linux/drivers/spi/spi-rzv2m-csi.c
Uwe Kleine-König 9303331461
spi: rzv2m-csi: Convert to platform remove callback returning void
The .remove() callback for a platform driver returns an int which makes
many driver authors wrongly assume it's possible to do error handling by
returning an error code. However the value returned is ignored (apart
from emitting a warning) and this typically results in resource leaks.
To improve here there is a quest to make the remove callback return
void. In the first step of this quest all drivers are converted to
.remove_new() which already returns void. Eventually after all drivers
are converted, .remove_new() is renamed to .remove().

Trivially convert this driver from always returning zero in the remove
callback to the void returning variant.

Signed-off-by: Uwe Kleine-König <u.kleine-koenig@pengutronix.de>
Link: https://lore.kernel.org/r/20230707071119.3394198-1-u.kleine-koenig@pengutronix.de
Signed-off-by: Mark Brown <broonie@kernel.org>
2023-07-09 22:51:35 +01:00

666 lines
16 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Renesas RZ/V2M Clocked Serial Interface (CSI) driver
*
* Copyright (C) 2023 Renesas Electronics Corporation
*/
#include <linux/clk.h>
#include <linux/count_zeros.h>
#include <linux/interrupt.h>
#include <linux/iopoll.h>
#include <linux/platform_device.h>
#include <linux/reset.h>
#include <linux/spi/spi.h>
/* Registers */
#define CSI_MODE 0x00 /* CSI mode control */
#define CSI_CLKSEL 0x04 /* CSI clock select */
#define CSI_CNT 0x08 /* CSI control */
#define CSI_INT 0x0C /* CSI interrupt status */
#define CSI_IFIFOL 0x10 /* CSI receive FIFO level display */
#define CSI_OFIFOL 0x14 /* CSI transmit FIFO level display */
#define CSI_IFIFO 0x18 /* CSI receive window */
#define CSI_OFIFO 0x1C /* CSI transmit window */
#define CSI_FIFOTRG 0x20 /* CSI FIFO trigger level */
/* CSI_MODE */
#define CSI_MODE_CSIE BIT(7)
#define CSI_MODE_TRMD BIT(6)
#define CSI_MODE_CCL BIT(5)
#define CSI_MODE_DIR BIT(4)
#define CSI_MODE_CSOT BIT(0)
#define CSI_MODE_SETUP 0x00000040
/* CSI_CLKSEL */
#define CSI_CLKSEL_CKP BIT(17)
#define CSI_CLKSEL_DAP BIT(16)
#define CSI_CLKSEL_SLAVE BIT(15)
#define CSI_CLKSEL_CKS GENMASK(14, 1)
/* CSI_CNT */
#define CSI_CNT_CSIRST BIT(28)
#define CSI_CNT_R_TRGEN BIT(19)
#define CSI_CNT_UNDER_E BIT(13)
#define CSI_CNT_OVERF_E BIT(12)
#define CSI_CNT_TREND_E BIT(9)
#define CSI_CNT_CSIEND_E BIT(8)
#define CSI_CNT_T_TRGR_E BIT(4)
#define CSI_CNT_R_TRGR_E BIT(0)
/* CSI_INT */
#define CSI_INT_UNDER BIT(13)
#define CSI_INT_OVERF BIT(12)
#define CSI_INT_TREND BIT(9)
#define CSI_INT_CSIEND BIT(8)
#define CSI_INT_T_TRGR BIT(4)
#define CSI_INT_R_TRGR BIT(0)
/* CSI_FIFOTRG */
#define CSI_FIFOTRG_R_TRG GENMASK(2, 0)
#define CSI_FIFO_SIZE_BYTES 32
#define CSI_FIFO_HALF_SIZE 16
#define CSI_EN_DIS_TIMEOUT_US 100
#define CSI_CKS_MAX 0x3FFF
#define UNDERRUN_ERROR BIT(0)
#define OVERFLOW_ERROR BIT(1)
#define TX_TIMEOUT_ERROR BIT(2)
#define RX_TIMEOUT_ERROR BIT(3)
