mirror of
https://github.com/torvalds/linux.git
synced 2024-11-10 14:11:52 +00:00
b5ba474f3f
Currently, we only shrink the zswap pool when the user-defined limit is hit. This means that if we set the limit too high, cold data that are unlikely to be used again will reside in the pool, wasting precious memory. It is hard to predict how much zswap space will be needed ahead of time, as this depends on the workload (specifically, on factors such as memory access patterns and compressibility of the memory pages). This patch implements a memcg- and NUMA-aware shrinker for zswap, that is initiated when there is memory pressure. The shrinker does not have any parameter that must be tuned by the user, and can be opted in or out on a per-memcg basis. Furthermore, to make it more robust for many workloads and prevent overshrinking (i.e evicting warm pages that might be refaulted into memory), we build in the following heuristics: * Estimate the number of warm pages residing in zswap, and attempt to protect this region of the zswap LRU. * Scale the number of freeable objects by an estimate of the memory saving factor. The better zswap compresses the data, the fewer pages we will evict to swap (as we will otherwise incur IO for relatively small memory saving). * During reclaim, if the shrinker encounters a page that is also being brought into memory, the shrinker will cautiously terminate its shrinking action, as this is a sign that it is touching the warmer region of the zswap LRU. As a proof of concept, we ran the following synthetic benchmark: build the linux kernel in a memory-limited cgroup, and allocate some cold data in tmpfs to see if the shrinker could write them out and improved the overall performance. Depending on the amount of cold data generated, we observe from 14% to 35% reduction in kernel CPU time used in the kernel builds. [nphamcs@gmail.com: check shrinker enablement early, use less costly stat flushing] Link: https://lkml.kernel.org/r/20231206194456.3234203-1-nphamcs@gmail.com Link: https://lkml.kernel.org/r/20231130194023.4102148-7-nphamcs@gmail.com Signed-off-by: Nhat Pham <nphamcs@gmail.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Tested-by: Bagas Sanjaya <bagasdotme@gmail.com> Cc: Chris Li <chrisl@kernel.org> Cc: Dan Streetman <ddstreet@ieee.org> Cc: Domenico Cerasuolo <cerasuolodomenico@gmail.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Muchun Song <muchun.song@linux.dev> Cc: Roman Gushchin <roman.gushchin@linux.dev> Cc: Seth Jennings <sjenning@redhat.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: Shuah Khan <shuah@kernel.org> Cc: Vitaly Wool <vitaly.wool@konsulko.com> Cc: Yosry Ahmed <yosryahmed@google.com> Cc: Chengming Zhou <chengming.zhou@linux.dev> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2009 lines
53 KiB
C
2009 lines
53 KiB
C
// SPDX-License-Identifier: GPL-2.0-or-later
|
|
/*
|
|
* zswap.c - zswap driver file
|
|
*
|
|
* zswap is a cache that takes pages that are in the process
|
|
* of being swapped out and attempts to compress and store them in a
|
|
* RAM-based memory pool. This can result in a significant I/O reduction on
|
|
* the swap device and, in the case where decompressing from RAM is faster
|
|
* than reading from the swap device, can also improve workload performance.
|
|
*
|
|
* Copyright (C) 2012 Seth Jennings <sjenning@linux.vnet.ibm.com>
|
|
*/
|
|
|
|
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
|
|
|
|
#include <linux/module.h>
|
|
#include <linux/cpu.h>
|
|
#include <linux/highmem.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/types.h>
|
|
#include <linux/atomic.h>
|
|
#include <linux/rbtree.h>
|
|
#include <linux/swap.h>
|
|
#include <linux/crypto.h>
|
|
#include <linux/scatterlist.h>
|
|
#include <linux/mempolicy.h>
|
|
#include <linux/mempool.h>
|
|
#include <linux/zpool.h>
|
|
#include <crypto/acompress.h>
|
|
#include <linux/zswap.h>
|
|
#include <linux/mm_types.h>
|
|
#include <linux/page-flags.h>
|
|
#include <linux/swapops.h>
|
|
#include <linux/writeback.h>
|
|
#include <linux/pagemap.h>
|
|
#include <linux/workqueue.h>
|
|
#include <linux/list_lru.h>
|
|
|
|
#include "swap.h"
|
|
#include "internal.h"
|
|
|
|
/*********************************
|
|
* statistics
|
|
**********************************/
|
|
/* Total bytes used by the compressed storage */
|
|
u64 zswap_pool_total_size;
|
|
/* The number of compressed pages currently stored in zswap */
|
|
atomic_t zswap_stored_pages = ATOMIC_INIT(0);
|
|
/* The number of same-value filled pages currently stored in zswap */
|
|
static atomic_t zswap_same_filled_pages = ATOMIC_INIT(0);
|
|
|
|
/*
|
|
* The statistics below are not protected from concurrent access for
|
|
* performance reasons so they may not be a 100% accurate. However,
|
|
* they do provide useful information on roughly how many times a
|
|
* certain event is occurring.
