mirror of
https://github.com/torvalds/linux.git
synced 2024-11-10 14:11:52 +00:00
b93af3055d
If the blk_mq_sched_alloc_tags() -> blk_mq_alloc_rqs() call fails, then we
call blk_mq_sched_free_tags() -> blk_mq_free_rqs().
It is incorrect to do so, as any rqs would have already been freed in the
blk_mq_alloc_rqs() call.
Fix by calling blk_mq_free_rq_map() only directly.
Fixes: 6917ff0b5b
("blk-mq-sched: refactor scheduler initialization")
Signed-off-by: John Garry <john.garry@huawei.com>
Reviewed-by: Ming Lei <ming.lei@redhat.com>
Link: https://lore.kernel.org/r/1627378373-148090-1-git-send-email-john.garry@huawei.com
Signed-off-by: Jens Axboe <axboe@kernel.dk>
692 lines
18 KiB
C
692 lines
18 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* blk-mq scheduling framework
|
|
*
|
|
* Copyright (C) 2016 Jens Axboe
|
|
*/
|
|
#include <linux/kernel.h>
|
|
#include <linux/module.h>
|
|
#include <linux/blk-mq.h>
|
|
#include <linux/list_sort.h>
|
|
|
|
#include <trace/events/block.h>
|
|
|
|
#include "blk.h"
|
|
#include "blk-mq.h"
|
|
#include "blk-mq-debugfs.h"
|
|
#include "blk-mq-sched.h"
|
|
#include "blk-mq-tag.h"
|
|
#include "blk-wbt.h"
|
|
|
|
void blk_mq_sched_assign_ioc(struct request *rq)
|
|
{
|
|
struct request_queue *q = rq->q;
|
|
struct io_context *ioc;
|
|
struct io_cq *icq;
|
|
|
|
/*
|
|
* May not have an IO context if it's a passthrough request
|
|
*/
|
|
ioc = current->io_context;
|
|
if (!ioc)
|
|
return;
|
|
|
|
spin_lock_irq(&q->queue_lock);
|
|
icq = ioc_lookup_icq(ioc, q);
|
|
spin_unlock_irq(&q->queue_lock);
|
|
|
|
if (!icq) {
|
|
icq = ioc_create_icq(ioc, q, GFP_ATOMIC);
|
|
if (!icq)
|
|
return;
|
|
}
|
|
get_io_context(icq->ioc);
|
|
rq->elv.icq = icq;
|
|
}
|
|
|
|
/*
|
|
* Mark a hardware queue as needing a restart. For shared queues, maintain
|
|
* a count of how many hardware queues are marked for restart.
|
|
*/
|
|
void blk_mq_sched_mark_restart_hctx(struct blk_mq_hw_ctx *hctx)
|
|
{
|
|
if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
|
|
return;
|
|
|
|
set_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state);
|
|
}
|
|
EXPORT_SYMBOL_GPL(blk_mq_sched_mark_restart_hctx);
|
|
|
|
void blk_mq_sched_restart(struct blk_mq_hw_ctx *hctx)
|
|
{
|
|
if (!test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
|
|
return;
|
|
clear_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state);
|
|
|
|
/*
|
|
* Order clearing SCHED_RESTART and list_empty_careful(&hctx->dispatch)
|
|
* in blk_mq_run_hw_queue(). Its pair is the barrier in
|
|
* blk_mq_dispatch_rq_list(). So dispatch code won't see SCHED_RESTART,
|
|
* meantime new request added to hctx->dispatch is missed to check in
|
|
* blk_mq_run_hw_queue().