#define CSI_MAX_SPI_SCKO 8000000
struct rzv2m_csi_priv {
void __iomem *base;
struct clk *csiclk;
struct clk *pclk;
struct device *dev;
struct spi_controller *controller;
const u8 *txbuf;
u8 *rxbuf;
int buffer_len;
int bytes_sent;
int bytes_received;
int bytes_to_transfer;
int words_to_transfer;
unsigned char bytes_per_word;
wait_queue_head_t wait;
u8 errors;
u32 status;
};
static const unsigned char x_trg[] = {
0, 1, 1, 2, 2, 2, 2, 3,
3, 3, 3, 3, 3, 3, 3, 4,
4, 4, 4, 4, 4, 4, 4, 4,
4, 4, 4, 4, 4, 4, 4, 5
};
static const unsigned char x_trg_words[] = {
1, 2, 2, 4, 4, 4, 4, 8,
8, 8, 8, 8, 8, 8, 8, 16,
16, 16, 16, 16, 16, 16, 16, 16,
16, 16, 16, 16, 16, 16, 16, 32
};
static void rzv2m_csi_reg_write_bit(const struct rzv2m_csi_priv *csi,
int reg_offs, int bit_mask, u32 value)
{
int nr_zeros;
u32 tmp;
nr_zeros = count_trailing_zeros(bit_mask);
value <<= nr_zeros;
tmp = (readl(csi->base + reg_offs) & ~bit_mask) | value;
writel(tmp, csi->base + reg_offs);
}
static int rzv2m_csi_sw_reset(struct rzv2m_csi_priv *csi, int assert)
{
u32 reg;
rzv2m_csi_reg_write_bit(csi, CSI_CNT, CSI_CNT_CSIRST, assert);
if (assert) {
return readl_poll_timeout(csi->base + CSI_MODE, reg,
!(reg & CSI_MODE_CSOT), 0,
CSI_EN_DIS_TIMEOUT_US);
}
return 0;
}
static int rzv2m_csi_start_stop_operation(const struct rzv2m_csi_priv *csi,
int enable, bool wait)
{
u32 reg;
rzv2m_csi_reg_write_bit(csi, CSI_MODE, CSI_MODE_CSIE, enable);
if (!enable && wait)
return readl_poll_timeout(csi->base + CSI_MODE, reg,
!(reg & CSI_MODE_CSOT), 0,
CSI_EN_DIS_TIMEOUT_US);
return 0;
}
static int rzv2m_csi_fill_txfifo(struct rzv2m_csi_priv *csi)
{
int i;
if (readl(csi->base + CSI_OFIFOL))
return -EIO;
if (csi->bytes_per_word == 2) {
u16 *buf = (u16 *)csi->txbuf;
for (i = 0; i < csi->words_to_transfer; i++)
writel(buf[i], csi->base + CSI_OFIFO);
} else {
u8 *buf = (u8 *)csi->txbuf;
for (i = 0; i < csi->words_to_transfer; i++)
writel(buf[i], csi->base + CSI_OFIFO);
}
csi->txbuf += csi->bytes_to_transfer;
csi->bytes_sent += csi->bytes_to_transfer;
return 0;
}
static int rzv2m_csi_read_rxfifo(struct rzv2m_csi_priv *csi)
{
int i;
if (readl(csi->base + CSI_IFIFOL) != csi->bytes_to_transfer)
return -EIO;
if (csi->bytes_per_word == 2) {
u16 *buf = (u16 *)csi->rxbuf;
for (i = 0; i < csi->words_to_transfer; i++)
buf[i] = (u16)readl(csi->base + CSI_IFIFO);
} else {
u8 *buf = (u8 *)csi->rxbuf;
for (i = 0; i < csi->words_to_transfer; i++)
buf[i] = (u8)readl(csi->base + CSI_IFIFO);
}
csi->rxbuf += csi->bytes_to_transfer;
csi->bytes_received += csi->bytes_to_transfer;
return 0;
}
static inline void rzv2m_csi_calc_current_transfer(struct rzv2m_csi_priv *csi)
{
int bytes_transferred = max_t(int, csi->bytes_received, csi->bytes_sent);
int bytes_remaining = csi->buffer_len - bytes_transferred;
int to_transfer;
if (csi->txbuf)
/*
* Leaving a little bit of headroom in the FIFOs makes it very
* hard to raise an overflow error (which is only possible
* when IP transmits and receives at the same time).