|
|
*/
|
|
|
|
/* Pool limit was hit (see zswap_max_pool_percent) */
|
|
static u64 zswap_pool_limit_hit;
|
|
/* Pages written back when pool limit was reached */
|
|
static u64 zswap_written_back_pages;
|
|
/* Store failed due to a reclaim failure after pool limit was reached */
|
|
static u64 zswap_reject_reclaim_fail;
|
|
/* Store failed due to compression algorithm failure */
|
|
static u64 zswap_reject_compress_fail;
|
|
/* Compressed page was too big for the allocator to (optimally) store */
|
|
static u64 zswap_reject_compress_poor;
|
|
/* Store failed because underlying allocator could not get memory */
|
|
static u64 zswap_reject_alloc_fail;
|
|
/* Store failed because the entry metadata could not be allocated (rare) */
|
|
static u64 zswap_reject_kmemcache_fail;
|
|
/* Duplicate store was encountered (rare) */
|
|
static u64 zswap_duplicate_entry;
|
|
|
|
/* Shrinker work queue */
|
|
static struct workqueue_struct *shrink_wq;
|
|
/* Pool limit was hit, we need to calm down */
|
|
static bool zswap_pool_reached_full;
|
|
|
|
/*********************************
|
|
* tunables
|
|
**********************************/
|
|
|
|
#define ZSWAP_PARAM_UNSET ""
|
|
|
|
static int zswap_setup(void);
|
|
|
|
/* Enable/disable zswap */
|
|
static bool zswap_enabled = IS_ENABLED(CONFIG_ZSWAP_DEFAULT_ON);
|
|
static int zswap_enabled_param_set(const char *,
|
|
const struct kernel_param *);
|
|
static const struct kernel_param_ops zswap_enabled_param_ops = {
|
|
.set = zswap_enabled_param_set,
|
|
.get = param_get_bool,
|
|
};
|
|
module_param_cb(enabled, &zswap_enabled_param_ops, &zswap_enabled, 0644);
|
|
|
|
/* Crypto compressor to use */
|
|
static char *zswap_compressor = CONFIG_ZSWAP_COMPRESSOR_DEFAULT;
|
|
static int zswap_compressor_param_set(const char *,
|
|
const struct kernel_param *);
|
|
static const struct kernel_param_ops zswap_compressor_param_ops = {
|
|
.set = zswap_compressor_param_set,
|
|
.get = param_get_charp,
|
|
.free = param_free_charp,
|
|
};
|
|
module_param_cb(compressor, &zswap_compressor_param_ops,
|
|
&zswap_compressor, 0644);
|
|
|
|
/* Compressed storage zpool to use */
|
|
static char *zswap_zpool_type = CONFIG_ZSWAP_ZPOOL_DEFAULT;
|
|
static int zswap_zpool_param_set(const char *, const struct kernel_param *);
|
|
static const struct kernel_param_ops zswap_zpool_param_ops = {
|
|
.set = zswap_zpool_param_set,
|
|
.get = param_get_charp,
|
|
.free = param_free_charp,
|
|
};
|
|
module_param_cb(zpool, &zswap_zpool_param_ops, &zswap_zpool_type, 0644);
|
|
|
|
/* The maximum percentage of memory that the compressed pool can occupy */
|
|
static unsigned int zswap_max_pool_percent = 20;
|
|
module_param_named(max_pool_percent, zswap_max_pool_percent, uint, 0644);
|
|
|
|
/* The threshold for accepting new pages after the max_pool_percent was hit */
|
|
static unsigned int zswap_accept_thr_percent = 90; /* of max pool size */
|
|
module_param_named(accept_threshold_percent, zswap_accept_thr_percent,
|
|
uint, 0644);
|
|
|
|
/*
|
|
* Enable/disable handling same-value filled pages (enabled by default).
|
|
* If disabled every page is considered non-same-value filled.
