kvm_arch already initialized?\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
pgd = (pgd_t *)__get_free_pages(GFP_KERNEL, S2_PGD_ORDER);
|
|
if (!pgd)
|
|
return -ENOMEM;
|
|
|
|
memset(pgd, 0, PTRS_PER_S2_PGD * sizeof(pgd_t));
|
|
kvm_clean_pgd(pgd);
|
|
kvm->arch.pgd = pgd;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* unmap_stage2_range -- Clear stage2 page table entries to unmap a range
|
|
* @kvm: The VM pointer
|
|
* @start: The intermediate physical base address of the range to unmap
|
|
* @size: The size of the area to unmap
|
|
*
|
|
* Clear a range of stage-2 mappings, lowering the various ref-counts. Must
|
|
* be called while holding mmu_lock (unless for freeing the stage2 pgd before
|
|
* destroying the VM), otherwise another faulting VCPU may come in and mess
|
|
* with things behind our backs.
|
|
*/
|
|
static void unmap_stage2_range(struct kvm *kvm, phys_addr_t start, u64 size)
|
|
{
|
|
unmap_range(kvm, kvm->arch.pgd, start, size);
|
|
}
|
|
|
|
/**
|
|
* kvm_free_stage2_pgd - free all stage-2 tables
|
|
* @kvm: The KVM struct pointer for the VM.
|
|
*
|
|
* Walks the level-1 page table pointed to by kvm->arch.pgd and frees all
|
|
* underlying level-2 and level-3 tables before freeing the actual level-1 table
|
|
* and setting the struct pointer to NULL.
|
|
*
|
|
* Note we don't need locking here as this is only called when the VM is
|
|
* destroyed, which can only be done once.
|
|
*/
|
|
void kvm_free_stage2_pgd(struct kvm *kvm)
|
|
{
|
|
if (kvm->arch.pgd == NULL)
|
|
return;
|
|
|
|
unmap_stage2_range(kvm, 0, KVM_PHYS_SIZE);
|
|
free_pages((unsigned long)kvm->arch.pgd, S2_PGD_ORDER);
|
|
kvm->arch.pgd = NULL;
|
|
}
|
|
|
|
static pmd_t *stage2_get_pmd(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
|
|
phys_addr_t addr)
|
|
{
|
|
pgd_t *pgd;
|
|
pud_t *pud;
|
|
pmd_t *pmd;
|
|
|
|
pgd = kvm->arch.pgd + pgd_index(addr);
|
|
pud = pud_offset(pgd, addr);
|
|
if (pud_none(*pud)) {
|
|
if (!cache)
|
|
return NULL;
|
|
pmd = mmu_memory_cache_alloc(cache);
|
|
pud_populate(NULL, pud, pmd);
|
|
get_page(virt_to_page(pud));
|
|
}
|
|
|
|
return pmd_offset(pud, addr);
|
|
}
|
|
|
|
static int stage2_set_pmd_huge(struct kvm *kvm, struct kvm_mmu_memory_cache
|
|
*cache, phys_addr_t addr, const pmd_t *new_pmd)
|
|
{
|
|
pmd_t *pmd, old_pmd;
|
|
|
|
pmd = stage2_get_pmd(kvm, cache, addr);
|
|
VM_BUG_ON(!pmd);
|
|
|
|
/*
|
|
* Mapping in huge pages should only happen through a fault. If a
|
|
* page is merged into a transparent huge page, the individual
|
|
* subpages of that huge page should be unmapped through MMU
|
|
* notifiers before we get here.
|
|
*
|
|
* Merging of CompoundPages is not supported; they should become
|
|
* splitting first, unmapped, merged, and mapped back in on-demand.
|
|
*/
|
|
VM_BUG_ON(pmd_present(*pmd) && pmd_pfn(*pmd) != pmd_pfn(*new_pmd));
|
|
|
|
old_pmd = *pmd;
|
|
kvm_set_pmd(pmd, *new_pmd);
|
|
if (pmd_present(old_pmd))
|
|
kvm_tlb_flush_vmid_ipa(kvm, addr);
|
|
else
|
|
get_page(virt_to_page(pmd));
|
|
return 0;
|
|
}
|
|
|
|
static int stage2_set_pte(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
|
|
phys_addr_t addr, const pte_t *new_pte, bool iomap)
|
|
{
|
|
pmd_t *pmd;
|
|
pte_t *pte, old_pte;
|
|
|
|
/* Create stage-2 page table mapping - Level 1 */
|
|
pmd = stage2_get_pmd(kvm, cache, addr);
|
|
if (!pmd) {
|
|
/*
|
|
* Ignore calls from kvm_set_spte_hva for unallocated
|
|
* address ranges.