|
|
*/
|
|
smp_mb();
|
|
|
|
blk_mq_run_hw_queue(hctx, true);
|
|
}
|
|
|
|
static int sched_rq_cmp(void *priv, const struct list_head *a,
|
|
const struct list_head *b)
|
|
{
|
|
struct request *rqa = container_of(a, struct request, queuelist);
|
|
struct request *rqb = container_of(b, struct request, queuelist);
|
|
|
|
return rqa->mq_hctx > rqb->mq_hctx;
|
|
}
|
|
|
|
static bool blk_mq_dispatch_hctx_list(struct list_head *rq_list)
|
|
{
|
|
struct blk_mq_hw_ctx *hctx =
|
|
list_first_entry(rq_list, struct request, queuelist)->mq_hctx;
|
|
struct request *rq;
|
|
LIST_HEAD(hctx_list);
|
|
unsigned int count = 0;
|
|
|
|
list_for_each_entry(rq, rq_list, queuelist) {
|
|
if (rq->mq_hctx != hctx) {
|
|
list_cut_before(&hctx_list, rq_list, &rq->queuelist);
|
|
goto dispatch;
|
|
}
|
|
count++;
|
|
}
|
|
list_splice_tail_init(rq_list, &hctx_list);
|
|
|
|
dispatch:
|
|
return blk_mq_dispatch_rq_list(hctx, &hctx_list, count);
|
|
}
|
|
|
|
#define BLK_MQ_BUDGET_DELAY 3 /* ms units */
|
|
|
|
/*
|
|
* Only SCSI implements .get_budget and .put_budget, and SCSI restarts
|
|
* its queue by itself in its completion handler, so we don't need to
|
|
* restart queue if .get_budget() returns BLK_STS_NO_RESOURCE.
|
|
*
|
|
* Returns -EAGAIN if hctx->dispatch was found non-empty and run_work has to
|
|
* be run again. This is necessary to avoid starving flushes.
|
|
*/
|
|
static int __blk_mq_do_dispatch_sched(struct blk_mq_hw_ctx *hctx)
|
|
{
|
|
struct request_queue *q = hctx->queue;
|
|
struct elevator_queue *e = q->elevator;
|
|
bool multi_hctxs = false, run_queue = false;
|
|
bool dispatched = false, busy = false;
|
|
unsigned int max_dispatch;
|
|
LIST_HEAD(rq_list);
|
|
int count = 0;
|
|
|
|
if (hctx->dispatch_busy)
|
|
max_dispatch = 1;
|
|
else
|
|
max_dispatch = hctx->queue->nr_requests;
|
|
|
|
do {
|
|
struct request *rq;
|
|
int budget_token;
|
|
|
|
if (e->type->ops.has_work && !e->type->ops.has_work(hctx))
|
|
break;
|
|
|
|
if (!list_empty_careful(&hctx->dispatch)) {
|
|
busy = true;
|
|
break;
|
|
}
|
|
|
|
budget_token = blk_mq_get_dispatch_budget(q);
|
|
if (budget_token < 0)
|
|
break;
|
|
|
|
rq = e->type->ops.dispatch_request(hctx);
|
|
if (!rq) {
|
|
blk_mq_put_dispatch_budget(q, budget_token);
|
|
/*
|
|
* We're releasing without dispatching. Holding the
|
|
* budget could have blocked any "hctx"s with the
|
|
* same queue and if we didn't dispatch then there's
|
|
* no guarantee anyone will kick the queue. Kick it
|
|
* ourselves.
|
|
*/
|
|
run_queue = true;
|
|
break;
|
|
}
|
|
|
|
blk_mq_set_rq_budget_token(rq, budget_token);
|
|
|
|
/*
|
|
* Now this rq owns the budget which has to be released
|
|
* if this rq won't be queued to driver via .queue_rq()
|
|
* in blk_mq_dispatch_rq_list().
|
|
*/
|
|
list_add_tail(&rq->queuelist, &rq_list);
|
|
count++;
|
|
if (rq->mq_hctx != hctx)
|
|
multi_hctxs = true;
|
|
|
|
/*
|
|
* If we cannot get tag for the request, stop dequeueing
|
|
* requests from the IO scheduler. We are unlikely to be able
|
|
* to submit them anyway and it creates false impression for
|
|
* scheduling heuristics that the device can take more IO.
|
|
*/
|
|
if (!blk_mq_get_driver_tag(rq))
|
|
break;
|
|
} while (count < max_dispatch);
|
|
|
|
if (!count) {
|
|
if (run_queue)
|
|
blk_mq_delay_run_hw_queues(q, BLK_MQ_BUDGET_DELAY);
|
|
} else if (multi_hctxs) {
|
|
/*
|
|
* Requests from different hctx may be dequeued from some
|
|
* schedulers, such as bfq and deadline.