|
|
*/
|
|
static bool zswap_same_filled_pages_enabled = true;
|
|
module_param_named(same_filled_pages_enabled, zswap_same_filled_pages_enabled,
|
|
bool, 0644);
|
|
|
|
/* Enable/disable handling non-same-value filled pages (enabled by default) */
|
|
static bool zswap_non_same_filled_pages_enabled = true;
|
|
module_param_named(non_same_filled_pages_enabled, zswap_non_same_filled_pages_enabled,
|
|
bool, 0644);
|
|
|
|
static bool zswap_exclusive_loads_enabled = IS_ENABLED(
|
|
CONFIG_ZSWAP_EXCLUSIVE_LOADS_DEFAULT_ON);
|
|
module_param_named(exclusive_loads, zswap_exclusive_loads_enabled, bool, 0644);
|
|
|
|
/* Number of zpools in zswap_pool (empirically determined for scalability) */
|
|
#define ZSWAP_NR_ZPOOLS 32
|
|
|
|
/* Enable/disable memory pressure-based shrinker. */
|
|
static bool zswap_shrinker_enabled = IS_ENABLED(
|
|
CONFIG_ZSWAP_SHRINKER_DEFAULT_ON);
|
|
module_param_named(shrinker_enabled, zswap_shrinker_enabled, bool, 0644);
|
|
|
|
/*********************************
|
|
* data structures
|
|
**********************************/
|
|
|
|
struct crypto_acomp_ctx {
|
|
struct crypto_acomp *acomp;
|
|
struct acomp_req *req;
|
|
struct crypto_wait wait;
|
|
u8 *dstmem;
|
|
struct mutex *mutex;
|
|
};
|
|
|
|
/*
|
|
* The lock ordering is zswap_tree.lock -> zswap_pool.lru_lock.
|
|
* The only case where lru_lock is not acquired while holding tree.lock is
|
|
* when a zswap_entry is taken off the lru for writeback, in that case it
|
|
* needs to be verified that it's still valid in the tree.
|
|
*/
|
|
struct zswap_pool {
|
|
struct zpool *zpools[ZSWAP_NR_ZPOOLS];
|
|
struct crypto_acomp_ctx __percpu *acomp_ctx;
|
|
struct kref kref;
|
|
struct list_head list;
|
|
struct work_struct release_work;
|
|
struct work_struct shrink_work;
|
|
struct hlist_node node;
|
|
char tfm_name[CRYPTO_MAX_ALG_NAME];
|
|
struct list_lru list_lru;
|
|
struct mem_cgroup *next_shrink;
|
|
struct shrinker *shrinker;
|
|
atomic_t nr_stored;
|
|
};
|
|
|
|
/*
|
|
* struct zswap_entry
|
|
*
|
|
* This structure contains the metadata for tracking a single compressed
|
|
* page within zswap.
|
|
*
|
|
* rbnode - links the entry into red-black tree for the appropriate swap type
|
|
* swpentry - associated swap entry, the offset indexes into the red-black tree
|
|
* refcount - the number of outstanding reference to the entry. This is needed
|
|
* to protect against premature freeing of the entry by code
|
|
* concurrent calls to load, invalidate, and writeback. The lock
|
|
* for the zswap_tree structure that contains the entry must
|
|
* be held while changing the refcount. Since the lock must
|
|
* be held, there is no reason to also make refcount atomic.
|
|
* length - the length in bytes of the compressed page data. Needed during
|
|
* decompression. For a same value filled page length is 0, and both
|
|
* pool and lru are invalid and must be ignored.
|
|
* pool - the zswap_pool the entry's data is in
|
|
* handle - zpool allocation handle that stores the compressed page data
|
|
* value - value of the same-value filled pages which have same content
|
|
* objcg - the obj_cgroup that the compressed memory is charged to
|
|
* lru - handle to the pool's lru used to evict pages.