|
|
*/
|
|
return 0;
|
|
}
|
|
|
|
/* Create stage-2 page mappings - Level 2 */
|
|
if (pmd_none(*pmd)) {
|
|
if (!cache)
|
|
return 0; /* ignore calls from kvm_set_spte_hva */
|
|
pte = mmu_memory_cache_alloc(cache);
|
|
kvm_clean_pte(pte);
|
|
pmd_populate_kernel(NULL, pmd, pte);
|
|
get_page(virt_to_page(pmd));
|
|
}
|
|
|
|
pte = pte_offset_kernel(pmd, addr);
|
|
|
|
if (iomap && pte_present(*pte))
|
|
return -EFAULT;
|
|
|
|
/* Create 2nd stage page table mapping - Level 3 */
|
|
old_pte = *pte;
|
|
kvm_set_pte(pte, *new_pte);
|
|
if (pte_present(old_pte))
|
|
kvm_tlb_flush_vmid_ipa(kvm, addr);
|
|
else
|
|
get_page(virt_to_page(pte));
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* kvm_phys_addr_ioremap - map a device range to guest IPA
|
|
*
|
|
* @kvm: The KVM pointer
|
|
* @guest_ipa: The IPA at which to insert the mapping
|
|
* @pa: The physical address of the device
|
|
* @size: The size of the mapping
|
|
*/
|
|
int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa,
|
|
phys_addr_t pa, unsigned long size)
|
|
{
|
|
phys_addr_t addr, end;
|
|
int ret = 0;
|
|
unsigned long pfn;
|
|
struct kvm_mmu_memory_cache cache = { 0, };
|
|
|
|
end = (guest_ipa + size + PAGE_SIZE - 1) & PAGE_MASK;
|
|
pfn = __phys_to_pfn(pa);
|
|
|
|
for (addr = guest_ipa; addr < end; addr += PAGE_SIZE) {
|
|
pte_t pte = pfn_pte(pfn, PAGE_S2_DEVICE);
|
|
|
|
ret = mmu_topup_memory_cache(&cache, 2, 2);
|
|
if (ret)
|
|
goto out;
|
|
spin_lock(&kvm->mmu_lock);
|
|
ret = stage2_set_pte(kvm, &cache, addr, &pte, true);
|
|
spin_unlock(&kvm->mmu_lock);
|
|
if (ret)
|
|
goto out;
|
|
|
|
pfn++;
|
|
}
|
|
|
|
out:
|
|
mmu_free_memory_cache(&cache);
|
|
return ret;
|
|
}
|
|
|
|
static bool transparent_hugepage_adjust(pfn_t *pfnp, phys_addr_t *ipap)
|
|
{
|
|
pfn_t pfn = *pfnp;
|
|
gfn_t gfn = *ipap >> PAGE_SHIFT;
|
|
|
|
if (PageTransCompound(pfn_to_page(pfn))) {
|
|
unsigned long mask;
|
|
/*
|
|
* The address we faulted on is backed by a transparent huge
|
|
* page. However, because we map the compound huge page and
|
|
* not the individual tail page, we need to transfer the
|
|
* refcount to the head page. We have to be careful that the
|
|
* THP doesn't start to split while we are adjusting the
|
|
* refcounts.
|
|
*
|
|
* We are sure this doesn't happen, because mmu_notifier_retry
|
|
* was successful and we are holding the mmu_lock, so if this
|
|
* THP is trying to split, it will be blocked in the mmu
|
|
* notifier before touching any of the pages, specifically
|
|
* before being able to call __split_huge_page_refcount().
|
|
*
|
|
* We can therefore safely transfer the refcount from PG_tail
|
|
* to PG_head and switch the pfn from a tail page to the head
|
|
* page accordingly.