*/
to_transfer = min_t(int, CSI_FIFO_HALF_SIZE, bytes_remaining);
else
to_transfer = min_t(int, CSI_FIFO_SIZE_BYTES, bytes_remaining);
if (csi->bytes_per_word == 2)
to_transfer >>= 1;
/*
* We can only choose a trigger level from a predefined set of values.
* This will pick a value that is the greatest possible integer that's
* less than or equal to the number of bytes we need to transfer.
* This may result in multiple smaller transfers.
*/
csi->words_to_transfer = x_trg_words[to_transfer - 1];
if (csi->bytes_per_word == 2)
csi->bytes_to_transfer = csi->words_to_transfer << 1;
else
csi->bytes_to_transfer = csi->words_to_transfer;
}
static inline void rzv2m_csi_set_rx_fifo_trigger_level(struct rzv2m_csi_priv *csi)
{
rzv2m_csi_reg_write_bit(csi, CSI_FIFOTRG, CSI_FIFOTRG_R_TRG,
x_trg[csi->words_to_transfer - 1]);
}
static inline void rzv2m_csi_enable_rx_trigger(struct rzv2m_csi_priv *csi,
bool enable)
{
rzv2m_csi_reg_write_bit(csi, CSI_CNT, CSI_CNT_R_TRGEN, enable);
}
static void rzv2m_csi_disable_irqs(const struct rzv2m_csi_priv *csi,
u32 enable_bits)
{
u32 cnt = readl(csi->base + CSI_CNT);
writel(cnt & ~enable_bits, csi->base + CSI_CNT);
}
static void rzv2m_csi_disable_all_irqs(struct rzv2m_csi_priv *csi)
{
rzv2m_csi_disable_irqs(csi, CSI_CNT_R_TRGR_E | CSI_CNT_T_TRGR_E |
CSI_CNT_CSIEND_E | CSI_CNT_TREND_E |
CSI_CNT_OVERF_E | CSI_CNT_UNDER_E);
}
static inline void rzv2m_csi_clear_irqs(struct rzv2m_csi_priv *csi, u32 irqs)
{
writel(irqs, csi->base + CSI_INT);
}
static void rzv2m_csi_clear_all_irqs(struct rzv2m_csi_priv *csi)
{
rzv2m_csi_clear_irqs(csi, CSI_INT_UNDER | CSI_INT_OVERF |
CSI_INT_TREND | CSI_INT_CSIEND | CSI_INT_T_TRGR |
CSI_INT_R_TRGR);
}
static void rzv2m_csi_enable_irqs(struct rzv2m_csi_priv *csi, u32 enable_bits)
{
u32 cnt = readl(csi->base + CSI_CNT);
writel(cnt | enable_bits, csi->base + CSI_CNT);
}
static int rzv2m_csi_wait_for_interrupt(struct rzv2m_csi_priv *csi,
u32 wait_mask, u32 enable_bits)
{
int ret;
rzv2m_csi_enable_irqs(csi, enable_bits);
ret = wait_event_timeout(csi->wait,
((csi->status & wait_mask) == wait_mask) ||
csi->errors, HZ);
rzv2m_csi_disable_irqs(csi, enable_bits);
if (csi->errors)
return -EIO;
if (!ret)
return -ETIMEDOUT;
return 0;
}
static int rzv2m_csi_wait_for_tx_empty(struct rzv2m_csi_priv *csi)
{
int ret;
if (readl(csi->base + CSI_OFIFOL) == 0)
return 0;
ret = rzv2m_csi_wait_for_interrupt(csi, CSI_INT_TREND, CSI_CNT_TREND_E);
if (ret == -ETIMEDOUT)
csi->errors |= TX_TIMEOUT_ERROR;
return ret;
}
static inline int rzv2m_csi_wait_for_rx_ready(struct rzv2m_csi_priv *csi)
{
int ret;
if (readl(csi->base + CSI_IFIFOL) == csi->bytes_to_transfer)
return 0;
ret = rzv2m_csi_wait_for_interrupt(csi, CSI_INT_R_TRGR,