|
|
*
|
|
* Sort the requests in the list according to their hctx,
|
|
* dispatch batching requests from same hctx at a time.
|
|
*/
|
|
list_sort(NULL, &rq_list, sched_rq_cmp);
|
|
do {
|
|
dispatched |= blk_mq_dispatch_hctx_list(&rq_list);
|
|
} while (!list_empty(&rq_list));
|
|
} else {
|
|
dispatched = blk_mq_dispatch_rq_list(hctx, &rq_list, count);
|
|
}
|
|
|
|
if (busy)
|
|
return -EAGAIN;
|
|
return !!dispatched;
|
|
}
|
|
|
|
static int blk_mq_do_dispatch_sched(struct blk_mq_hw_ctx *hctx)
|
|
{
|
|
int ret;
|
|
|
|
do {
|
|
ret = __blk_mq_do_dispatch_sched(hctx);
|
|
} while (ret == 1);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static struct blk_mq_ctx *blk_mq_next_ctx(struct blk_mq_hw_ctx *hctx,
|
|
struct blk_mq_ctx *ctx)
|
|
{
|
|
unsigned short idx = ctx->index_hw[hctx->type];
|
|
|
|
if (++idx == hctx->nr_ctx)
|
|
idx = 0;
|
|
|
|
return hctx->ctxs[idx];
|
|
}
|
|
|
|
/*
|
|
* Only SCSI implements .get_budget and .put_budget, and SCSI restarts
|
|
* its queue by itself in its completion handler, so we don't need to
|
|
* restart queue if .get_budget() returns BLK_STS_NO_RESOURCE.
|
|
*
|
|
* Returns -EAGAIN if hctx->dispatch was found non-empty and run_work has to
|
|
* be run again. This is necessary to avoid starving flushes.
|
|
*/
|
|
static int blk_mq_do_dispatch_ctx(struct blk_mq_hw_ctx *hctx)
|
|
{
|
|
struct request_queue *q = hctx->queue;
|
|
LIST_HEAD(rq_list);
|
|
struct blk_mq_ctx *ctx = READ_ONCE(hctx->dispatch_from);
|
|
int ret = 0;
|
|
struct request *rq;
|
|
|
|
do {
|
|
int budget_token;
|
|
|
|
if (!list_empty_careful(&hctx->dispatch)) {
|
|
ret = -EAGAIN;
|
|
break;
|
|
}
|
|
|
|
if (!sbitmap_any_bit_set(&hctx->ctx_map))
|
|
break;
|
|
|
|
budget_token = blk_mq_get_dispatch_budget(q);
|
|
if (budget_token < 0)
|
|
break;
|
|
|
|
rq = blk_mq_dequeue_from_ctx(hctx, ctx);
|
|
if (!rq) {
|
|
blk_mq_put_dispatch_budget(q, budget_token);
|
|
/*
|
|
* We're releasing without dispatching. Holding the
|
|
* budget could have blocked any "hctx"s with the
|
|
* same queue and if we didn't dispatch then there's
|
|
* no guarantee anyone will kick the queue. Kick it
|
|
* ourselves.
|
|
*/
|
|
blk_mq_delay_run_hw_queues(q, BLK_MQ_BUDGET_DELAY);
|
|
break;
|
|
}
|
|
|
|
blk_mq_set_rq_budget_token(rq, budget_token);
|
|
|
|
/*
|
|
* Now this rq owns the budget which has to be released
|
|
* if this rq won't be queued to driver via .queue_rq()
|
|
* in blk_mq_dispatch_rq_list().
|
|
*/
|
|
list_add(&rq->queuelist, &rq_list);
|
|
|
|
/* round robin for fair dispatch */
|
|
ctx = blk_mq_next_ctx(hctx, rq->mq_ctx);
|
|
|
|
} while (blk_mq_dispatch_rq_list(rq->mq_hctx, &rq_list, 1));
|
|
|
|
WRITE_ONCE(hctx->dispatch_from, ctx);
|
|
return ret;
|
|
}
|
|
|
|
static int __blk_mq_sched_dispatch_requests(struct blk_mq_hw_ctx *hctx)
|
|
{
|
|
struct request_queue *q = hctx->queue;
|
|
const bool has_sched = q->elevator;
|
|
int ret = 0;
|
|
LIST_HEAD(rq_list);
|
|
|
|
/*
|
|
* If we have previous entries on our dispatch list, grab them first for
|
|
* more fair dispatch.