|
|
*/
|
|
mask = PTRS_PER_PMD - 1;
|
|
VM_BUG_ON((gfn & mask) != (pfn & mask));
|
|
if (pfn & mask) {
|
|
*ipap &= PMD_MASK;
|
|
kvm_release_pfn_clean(pfn);
|
|
pfn &= ~mask;
|
|
kvm_get_pfn(pfn);
|
|
*pfnp = pfn;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa,
|
|
struct kvm_memory_slot *memslot,
|
|
unsigned long fault_status)
|
|
{
|
|
int ret;
|
|
bool write_fault, writable, hugetlb = false, force_pte = false;
|
|
unsigned long mmu_seq;
|
|
gfn_t gfn = fault_ipa >> PAGE_SHIFT;
|
|
unsigned long hva = gfn_to_hva(vcpu->kvm, gfn);
|
|
struct kvm *kvm = vcpu->kvm;
|
|
struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache;
|
|
struct vm_area_struct *vma;
|
|
pfn_t pfn;
|
|
|
|
write_fault = kvm_is_write_fault(kvm_vcpu_get_hsr(vcpu));
|
|
if (fault_status == FSC_PERM && !write_fault) {
|
|
kvm_err("Unexpected L2 read permission error\n");
|
|
return -EFAULT;
|
|
}
|
|
|
|
/* Let's check if we will get back a huge page backed by hugetlbfs */
|
|
down_read(¤t->mm->mmap_sem);
|
|
vma = find_vma_intersection(current->mm, hva, hva + 1);
|
|
if (is_vm_hugetlb_page(vma)) {
|
|
hugetlb = true;
|
|
gfn = (fault_ipa & PMD_MASK) >> PAGE_SHIFT;
|
|
} else {
|
|
/*
|
|
* Pages belonging to memslots that don't have the same
|
|
* alignment for userspace and IPA cannot be mapped using
|
|
* block descriptors even if the pages belong to a THP for
|
|
* the process, because the stage-2 block descriptor will
|
|
* cover more than a single THP and we loose atomicity for
|
|
* unmapping, updates, and splits of the THP or other pages
|
|
* in the stage-2 block range.
|
|
*/
|
|
if ((memslot->userspace_addr & ~PMD_MASK) !=
|
|
((memslot->base_gfn << PAGE_SHIFT) & ~PMD_MASK))
|
|
force_pte = true;
|
|
}
|
|
up_read(¤t->mm->mmap_sem);
|
|
|
|
/* We need minimum second+third level pages */
|
|
ret = mmu_topup_memory_cache(memcache, 2, KVM_NR_MEM_OBJS);
|
|
if (ret)
|
|
return ret;
|
|
|
|
mmu_seq = vcpu->kvm->mmu_notifier_seq;
|
|
/*
|
|
* Ensure the read of mmu_notifier_seq happens before we call
|
|
* gfn_to_pfn_prot (which calls get_user_pages), so that we don't risk
|
|
* the page we just got a reference to gets unmapped before we have a
|
|
* chance to grab the mmu_lock, which ensure that if the page gets
|
|
* unmapped afterwards, the call to kvm_unmap_hva will take it away
|
|
* from us again properly. This smp_rmb() interacts with the smp_wmb()
|
|
* in kvm_mmu_notifier_invalidate_<page|range_end>.