CSI_CNT_R_TRGR_E);
if (ret == -ETIMEDOUT)
csi->errors |= RX_TIMEOUT_ERROR;
return ret;
}
static irqreturn_t rzv2m_csi_irq_handler(int irq, void *data)
{
struct rzv2m_csi_priv *csi = (struct rzv2m_csi_priv *)data;
csi->status = readl(csi->base + CSI_INT);
rzv2m_csi_disable_irqs(csi, csi->status);
if (csi->status & CSI_INT_OVERF)
csi->errors |= OVERFLOW_ERROR;
if (csi->status & CSI_INT_UNDER)
csi->errors |= UNDERRUN_ERROR;
wake_up(&csi->wait);
return IRQ_HANDLED;
}
static void rzv2m_csi_setup_clock(struct rzv2m_csi_priv *csi, u32 spi_hz)
{
unsigned long csiclk_rate = clk_get_rate(csi->csiclk);
unsigned long pclk_rate = clk_get_rate(csi->pclk);
unsigned long csiclk_rate_limit = pclk_rate >> 1;
u32 cks;
/*
* There is a restriction on the frequency of CSICLK, it has to be <=
* PCLK / 2.
*/
if (csiclk_rate > csiclk_rate_limit) {
clk_set_rate(csi->csiclk, csiclk_rate >> 1);
csiclk_rate = clk_get_rate(csi->csiclk);
} else if ((csiclk_rate << 1) <= csiclk_rate_limit) {
clk_set_rate(csi->csiclk, csiclk_rate << 1);
csiclk_rate = clk_get_rate(csi->csiclk);
}
spi_hz = spi_hz > CSI_MAX_SPI_SCKO ? CSI_MAX_SPI_SCKO : spi_hz;
cks = DIV_ROUND_UP(csiclk_rate, spi_hz << 1);
if (cks > CSI_CKS_MAX)
cks = CSI_CKS_MAX;
dev_dbg(csi->dev, "SPI clk rate is %ldHz\n", csiclk_rate / (cks << 1));
rzv2m_csi_reg_write_bit(csi, CSI_CLKSEL, CSI_CLKSEL_CKS, cks);
}
static void rzv2m_csi_setup_operating_mode(struct rzv2m_csi_priv *csi,
struct spi_transfer *t)
{
if (t->rx_buf && !t->tx_buf)
/* Reception-only mode */
rzv2m_csi_reg_write_bit(csi, CSI_MODE, CSI_MODE_TRMD, 0);
else
/* Send and receive mode */
rzv2m_csi_reg_write_bit(csi, CSI_MODE, CSI_MODE_TRMD, 1);
csi->bytes_per_word = t->bits_per_word / 8;
rzv2m_csi_reg_write_bit(csi, CSI_MODE, CSI_MODE_CCL,
csi->bytes_per_word == 2);
}
static int rzv2m_csi_setup(struct spi_device *spi)
{
struct rzv2m_csi_priv *csi = spi_controller_get_devdata(spi->controller);
int ret;
rzv2m_csi_sw_reset(csi, 0);
writel(CSI_MODE_SETUP, csi->base + CSI_MODE);
/* Setup clock polarity and phase timing */
rzv2m_csi_reg_write_bit(csi, CSI_CLKSEL, CSI_CLKSEL_CKP,
!(spi->mode & SPI_CPOL));
rzv2m_csi_reg_write_bit(csi, CSI_CLKSEL, CSI_CLKSEL_DAP,
!(spi->mode & SPI_CPHA));
/* Setup serial data order */
rzv2m_csi_reg_write_bit(csi, CSI_MODE, CSI_MODE_DIR,
!!(spi->mode & SPI_LSB_FIRST));
/* Set the operation mode as master */
rzv2m_csi_reg_write_bit(csi, CSI_CLKSEL, CSI_CLKSEL_SLAVE, 0);
/* Give the IP a SW reset */
ret = rzv2m_csi_sw_reset(csi, 1);
if (ret)
return ret;
rzv2m_csi_sw_reset(csi, 0);
/*
* We need to enable the communication so that the clock will settle
* for the right polarity before enabling the CS.