|
|
*/
|
|
if (!list_empty_careful(&hctx->dispatch)) {
|
|
spin_lock(&hctx->lock);
|
|
if (!list_empty(&hctx->dispatch))
|
|
list_splice_init(&hctx->dispatch, &rq_list);
|
|
spin_unlock(&hctx->lock);
|
|
}
|
|
|
|
/*
|
|
* Only ask the scheduler for requests, if we didn't have residual
|
|
* requests from the dispatch list. This is to avoid the case where
|
|
* we only ever dispatch a fraction of the requests available because
|
|
* of low device queue depth. Once we pull requests out of the IO
|
|
* scheduler, we can no longer merge or sort them. So it's best to
|
|
* leave them there for as long as we can. Mark the hw queue as
|
|
* needing a restart in that case.
|
|
*
|
|
* We want to dispatch from the scheduler if there was nothing
|
|
* on the dispatch list or we were able to dispatch from the
|
|
* dispatch list.
|
|
*/
|
|
if (!list_empty(&rq_list)) {
|
|
blk_mq_sched_mark_restart_hctx(hctx);
|
|
if (blk_mq_dispatch_rq_list(hctx, &rq_list, 0)) {
|
|
if (has_sched)
|
|
ret = blk_mq_do_dispatch_sched(hctx);
|
|
else
|
|
ret = blk_mq_do_dispatch_ctx(hctx);
|
|
}
|
|
} else if (has_sched) {
|
|
ret = blk_mq_do_dispatch_sched(hctx);
|
|
} else if (hctx->dispatch_busy) {
|
|
/* dequeue request one by one from sw queue if queue is busy */
|
|
ret = blk_mq_do_dispatch_ctx(hctx);
|
|
} else {
|
|
blk_mq_flush_busy_ctxs(hctx, &rq_list);
|
|
blk_mq_dispatch_rq_list(hctx, &rq_list, 0);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
void blk_mq_sched_dispatch_requests(struct blk_mq_hw_ctx *hctx)
|
|
{
|
|
struct request_queue *q = hctx->queue;
|
|
|
|
/* RCU or SRCU read lock is needed before checking quiesced flag */
|
|
if (unlikely(blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)))
|
|
return;
|
|
|
|
hctx->run++;
|
|
|
|
/*
|
|
* A return of -EAGAIN is an indication that hctx->dispatch is not
|
|
* empty and we must run again in order to avoid starving flushes.
|
|
*/
|
|
if (__blk_mq_sched_dispatch_requests(hctx) == -EAGAIN) {
|
|
if (__blk_mq_sched_dispatch_requests(hctx) == -EAGAIN)
|
|
blk_mq_run_hw_queue(hctx, true);
|
|
}
|
|
}
|
|
|
|
bool __blk_mq_sched_bio_merge(struct request_queue *q, struct bio *bio,
|
|
unsigned int nr_segs)
|
|
{
|
|
struct elevator_queue *e = q->elevator;
|
|
struct blk_mq_ctx *ctx;
|
|
struct blk_mq_hw_ctx *hctx;
|
|
bool ret = false;
|
|
enum hctx_type type;
|
|
|
|
if (e && e->type->ops.bio_merge)
|
|
return e->type->ops.bio_merge(q, bio, nr_segs);
|
|
|
|
ctx = blk_mq_get_ctx(q);
|
|
hctx = blk_mq_map_queue(q, bio->bi_opf, ctx);
|
|
type = hctx->type;
|
|
if (!(hctx->flags & BLK_MQ_F_SHOULD_MERGE) ||
|
|
list_empty_careful(&ctx->rq_lists[type]))
|
|
return false;
|
|
|
|
/* default per sw-queue merge */
|
|
spin_lock(&ctx->lock);
|
|
/*
|
|
* Reverse check our software queue for entries that we could
|
|
* potentially merge with. Currently includes a hand-wavy stop
|
|
* count of 8, to not spend too much time checking for merges.