|
|
*/
|
|
struct zswap_entry {
|
|
struct rb_node rbnode;
|
|
swp_entry_t swpentry;
|
|
int refcount;
|
|
unsigned int length;
|
|
struct zswap_pool *pool;
|
|
union {
|
|
unsigned long handle;
|
|
unsigned long value;
|
|
};
|
|
struct obj_cgroup *objcg;
|
|
struct list_head lru;
|
|
};
|
|
|
|
/*
|
|
* The tree lock in the zswap_tree struct protects a few things:
|
|
* - the rbtree
|
|
* - the refcount field of each entry in the tree
|
|
*/
|
|
struct zswap_tree {
|
|
struct rb_root rbroot;
|
|
spinlock_t lock;
|
|
};
|
|
|
|
static struct zswap_tree *zswap_trees[MAX_SWAPFILES];
|
|
|
|
/* RCU-protected iteration */
|
|
static LIST_HEAD(zswap_pools);
|
|
/* protects zswap_pools list modification */
|
|
static DEFINE_SPINLOCK(zswap_pools_lock);
|
|
/* pool counter to provide unique names to zpool */
|
|
static atomic_t zswap_pools_count = ATOMIC_INIT(0);
|
|
|
|
enum zswap_init_type {
|
|
ZSWAP_UNINIT,
|
|
ZSWAP_INIT_SUCCEED,
|
|
ZSWAP_INIT_FAILED
|
|
};
|
|
|
|
static enum zswap_init_type zswap_init_state;
|
|
|
|
/* used to ensure the integrity of initialization */
|
|
static DEFINE_MUTEX(zswap_init_lock);
|
|
|
|
/* init completed, but couldn't create the initial pool */
|
|
static bool zswap_has_pool;
|
|
|
|
/*********************************
|
|
* helpers and fwd declarations
|
|
**********************************/
|
|
|
|
#define zswap_pool_debug(msg, p) \
|
|
pr_debug("%s pool %s/%s\n", msg, (p)->tfm_name, \
|
|
zpool_get_type((p)->zpools[0]))
|
|
|
|
static int zswap_writeback_entry(struct zswap_entry *entry,
|
|
struct zswap_tree *tree);
|
|
static int zswap_pool_get(struct zswap_pool *pool);
|
|
static void zswap_pool_put(struct zswap_pool *pool);
|
|
|
|
static bool zswap_is_full(void)
|
|
{
|
|
return totalram_pages() * zswap_max_pool_percent / 100 <
|
|
DIV_ROUND_UP(zswap_pool_total_size, PAGE_SIZE);
|
|
}
|
|
|
|
static bool zswap_can_accept(void)
|
|
{
|
|
return totalram_pages() * zswap_accept_thr_percent / 100 *
|
|
zswap_max_pool_percent / 100 >
|
|
DIV_ROUND_UP(zswap_pool_total_size, PAGE_SIZE);
|
|
}
|
|
|
|
static u64 get_zswap_pool_size(struct zswap_pool *pool)
|
|
{
|
|
u64 pool_size = 0;
|
|
int i;
|
|
|
|
for (i = 0; i < ZSWAP_NR_ZPOOLS; i++)
|
|
pool_size += zpool_get_total_size(pool->zpools[i]);
|
|
|
|
return pool_size;
|
|
}
|
|
|
|
static void zswap_update_total_size(void)
|
|
{
|
|
struct zswap_pool *pool;
|
|
u64 total = 0;
|
|
|
|
rcu_read_lock();
|
|
|
|
list_for_each_entry_rcu(pool, &zswap_pools, list)
|
|
total += get_zswap_pool_size(pool);
|
|
|
|
rcu_read_unlock();
|
|
|
|
zswap_pool_total_size = total;
|
|
}
|
|
|
|
/* should be called under RCU */
|
|
#ifdef CONFIG_MEMCG
|
|
static inline struct mem_cgroup *mem_cgroup_from_entry(struct zswap_entry *entry)
|
|
{
|
|
return entry->objcg ? obj_cgroup_memcg(entry->objcg) : NULL;
|
|
}
|
|
#else
|
|
static inline struct mem_cgroup *mem_cgroup_from_entry(struct zswap_entry *entry)
|
|
{
|
|
return NULL;
|
|
}
|
|
#endif
|
|
|
|
static inline int entry_to_nid(struct zswap_entry *entry)
|
|
{
|
|
return page_to_nid(virt_to_page(entry));
|
|
}
|
|
|
|
void zswap_memcg_offline_cleanup(struct mem_cgroup *memcg)
|
|
{
|
|
struct zswap_pool *pool;
|
|
|
|
/* lock out zswap pools list modification */
|
|
spin_lock(&zswap_pools_lock);
|
|
list_for_each_entry(pool, &zswap_pools, list) {
|
|
if (pool->next_shrink == memcg)
|
|
pool->next_shrink = mem_cgroup_iter(NULL, pool->next_shrink, NULL);
|
|
}
|
|
spin_unlock(&zswap_pools_lock);
|
|
}
|
|
|
|