*/
rzv2m_csi_start_stop_operation(csi, 1, false);
udelay(10);
rzv2m_csi_start_stop_operation(csi, 0, false);
return 0;
}
static int rzv2m_csi_pio_transfer(struct rzv2m_csi_priv *csi)
{
bool tx_completed = csi->txbuf ? false : true;
bool rx_completed = csi->rxbuf ? false : true;
int ret = 0;
/* Make sure the TX FIFO is empty */
writel(0, csi->base + CSI_OFIFOL);
csi->bytes_sent = 0;
csi->bytes_received = 0;
csi->errors = 0;
rzv2m_csi_disable_all_irqs(csi);
rzv2m_csi_clear_all_irqs(csi);
rzv2m_csi_enable_rx_trigger(csi, true);
while (!tx_completed || !rx_completed) {
/*
* Decide how many words we are going to transfer during
* this cycle (for both TX and RX), then set the RX FIFO trigger
* level accordingly. No need to set a trigger level for the
* TX FIFO, as this IP comes with an interrupt that fires when
* the TX FIFO is empty.
*/
rzv2m_csi_calc_current_transfer(csi);
rzv2m_csi_set_rx_fifo_trigger_level(csi);
rzv2m_csi_enable_irqs(csi, CSI_INT_OVERF | CSI_INT_UNDER);
/* Make sure the RX FIFO is empty */
writel(0, csi->base + CSI_IFIFOL);
writel(readl(csi->base + CSI_INT), csi->base + CSI_INT);
csi->status = 0;
rzv2m_csi_start_stop_operation(csi, 1, false);
/* TX */
if (csi->txbuf) {
ret = rzv2m_csi_fill_txfifo(csi);
if (ret)
break;
ret = rzv2m_csi_wait_for_tx_empty(csi);
if (ret)
break;
if (csi->bytes_sent == csi->buffer_len)
tx_completed = true;
}
/*
* Make sure the RX FIFO contains the desired number of words.
* We then either flush its content, or we copy it onto
* csi->rxbuf.
*/
ret = rzv2m_csi_wait_for_rx_ready(csi);
if (ret)
break;
/* RX */
if (csi->rxbuf) {
rzv2m_csi_start_stop_operation(csi, 0, false);
ret = rzv2m_csi_read_rxfifo(csi);
if (ret)
break;
if (csi->bytes_received == csi->buffer_len)
rx_completed = true;
}
ret = rzv2m_csi_start_stop_operation(csi, 0, true);
if (ret)
goto pio_quit;
if (csi->errors) {
ret = -EIO;
goto pio_quit;
}
}
rzv2m_csi_start_stop_operation(csi, 0, true);
pio_quit:
rzv2m_csi_disable_all_irqs(csi);
rzv2m_csi_enable_rx_trigger(csi, false);
rzv2m_csi_clear_all_irqs(csi);
return ret;
}
static int rzv2m_csi_transfer_one(struct spi_controller *controller,
struct spi_device *spi,
struct spi_transfer *transfer)
{
struct rzv2m_csi_priv *csi = spi_controller_get_devdata(controller);
struct device *dev = csi->dev;
int ret;
csi->txbuf = transfer->tx_buf;
csi->rxbuf = transfer->rx_buf;
csi->buffer_len = transfer->len;
rzv2m_csi_setup_operating_mode(csi, transfer);
rzv2m_csi_setup_clock(csi, transfer->speed_hz);
ret = rzv2m_csi_pio_transfer(csi);
if (ret) {
if (csi->errors & UNDERRUN_ERROR)
dev_err(dev, "Underrun error\n");
if (csi->errors & OVERFLOW_ERROR)
dev_err(dev, "Overflow error\n");
if (csi->errors & TX_TIMEOUT_ERROR)
dev_err(dev, "TX timeout error\n");
if (csi->errors & RX_TIMEOUT_ERROR)
dev_err(dev, "RX timeout error\n");
}