|
|
*/
|
|
if (blk_bio_list_merge(q, &ctx->rq_lists[type], bio, nr_segs)) {
|
|
ctx->rq_merged++;
|
|
ret = true;
|
|
}
|
|
|
|
spin_unlock(&ctx->lock);
|
|
|
|
return ret;
|
|
}
|
|
|
|
bool blk_mq_sched_try_insert_merge(struct request_queue *q, struct request *rq,
|
|
struct list_head *free)
|
|
{
|
|
return rq_mergeable(rq) && elv_attempt_insert_merge(q, rq, free);
|
|
}
|
|
EXPORT_SYMBOL_GPL(blk_mq_sched_try_insert_merge);
|
|
|
|
static bool blk_mq_sched_bypass_insert(struct blk_mq_hw_ctx *hctx,
|
|
struct request *rq)
|
|
{
|
|
/*
|
|
* dispatch flush and passthrough rq directly
|
|
*
|
|
* passthrough request has to be added to hctx->dispatch directly.
|
|
* For some reason, device may be in one situation which can't
|
|
* handle FS request, so STS_RESOURCE is always returned and the
|
|
* FS request will be added to hctx->dispatch. However passthrough
|
|
* request may be required at that time for fixing the problem. If
|
|
* passthrough request is added to scheduler queue, there isn't any
|
|
* chance to dispatch it given we prioritize requests in hctx->dispatch.
|
|
*/
|
|
if ((rq->rq_flags & RQF_FLUSH_SEQ) || blk_rq_is_passthrough(rq))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
void blk_mq_sched_insert_request(struct request *rq, bool at_head,
|
|
bool run_queue, bool async)
|
|
{
|
|
struct request_queue *q = rq->q;
|
|
struct elevator_queue *e = q->elevator;
|
|
struct blk_mq_ctx *ctx = rq->mq_ctx;
|
|
struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
|
|
|
|
WARN_ON(e && (rq->tag != BLK_MQ_NO_TAG));
|
|
|
|
if (blk_mq_sched_bypass_insert(hctx, rq)) {
|
|
/*
|
|
* Firstly normal IO request is inserted to scheduler queue or
|
|
* sw queue, meantime we add flush request to dispatch queue(
|
|
* hctx->dispatch) directly and there is at most one in-flight
|
|
* flush request for each hw queue, so it doesn't matter to add
|
|
* flush request to tail or front of the dispatch queue.
|
|
*
|
|
* Secondly in case of NCQ, flush request belongs to non-NCQ
|
|
* command, and queueing it will fail when there is any
|
|
* in-flight normal IO request(NCQ command). When adding flush
|
|
* rq to the front of hctx->dispatch, it is easier to introduce
|
|
* extra time to flush rq's latency because of S_SCHED_RESTART
|
|
* compared with adding to the tail of dispatch queue, then
|
|
* chance of flush merge is increased, and less flush requests
|
|
* will be issued to controller. It is observed that ~10% time
|
|
* is saved in blktests block/004 on disk attached to AHCI/NCQ
|
|
* drive when adding flush rq to the front of hctx->dispatch.
|
|
*
|
|
* Simply queue flush rq to the front of hctx->dispatch so that
|
|
* intensive flush workloads can benefit in case of NCQ HW.
|
|
*/
|
|
at_head = (rq->rq_flags & RQF_FLUSH_SEQ) ? true : at_head;
|
|
blk_mq_request_bypass_insert(rq, at_head, false);
|
|
goto run;
|
|
}
|
|
|
|
if (e) {
|
|
LIST_HEAD(list);
|
|
|
|
list_add(&rq->queuelist, &list);
|
|
e->type->ops.insert_requests(hctx, &list, at_head);
|
|
} else {
|
|
spin_lock(&ctx->lock);
|
|
__blk_mq_insert_request(hctx, rq, at_head);
|
|
spin_unlock(&ctx->lock);
|
|
}
|
|
|
|
run:
|
|
if (run_queue)
|
|
blk_mq_run_hw_queue(hctx, async);
|
|
}
|
|
|
|
void blk_mq_sched_insert_requests(struct blk_mq_hw_ctx *hctx,
|
|
struct blk_mq_ctx *ctx,
|
|
struct list_head *list, bool run_queue_async)
|
|
{
|
|
struct elevator_queue *e;
|
|
struct request_queue *q = hctx->queue;
|
|
|
|
/*
|
|
* blk_mq_sched_insert_requests() is called from flush plug
|
|
* context only, and hold one usage counter to prevent queue
|
|
* from being released.