/*********************************
|
|
* zswap entry functions
|
|
**********************************/
|
|
static struct kmem_cache *zswap_entry_cache;
|
|
|
|
static struct zswap_entry *zswap_entry_cache_alloc(gfp_t gfp, int nid)
|
|
{
|
|
struct zswap_entry *entry;
|
|
entry = kmem_cache_alloc_node(zswap_entry_cache, gfp, nid);
|
|
if (!entry)
|
|
return NULL;
|
|
entry->refcount = 1;
|
|
RB_CLEAR_NODE(&entry->rbnode);
|
|
return entry;
|
|
}
|
|
|
|
static void zswap_entry_cache_free(struct zswap_entry *entry)
|
|
{
|
|
kmem_cache_free(zswap_entry_cache, entry);
|
|
}
|
|
|
|
/*********************************
|
|
* zswap lruvec functions
|
|
**********************************/
|
|
void zswap_lruvec_state_init(struct lruvec *lruvec)
|
|
{
|
|
atomic_long_set(&lruvec->zswap_lruvec_state.nr_zswap_protected, 0);
|
|
}
|
|
|
|
void zswap_page_swapin(struct page *page)
|
|
{
|
|
struct lruvec *lruvec;
|
|
|
|
if (page) {
|
|
lruvec = folio_lruvec(page_folio(page));
|
|
atomic_long_inc(&lruvec->zswap_lruvec_state.nr_zswap_protected);
|
|
}
|
|
}
|
|
|
|
/*********************************
|
|
* lru functions
|
|
**********************************/
|
|
static void zswap_lru_add(struct list_lru *list_lru, struct zswap_entry *entry)
|
|
{
|
|
atomic_long_t *nr_zswap_protected;
|
|
unsigned long lru_size, old, new;
|
|
int nid = entry_to_nid(entry);
|
|
struct mem_cgroup *memcg;
|
|
struct lruvec *lruvec;
|
|
|
|
/*
|
|
* Note that it is safe to use rcu_read_lock() here, even in the face of
|
|
* concurrent memcg offlining. Thanks to the memcg->kmemcg_id indirection
|
|
* used in list_lru lookup, only two scenarios are possible:
|
|
*
|
|
* 1. list_lru_add() is called before memcg->kmemcg_id is updated. The
|
|
* new entry will be reparented to memcg's parent's list_lru.
|
|
* 2. list_lru_add() is called after memcg->kmemcg_id is updated. The
|
|
* new entry will be added directly to memcg's parent's list_lru.
|
|
*
|
|
* Similar reasoning holds for list_lru_del() and list_lru_putback().
|
|
*/
|
|
rcu_read_lock();
|
|
memcg = mem_cgroup_from_entry(entry);
|
|
/* will always succeed */
|
|
list_lru_add(list_lru, &entry->lru, nid, memcg);
|
|
|
|
/* Update the protection area */
|
|
lru_size = list_lru_count_one(list_lru, nid, memcg);
|
|
lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
|
|
nr_zswap_protected = &lruvec->zswap_lruvec_state.nr_zswap_protected;
|
|
old = atomic_long_inc_return(nr_zswap_protected);
|
|
/*
|
|
* Decay to avoid overflow and adapt to changing workloads.
|
|
* This is based on LRU reclaim cost decaying heuristics.
|
|
*/
|
|
do {
|
|
new = old > lru_size / 4 ? old / 2 : old;
|
|
} while (!atomic_long_try_cmpxchg(nr_zswap_protected, &old, new));
|
|
rcu_read_unlock();
|
|
}
|
|
|
|
static void zswap_lru_del(struct list_lru *list_lru, struct zswap_entry *entry)
|
|
{
|
|
int nid = entry_to_nid(entry);
|
|
struct mem_cgroup *memcg;
|
|
|
|
rcu_read_lock();
|
|
memcg = mem_cgroup_from_entry(entry);
|
|
/* will always succeed */
|
|
list_lru_del(list_lru, &entry->lru, nid, memcg);
|
|
rcu_read_unlock();
|
|
}
|
|
|
|
static void zswap_lru_putback(struct list_lru *list_lru,
|
|
struct zswap_entry *entry)
|
|
{
|
|
int nid = entry_to_nid(entry);
|
|
spinlock_t *lock = &list_lru->node[nid].lock;
|
|
struct mem_cgroup *memcg;
|
|
struct lruvec *lruvec;
|
|
|
|
rcu_read_lock();
|
|
memcg = mem_cgroup_from_entry(entry);
|
|
spin_lock(lock);
|
|
/* we cannot use list_lru_add here, because it increments node's lru count */
|
|