return ret;
}
static int rzv2m_csi_probe(struct platform_device *pdev)
{
struct spi_controller *controller;
struct device *dev = &pdev->dev;
struct rzv2m_csi_priv *csi;
struct reset_control *rstc;
int irq;
int ret;
controller = devm_spi_alloc_master(dev, sizeof(*csi));
if (!controller)
return -ENOMEM;
csi = spi_controller_get_devdata(controller);
platform_set_drvdata(pdev, csi);
csi->dev = dev;
csi->controller = controller;
csi->base = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(csi->base))
return PTR_ERR(csi->base);
irq = platform_get_irq(pdev, 0);
if (irq < 0)
return irq;
csi->csiclk = devm_clk_get(dev, "csiclk");
if (IS_ERR(csi->csiclk))
return dev_err_probe(dev, PTR_ERR(csi->csiclk),
"could not get csiclk\n");
csi->pclk = devm_clk_get(dev, "pclk");
if (IS_ERR(csi->pclk))
return dev_err_probe(dev, PTR_ERR(csi->pclk),
"could not get pclk\n");
rstc = devm_reset_control_get_shared(dev, NULL);
if (IS_ERR(rstc))
return dev_err_probe(dev, PTR_ERR(rstc), "Missing reset ctrl\n");
init_waitqueue_head(&csi->wait);
controller->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LSB_FIRST;
controller->dev.of_node = pdev->dev.of_node;
controller->bits_per_word_mask = SPI_BPW_MASK(16) | SPI_BPW_MASK(8);
controller->setup = rzv2m_csi_setup;
controller->transfer_one = rzv2m_csi_transfer_one;
controller->use_gpio_descriptors = true;
ret = devm_request_irq(dev, irq, rzv2m_csi_irq_handler, 0,
dev_name(dev), csi);
if (ret)
return dev_err_probe(dev, ret, "cannot request IRQ\n");
/*
* The reset also affects other HW that is not under the control
* of Linux. Therefore, all we can do is make sure the reset is
* deasserted.
*/
reset_control_deassert(rstc);
/* Make sure the IP is in SW reset state */
ret = rzv2m_csi_sw_reset(csi, 1);
if (ret)
return ret;
ret = clk_prepare_enable(csi->csiclk);
if (ret)
return dev_err_probe(dev, ret, "could not enable csiclk\n");
ret = spi_register_controller(controller);
if (ret) {
clk_disable_unprepare(csi->csiclk);
return dev_err_probe(dev, ret, "register controller failed\n");
}
return 0;
}
static void rzv2m_csi_remove(struct platform_device *pdev)
{
struct rzv2m_csi_priv *csi = platform_get_drvdata(pdev);
spi_unregister_controller(csi->controller);
rzv2m_csi_sw_reset(csi, 1);
clk_disable_unprepare(csi->csiclk);
}
static const struct of_device_id rzv2m_csi_match[] = {
{ .compatible = "renesas,rzv2m-csi" },
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, rzv2m_csi_match);
static struct platform_driver rzv2m_csi_drv = {
.probe = rzv2m_csi_probe,
.remove_new = rzv2m_csi_remove,
.driver = {
.name = "rzv2m_csi",
.of_match_table = rzv2m_csi_match,
},
};
module_platform_driver(rzv2m_csi_drv);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Fabrizio Castro <castro.fabrizio.jz@renesas.com>");
MODULE_DESCRIPTION("Clocked Serial Interface Driver");