|
|
*/
|
|
percpu_ref_get(&q->q_usage_counter);
|
|
|
|
e = hctx->queue->elevator;
|
|
if (e) {
|
|
e->type->ops.insert_requests(hctx, list, false);
|
|
} else {
|
|
/*
|
|
* try to issue requests directly if the hw queue isn't
|
|
* busy in case of 'none' scheduler, and this way may save
|
|
* us one extra enqueue & dequeue to sw queue.
|
|
*/
|
|
if (!hctx->dispatch_busy && !e && !run_queue_async) {
|
|
blk_mq_try_issue_list_directly(hctx, list);
|
|
if (list_empty(list))
|
|
goto out;
|
|
}
|
|
blk_mq_insert_requests(hctx, ctx, list);
|
|
}
|
|
|
|
blk_mq_run_hw_queue(hctx, run_queue_async);
|
|
out:
|
|
percpu_ref_put(&q->q_usage_counter);
|
|
}
|
|
|
|
static int blk_mq_sched_alloc_tags(struct request_queue *q,
|
|
struct blk_mq_hw_ctx *hctx,
|
|
unsigned int hctx_idx)
|
|
{
|
|
struct blk_mq_tag_set *set = q->tag_set;
|
|
int ret;
|
|
|
|
hctx->sched_tags = blk_mq_alloc_rq_map(set, hctx_idx, q->nr_requests,
|
|
set->reserved_tags, set->flags);
|
|
if (!hctx->sched_tags)
|
|
return -ENOMEM;
|
|
|
|
ret = blk_mq_alloc_rqs(set, hctx->sched_tags, hctx_idx, q->nr_requests);
|
|
if (ret) {
|
|
blk_mq_free_rq_map(hctx->sched_tags, set->flags);
|
|
hctx->sched_tags = NULL;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* called in queue's release handler, tagset has gone away */
|
|
static void blk_mq_sched_tags_teardown(struct request_queue *q)
|
|
{
|
|
struct blk_mq_hw_ctx *hctx;
|
|
int i;
|
|
|
|
queue_for_each_hw_ctx(q, hctx, i) {
|
|
if (hctx->sched_tags) {
|
|
blk_mq_free_rq_map(hctx->sched_tags, hctx->flags);
|
|
hctx->sched_tags = NULL;
|
|
}
|
|
}
|
|
}
|
|
|
|
static int blk_mq_init_sched_shared_sbitmap(struct request_queue *queue)
|
|
{
|
|
struct blk_mq_tag_set *set = queue->tag_set;
|
|
int alloc_policy = BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags);
|
|
struct blk_mq_hw_ctx *hctx;
|
|
int ret, i;
|
|
|
|
/*
|
|
* Set initial depth at max so that we don't need to reallocate for
|
|
* updating nr_requests.
|
|
*/
|
|
ret = blk_mq_init_bitmaps(&queue->sched_bitmap_tags,
|
|
&queue->sched_breserved_tags,
|
|
MAX_SCHED_RQ, set->reserved_tags,
|
|
set->numa_node, alloc_policy);
|
|
if (ret)
|
|
return ret;
|
|
|
|
queue_for_each_hw_ctx(queue, hctx, i) {
|
|
hctx->sched_tags->bitmap_tags =
|
|
&queue->sched_bitmap_tags;
|
|
hctx->sched_tags->breserved_tags =
|
|
&queue->sched_breserved_tags;
|
|
}
|
|
|
|
sbitmap_queue_resize(&queue->sched_bitmap_tags,
|
|
queue->nr_requests - set->reserved_tags);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void blk_mq_exit_sched_shared_sbitmap(struct request_queue *queue)
|
|
{
|
|
sbitmap_queue_free(&queue->sched_bitmap_tags);
|
|
sbitmap_queue_free(&queue->sched_breserved_tags);
|
|
}
|
|
|
|
int blk_mq_init_sched(struct request_queue *q, struct elevator_type *e)
|
|
{
|
|
struct blk_mq_hw_ctx *hctx;
|
|
struct elevator_queue *eq;
|
|
unsigned int i;
|
|
int ret;
|
|
|
|
if (!e) {
|
|
q->elevator = NULL;
|
|
q->nr_requests = q->tag_set->queue_depth;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Default to double of smaller one between hw queue_depth and 128,
|
|
* since we don't split into sync/async like the old code did.