|
|
*/
|
|
smp_rmb();
|
|
|
|
pfn = gfn_to_pfn_prot(kvm, gfn, write_fault, &writable);
|
|
if (is_error_pfn(pfn))
|
|
return -EFAULT;
|
|
|
|
spin_lock(&kvm->mmu_lock);
|
|
if (mmu_notifier_retry(kvm, mmu_seq))
|
|
goto out_unlock;
|
|
if (!hugetlb && !force_pte)
|
|
hugetlb = transparent_hugepage_adjust(&pfn, &fault_ipa);
|
|
|
|
if (hugetlb) {
|
|
pmd_t new_pmd = pfn_pmd(pfn, PAGE_S2);
|
|
new_pmd = pmd_mkhuge(new_pmd);
|
|
if (writable) {
|
|
kvm_set_s2pmd_writable(&new_pmd);
|
|
kvm_set_pfn_dirty(pfn);
|
|
}
|
|
coherent_icache_guest_page(kvm, hva & PMD_MASK, PMD_SIZE);
|
|
ret = stage2_set_pmd_huge(kvm, memcache, fault_ipa, &new_pmd);
|
|
} else {
|
|
pte_t new_pte = pfn_pte(pfn, PAGE_S2);
|
|
if (writable) {
|
|
kvm_set_s2pte_writable(&new_pte);
|
|
kvm_set_pfn_dirty(pfn);
|
|
}
|
|
coherent_icache_guest_page(kvm, hva, PAGE_SIZE);
|
|
ret = stage2_set_pte(kvm, memcache, fault_ipa, &new_pte, false);
|
|
}
|
|
|
|
|
|
out_unlock:
|
|
spin_unlock(&kvm->mmu_lock);
|
|
kvm_release_pfn_clean(pfn);
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* kvm_handle_guest_abort - handles all 2nd stage aborts
|
|
* @vcpu: the VCPU pointer
|
|
* @run: the kvm_run structure
|
|
*
|
|
* Any abort that gets to the host is almost guaranteed to be caused by a
|
|
* missing second stage translation table entry, which can mean that either the
|
|
* guest simply needs more memory and we must allocate an appropriate page or it
|
|
* can mean that the guest tried to access I/O memory, which is emulated by user
|
|
* space. The distinction is based on the IPA causing the fault and whether this
|
|
* memory region has been registered as standard RAM by user space.
|
|
*/
|
|
int kvm_handle_guest_abort(struct kvm_vcpu *vcpu, struct kvm_run *run)
|
|
{
|
|
unsigned long fault_status;
|
|
phys_addr_t fault_ipa;
|
|
struct kvm_memory_slot *memslot;
|
|
bool is_iabt;
|
|
gfn_t gfn;
|
|
int ret, idx;
|
|
|
|
is_iabt = kvm_vcpu_trap_is_iabt(vcpu);
|
|
fault_ipa = kvm_vcpu_get_fault_ipa(vcpu);
|
|
|
|
trace_kvm_guest_fault(*vcpu_pc(vcpu), kvm_vcpu_get_hsr(vcpu),
|
|
kvm_vcpu_get_hfar(vcpu), fault_ipa);
|
|
|
|
/* Check the stage-2 fault is trans. fault or write fault */
|
|
fault_status = kvm_vcpu_trap_get_fault(vcpu);
|
|
if (fault_status != FSC_FAULT && fault_status != FSC_PERM) {
|
|
kvm_err("Unsupported fault status: EC=%#x DFCS=%#lx\n",
|
|
kvm_vcpu_trap_get_class(vcpu), fault_status);
|
|
return -EFAULT;
|
|
}
|
|
|
|
idx = srcu_read_lock(&vcpu->kvm->srcu);
|
|
|
|
gfn = fault_ipa >> PAGE_SHIFT;
|
|
if (!kvm_is_visible_gfn(vcpu->kvm, gfn)) {
|
|
if (is_iabt) {
|
|
/* Prefetch Abort on I/O address */
|
|
kvm_inject_pabt(vcpu, kvm_vcpu_get_hfar(vcpu));
|
|
ret = 1;
|
|
goto out_unlock;
|
|
}
|
|
|
|
if (fault_status != FSC_FAULT) {
|
|
kvm_err("Unsupported fault status on io memory: %#lx\n",
|
|
fault_status);
|
|
ret = -EFAULT;
|
|
goto out_unlock;
|
|
}
|
|
|
|
/*
|
|
* The IPA is reported as [MAX:12], so we need to
|
|
* complement it with the bottom 12 bits from the
|
|
* faulting VA. This is always 12 bits, irrespective
|
|
* of the page size.