list_lru_putback(list_lru, &entry->lru, nid, memcg);
|
|
spin_unlock(lock);
|
|
|
|
lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(entry_to_nid(entry)));
|
|
/* increment the protection area to account for the LRU rotation. */
|
|
atomic_long_inc(&lruvec->zswap_lruvec_state.nr_zswap_protected);
|
|
rcu_read_unlock();
|
|
}
|
|
|
|
/*********************************
|
|
* rbtree functions
|
|
**********************************/
|
|
static struct zswap_entry *zswap_rb_search(struct rb_root *root, pgoff_t offset)
|
|
{
|
|
struct rb_node *node = root->rb_node;
|
|
struct zswap_entry *entry;
|
|
pgoff_t entry_offset;
|
|
|
|
while (node) {
|
|
entry = rb_entry(node, struct zswap_entry, rbnode);
|
|
entry_offset = swp_offset(entry->swpentry);
|
|
if (entry_offset > offset)
|
|
node = node->rb_left;
|
|
else if (entry_offset < offset)
|
|
node = node->rb_right;
|
|
else
|
|
return entry;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* In the case that a entry with the same offset is found, a pointer to
|
|
* the existing entry is stored in dupentry and the function returns -EEXIST
|
|
*/
|
|
static int zswap_rb_insert(struct rb_root *root, struct zswap_entry *entry,
|
|
struct zswap_entry **dupentry)
|
|
{
|
|
struct rb_node **link = &root->rb_node, *parent = NULL;
|
|
struct zswap_entry *myentry;
|
|
pgoff_t myentry_offset, entry_offset = swp_offset(entry->swpentry);
|
|
|
|
while (*link) {
|
|
parent = *link;
|
|
myentry = rb_entry(parent, struct zswap_entry, rbnode);
|
|
myentry_offset = swp_offset(myentry->swpentry);
|
|
if (myentry_offset > entry_offset)
|
|
link = &(*link)->rb_left;
|
|
else if (myentry_offset < entry_offset)
|
|
link = &(*link)->rb_right;
|
|
else {
|
|
*dupentry = myentry;
|
|
return -EEXIST;
|
|
}
|
|
}
|
|
rb_link_node(&entry->rbnode, parent, link);
|
|
rb_insert_color(&entry->rbnode, root);
|
|
return 0;
|
|
}
|
|
|
|
static bool zswap_rb_erase(struct rb_root *root, struct zswap_entry *entry)
|
|
{
|
|
if (!RB_EMPTY_NODE(&entry->rbnode)) {
|
|
rb_erase(&entry->rbnode, root);
|
|
RB_CLEAR_NODE(&entry->rbnode);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static struct zpool *zswap_find_zpool(struct zswap_entry *entry)
|
|
{
|
|
int i = 0;
|
|
|
|
if (ZSWAP_NR_ZPOOLS > 1)
|
|
i = hash_ptr(entry, ilog2(ZSWAP_NR_ZPOOLS));
|
|
|
|
return entry->pool->zpools[i];
|
|
}
|
|
|
|
/*
|
|
* Carries out the common pattern of freeing and entry's zpool allocation,
|
|
* freeing the entry itself, and decrementing the number of stored pages.
|
|
*/
|
|
static void zswap_free_entry(struct zswap_entry *entry)
|
|
{
|
|
if (entry->objcg) {
|
|
obj_cgroup_uncharge_zswap(entry->objcg, entry->length);
|
|
obj_cgroup_put(entry->objcg);
|
|
}
|
|
if (!entry->length)
|
|
atomic_dec(&zswap_same_filled_pages);
|
|
else {
|
|
zswap_lru_del(&entry->pool->list_lru, entry);
|
|
zpool_free(zswap_find_zpool(entry), entry->handle);
|
|
atomic_dec(&entry->pool->nr_stored);
|
|
zswap_pool_put(entry->pool);
|
|
}
|
|
zswap_entry_cache_free(entry);
|
|
atomic_dec(&zswap_stored_pages);
|
|
zswap_update_total_size();
|
|
}
|
|
|
|
/* caller must hold the tree lock */
|
|
static void zswap_entry_get(struct zswap_entry *entry)
|
|
{
|
|
entry->refcount++;
|
|
}
|
|
|
|
/* caller must hold the tree lock
|
|
* remove from the tree and free it, if nobody reference the entry
|
|
*/
|
|
static void zswap_entry_put(struct zswap_tree *tree,
|
|
struct zswap_entry *entry)
|
|
{
|
|
int refcount = --entry->refcount;
|
|
|
|
WARN_ON_ONCE(refcount < 0);