|
|
* Additionally, this is a per-hw queue depth.
|
|
*/
|
|
q->nr_requests = 2 * min_t(unsigned int, q->tag_set->queue_depth,
|
|
BLKDEV_MAX_RQ);
|
|
|
|
queue_for_each_hw_ctx(q, hctx, i) {
|
|
ret = blk_mq_sched_alloc_tags(q, hctx, i);
|
|
if (ret)
|
|
goto err_free_tags;
|
|
}
|
|
|
|
if (blk_mq_is_sbitmap_shared(q->tag_set->flags)) {
|
|
ret = blk_mq_init_sched_shared_sbitmap(q);
|
|
if (ret)
|
|
goto err_free_tags;
|
|
}
|
|
|
|
ret = e->ops.init_sched(q, e);
|
|
if (ret)
|
|
goto err_free_sbitmap;
|
|
|
|
blk_mq_debugfs_register_sched(q);
|
|
|
|
queue_for_each_hw_ctx(q, hctx, i) {
|
|
if (e->ops.init_hctx) {
|
|
ret = e->ops.init_hctx(hctx, i);
|
|
if (ret) {
|
|
eq = q->elevator;
|
|
blk_mq_sched_free_requests(q);
|
|
blk_mq_exit_sched(q, eq);
|
|
kobject_put(&eq->kobj);
|
|
return ret;
|
|
}
|
|
}
|
|
blk_mq_debugfs_register_sched_hctx(q, hctx);
|
|
}
|
|
|
|
return 0;
|
|
|
|
err_free_sbitmap:
|
|
if (blk_mq_is_sbitmap_shared(q->tag_set->flags))
|
|
blk_mq_exit_sched_shared_sbitmap(q);
|
|
err_free_tags:
|
|
blk_mq_sched_free_requests(q);
|
|
blk_mq_sched_tags_teardown(q);
|
|
q->elevator = NULL;
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* called in either blk_queue_cleanup or elevator_switch, tagset
|
|
* is required for freeing requests
|
|
*/
|
|
void blk_mq_sched_free_requests(struct request_queue *q)
|
|
{
|
|
struct blk_mq_hw_ctx *hctx;
|
|
int i;
|
|
|
|
queue_for_each_hw_ctx(q, hctx, i) {
|
|
if (hctx->sched_tags)
|
|
blk_mq_free_rqs(q->tag_set, hctx->sched_tags, i);
|
|
}
|
|
}
|
|
|
|
void blk_mq_exit_sched(struct request_queue *q, struct elevator_queue *e)
|
|
{
|
|
struct blk_mq_hw_ctx *hctx;
|
|
unsigned int i;
|
|
unsigned int flags = 0;
|
|
|
|
queue_for_each_hw_ctx(q, hctx, i) {
|
|
blk_mq_debugfs_unregister_sched_hctx(hctx);
|
|
if (e->type->ops.exit_hctx && hctx->sched_data) {
|
|
e->type->ops.exit_hctx(hctx, i);
|
|
hctx->sched_data = NULL;
|
|
}
|
|
flags = hctx->flags;
|
|
}
|
|
blk_mq_debugfs_unregister_sched(q);
|
|
if (e->type->ops.exit_sched)
|
|
e->type->ops.exit_sched(e);
|
|
blk_mq_sched_tags_teardown(q);
|
|
if (blk_mq_is_sbitmap_shared(flags))
|
|
blk_mq_exit_sched_shared_sbitmap(q);
|
|
q->elevator = NULL;
|
|
}
|