|
|
*/
|
|
fault_ipa |= kvm_vcpu_get_hfar(vcpu) & ((1 << 12) - 1);
|
|
ret = io_mem_abort(vcpu, run, fault_ipa);
|
|
goto out_unlock;
|
|
}
|
|
|
|
memslot = gfn_to_memslot(vcpu->kvm, gfn);
|
|
|
|
ret = user_mem_abort(vcpu, fault_ipa, memslot, fault_status);
|
|
if (ret == 0)
|
|
ret = 1;
|
|
out_unlock:
|
|
srcu_read_unlock(&vcpu->kvm->srcu, idx);
|
|
return ret;
|
|
}
|
|
|
|
static void handle_hva_to_gpa(struct kvm *kvm,
|
|
unsigned long start,
|
|
unsigned long end,
|
|
void (*handler)(struct kvm *kvm,
|
|
gpa_t gpa, void *data),
|
|
void *data)
|
|
{
|
|
struct kvm_memslots *slots;
|
|
struct kvm_memory_slot *memslot;
|
|
|
|
slots = kvm_memslots(kvm);
|
|
|
|
/* we only care about the pages that the guest sees */
|
|
kvm_for_each_memslot(memslot, slots) {
|
|
unsigned long hva_start, hva_end;
|
|
gfn_t gfn, gfn_end;
|
|
|
|
hva_start = max(start, memslot->userspace_addr);
|
|
hva_end = min(end, memslot->userspace_addr +
|
|
(memslot->npages << PAGE_SHIFT));
|
|
if (hva_start >= hva_end)
|
|
continue;
|
|
|
|
/*
|
|
* {gfn(page) | page intersects with [hva_start, hva_end)} =
|
|
* {gfn_start, gfn_start+1, ..., gfn_end-1}.
|
|
*/
|
|
gfn = hva_to_gfn_memslot(hva_start, memslot);
|
|
gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
|
|
|
|
for (; gfn < gfn_end; ++gfn) {
|
|
gpa_t gpa = gfn << PAGE_SHIFT;
|
|
handler(kvm, gpa, data);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void kvm_unmap_hva_handler(struct kvm *kvm, gpa_t gpa, void *data)
|
|
{
|
|
unmap_stage2_range(kvm, gpa, PAGE_SIZE);
|
|
}
|
|
|
|
int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
|
|
{
|
|
unsigned long end = hva + PAGE_SIZE;
|
|
|
|
if (!kvm->arch.pgd)
|
|
return 0;
|
|
|
|
trace_kvm_unmap_hva(hva);
|
|
handle_hva_to_gpa(kvm, hva, end, &kvm_unmap_hva_handler, NULL);
|
|
return 0;
|
|
}
|
|
|
|
int kvm_unmap_hva_range(struct kvm *kvm,
|
|
unsigned long start, unsigned long end)
|
|
{
|
|
if (!kvm->arch.pgd)
|
|
return 0;
|
|
|
|
trace_kvm_unmap_hva_range(start, end);
|
|
handle_hva_to_gpa(kvm, start, end, &kvm_unmap_hva_handler, NULL);
|
|
return 0;
|
|
}
|
|
|
|
static void kvm_set_spte_handler(struct kvm *kvm, gpa_t gpa, void *data)
|
|
{
|
|
pte_t *pte = (pte_t *)data;
|
|
|
|
stage2_set_pte(kvm, NULL, gpa, pte, false);
|
|
}
|
|
|
|
|
|
void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
|
|
{
|
|
unsigned long end = hva + PAGE_SIZE;
|
|
pte_t stage2_pte;
|
|
|
|
if (!kvm->arch.pgd)
|
|
return;
|
|
|
|
trace_kvm_set_spte_hva(hva);
|
|
stage2_pte = pfn_pte(pte_pfn(pte), PAGE_S2);
|
|
handle_hva_to_gpa(kvm, hva, end, &kvm_set_spte_handler, &stage2_pte);
|
|
}
|
|
|
|
void kvm_mmu_free_memory_caches(struct kvm_vcpu *vcpu)
|
|
{
|
|
mmu_free_memory_cache(&vcpu->arch.mmu_page_cache);
|
|
}
|
|
|
|
phys_addr_t kvm_mmu_get_httbr(void)
|
|
{
|
|
return virt_to_phys(hyp_pgd);
|
|
}
|
|
|
|
phys_addr_t kvm_mmu_get_boot_httbr(void)
|
|
{
|
|
return virt_to_phys(boot_hyp_pgd);
|
|
}
|
|
|
|
phys_addr_t kvm_get_idmap_vector(void)
|
|
{
|
|
return hyp_idmap_vector;
|
|
}
|
|
|
|
int kvm_mmu_init(void)
|
|
{
|
|
int err;
|
|
|
|
hyp_idmap_start = kvm_virt_to_phys(__hyp_idmap_text_start);
|
|
hyp_idmap_end = kvm_virt_to_phys(__hyp_idmap_text_end);
|
|
hyp_idmap_vector = kvm_virt_to_phys(__kvm_hyp_init);
|
|
|
|
if ((hyp_idmap_start ^ hyp_idmap_end) & PAGE_MASK) {
|
|
/*
|
|
* Our init code is crossing a page boundary. Allocate
|
|
* a bounce page, copy the code over and use that.