|
|
if (refcount == 0) {
|
|
WARN_ON_ONCE(!RB_EMPTY_NODE(&entry->rbnode));
|
|
zswap_free_entry(entry);
|
|
}
|
|
}
|
|
|
|
/* caller must hold the tree lock */
|
|
static struct zswap_entry *zswap_entry_find_get(struct rb_root *root,
|
|
pgoff_t offset)
|
|
{
|
|
struct zswap_entry *entry;
|
|
|
|
entry = zswap_rb_search(root, offset);
|
|
if (entry)
|
|
zswap_entry_get(entry);
|
|
|
|
return entry;
|
|
}
|
|
|
|
/*********************************
|
|
* shrinker functions
|
|
**********************************/
|
|
static enum lru_status shrink_memcg_cb(struct list_head *item, struct list_lru_one *l,
|
|
spinlock_t *lock, void *arg);
|
|
|
|
static unsigned long zswap_shrinker_scan(struct shrinker *shrinker,
|
|
struct shrink_control *sc)
|
|
{
|
|
struct lruvec *lruvec = mem_cgroup_lruvec(sc->memcg, NODE_DATA(sc->nid));
|
|
unsigned long shrink_ret, nr_protected, lru_size;
|
|
struct zswap_pool *pool = shrinker->private_data;
|
|
bool encountered_page_in_swapcache = false;
|
|
|
|
if (!zswap_shrinker_enabled) {
|
|
sc->nr_scanned = 0;
|
|
return SHRINK_STOP;
|
|
}
|
|
|
|
nr_protected =
|
|
atomic_long_read(&lruvec->zswap_lruvec_state.nr_zswap_protected);
|
|
lru_size = list_lru_shrink_count(&pool->list_lru, sc);
|
|
|
|
/*
|
|
* Abort if we are shrinking into the protected region.
|
|
*
|
|
* This short-circuiting is necessary because if we have too many multiple
|
|
* concurrent reclaimers getting the freeable zswap object counts at the
|
|
* same time (before any of them made reasonable progress), the total
|
|
* number of reclaimed objects might be more than the number of unprotected
|
|
* objects (i.e the reclaimers will reclaim into the protected area of the
|
|
* zswap LRU).
|
|
*/
|
|
if (nr_protected >= lru_size - sc->nr_to_scan) {
|
|
sc->nr_scanned = 0;
|
|
return SHRINK_STOP;
|
|
}
|
|
|
|
shrink_ret = list_lru_shrink_walk(&pool->list_lru, sc, &shrink_memcg_cb,
|
|
&encountered_page_in_swapcache);
|
|
|
|
if (encountered_page_in_swapcache)
|
|
return SHRINK_STOP;
|
|
|
|
return shrink_ret ? shrink_ret : SHRINK_STOP;
|
|
}
|
|
|
|
static unsigned long zswap_shrinker_count(struct shrinker *shrinker,
|
|
struct shrink_control *sc)
|
|
{
|
|
struct zswap_pool *pool = shrinker->private_data;
|
|
struct mem_cgroup *memcg = sc->memcg;
|
|
struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(sc->nid));
|
|
unsigned long nr_backing, nr_stored, nr_freeable, nr_protected;
|
|
|
|
if (!zswap_shrinker_enabled)
|
|
return 0;
|
|
|
|
#ifdef CONFIG_MEMCG_KMEM
|
|
mem_cgroup_flush_stats();
|
|
nr_backing = memcg_page_state(memcg, MEMCG_ZSWAP_B) >> PAGE_SHIFT;
|
|
nr_stored = memcg_page_state(memcg, MEMCG_ZSWAPPED);
|
|
#else
|
|
/* use pool stats instead of memcg stats */
|
|
nr_backing = get_zswap_pool_size(pool) >> PAGE_SHIFT;
|
|
nr_stored = atomic_read(&pool->nr_stored);
|
|
#endif
|
|
|
|
if (!nr_stored)
|
|
return 0;
|
|
|
|
nr_protected =
|
|
atomic_long_read(&lruvec->zswap_lruvec_state.nr_zswap_protected);
|
|
nr_freeable = list_lru_shrink_count(&pool->list_lru, sc);
|
|
/*
|
|
* Subtract the lru size by an estimate of the number of pages
|
|
* that should be protected.
|
|
*/
|
|
nr_freeable = nr_freeable > nr_protected ? nr_freeable - nr_protected : 0;
|
|
|
|
/*
|
|
* Scale the number of freeable pages by the memory saving factor.
|
|
* This ensures that the better zswap compresses memory, the fewer
|
|
* pages we will evict to swap (as it will otherwise incur IO for
|
|
* relatively small memory saving).