|
|
*/
|
|
size_t len = __hyp_idmap_text_end - __hyp_idmap_text_start;
|
|
phys_addr_t phys_base;
|
|
|
|
init_bounce_page = kmalloc(PAGE_SIZE, GFP_KERNEL);
|
|
if (!init_bounce_page) {
|
|
kvm_err("Couldn't allocate HYP init bounce page\n");
|
|
err = -ENOMEM;
|
|
goto out;
|
|
}
|
|
|
|
memcpy(init_bounce_page, __hyp_idmap_text_start, len);
|
|
/*
|
|
* Warning: the code we just copied to the bounce page
|
|
* must be flushed to the point of coherency.
|
|
* Otherwise, the data may be sitting in L2, and HYP
|
|
* mode won't be able to observe it as it runs with
|
|
* caches off at that point.
|
|
*/
|
|
kvm_flush_dcache_to_poc(init_bounce_page, len);
|
|
|
|
phys_base = kvm_virt_to_phys(init_bounce_page);
|
|
hyp_idmap_vector += phys_base - hyp_idmap_start;
|
|
hyp_idmap_start = phys_base;
|
|
hyp_idmap_end = phys_base + len;
|
|
|
|
kvm_info("Using HYP init bounce page @%lx\n",
|
|
(unsigned long)phys_base);
|
|
}
|
|
|
|
hyp_pgd = kzalloc(PTRS_PER_PGD * sizeof(pgd_t), GFP_KERNEL);
|
|
boot_hyp_pgd = kzalloc(PTRS_PER_PGD * sizeof(pgd_t), GFP_KERNEL);
|
|
if (!hyp_pgd || !boot_hyp_pgd) {
|
|
kvm_err("Hyp mode PGD not allocated\n");
|
|
err = -ENOMEM;
|
|
goto out;
|
|
}
|
|
|
|
/* Create the idmap in the boot page tables */
|
|
err = __create_hyp_mappings(boot_hyp_pgd,
|
|
hyp_idmap_start, hyp_idmap_end,
|
|
__phys_to_pfn(hyp_idmap_start),
|
|
PAGE_HYP);
|
|
|
|
if (err) {
|
|
kvm_err("Failed to idmap %lx-%lx\n",
|
|
hyp_idmap_start, hyp_idmap_end);
|
|
goto out;
|
|
}
|
|
|
|
/* Map the very same page at the trampoline VA */
|
|
err = __create_hyp_mappings(boot_hyp_pgd,
|
|
TRAMPOLINE_VA, TRAMPOLINE_VA + PAGE_SIZE,
|
|
__phys_to_pfn(hyp_idmap_start),
|
|
PAGE_HYP);
|
|
if (err) {
|
|
kvm_err("Failed to map trampoline @%lx into boot HYP pgd\n",
|
|
TRAMPOLINE_VA);
|
|
goto out;
|
|
}
|
|
|
|
/* Map the same page again into the runtime page tables */
|
|
err = __create_hyp_mappings(hyp_pgd,
|
|
TRAMPOLINE_VA, TRAMPOLINE_VA + PAGE_SIZE,
|
|
__phys_to_pfn(hyp_idmap_start),
|
|
PAGE_HYP);
|
|
if (err) {
|
|
kvm_err("Failed to map trampoline @%lx into runtime HYP pgd\n",
|
|
TRAMPOLINE_VA);
|
|
goto out;
|
|
}
|
|
|
|
return 0;
|
|
out:
|
|
free_hyp_pgds();
|
|
return err;
|
|
}
|