|
|
*/
|
|
return mult_frac(nr_freeable, nr_backing, nr_stored);
|
|
}
|
|
|
|
static void zswap_alloc_shrinker(struct zswap_pool *pool)
|
|
{
|
|
pool->shrinker =
|
|
shrinker_alloc(SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE, "mm-zswap");
|
|
if (!pool->shrinker)
|
|
return;
|
|
|
|
pool->shrinker->private_data = pool;
|
|
pool->shrinker->scan_objects = zswap_shrinker_scan;
|
|
pool->shrinker->count_objects = zswap_shrinker_count;
|
|
pool->shrinker->batch = 0;
|
|
pool->shrinker->seeks = DEFAULT_SEEKS;
|
|
}
|
|
|
|
/*********************************
|
|
* per-cpu code
|
|
**********************************/
|
|
static DEFINE_PER_CPU(u8 *, zswap_dstmem);
|
|
/*
|
|
* If users dynamically change the zpool type and compressor at runtime, i.e.
|
|
* zswap is running, zswap can have more than one zpool on one cpu, but they
|
|
* are sharing dtsmem. So we need this mutex to be per-cpu.
|
|
*/
|
|
static DEFINE_PER_CPU(struct mutex *, zswap_mutex);
|
|
|
|
static int zswap_dstmem_prepare(unsigned int cpu)
|
|
{
|
|
struct mutex *mutex;
|
|
u8 *dst;
|
|
|
|
dst = kmalloc_node(PAGE_SIZE * 2, GFP_KERNEL, cpu_to_node(cpu));
|
|
if (!dst)
|
|
return -ENOMEM;
|
|
|
|
mutex = kmalloc_node(sizeof(*mutex), GFP_KERNEL, cpu_to_node(cpu));
|
|
if (!mutex) {
|
|
kfree(dst);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
mutex_init(mutex);
|
|
per_cpu(zswap_dstmem, cpu) = dst;
|
|
per_cpu(zswap_mutex, cpu) = mutex;
|
|
return 0;
|
|
}
|
|
|
|
static int zswap_dstmem_dead(unsigned int cpu)
|
|
{
|
|
struct mutex *mutex;
|
|
u8 *dst;
|
|
|
|
mutex = per_cpu(zswap_mutex, cpu);
|
|
kfree(mutex);
|
|
per_cpu(zswap_mutex, cpu) = NULL;
|
|
|
|
dst = per_cpu(zswap_dstmem, cpu);
|
|
kfree(dst);
|
|
per_cpu(zswap_dstmem, cpu) = NULL;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int zswap_cpu_comp_prepare(unsigned int cpu, struct hlist_node *node)
|
|
{
|
|
struct zswap_pool *pool = hlist_entry(node, struct zswap_pool, node);
|
|
struct crypto_acomp_ctx *acomp_ctx = per_cpu_ptr(pool->acomp_ctx, cpu);
|
|
struct crypto_acomp *acomp;
|
|
struct acomp_req *req;
|
|
|
|
acomp = crypto_alloc_acomp_node(pool->tfm_name, 0, 0, cpu_to_node(cpu));
|
|
if (IS_ERR(acomp)) {
|
|
pr_err("could not alloc crypto acomp %s : %ld\n",
|
|
pool->tfm_name, PTR_ERR(acomp));
|
|
return PTR_ERR(acomp);
|
|
}
|
|
acomp_ctx->acomp = acomp;
|
|
|
|
req = acomp_request_alloc(acomp_ctx->acomp);
|
|
if (!req) {
|
|
pr_err("could not alloc crypto acomp_request %s\n",
|
|
pool->tfm_name);
|
|
crypto_free_acomp(acomp_ctx->acomp);
|
|
return -ENOMEM;
|
|
}
|
|
acomp_ctx->req = req;
|
|
|
|
crypto_init_wait(&acomp_ctx->wait);
|
|
/*
|
|
* if the backend of acomp is async zip, crypto_req_done() will wakeup
|
|
* crypto_wait_req(); if the backend of acomp is scomp, the callback
|
|
* won't be called, crypto_wait_req() will return without blocking.
|
|
*/
|
|
acomp_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
|
|
crypto_req_done, &acomp_ctx->wait);
|
|
|
|
acomp_ctx->mutex = per_cpu(zswap_mutex, cpu);
|
|
acomp_ctx->dstmem = per_cpu(zswap_dstmem, cpu);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int zswap_cpu_comp_dead(unsigned int cpu, struct hlist_node *node)
|
|
{
|
|
struct zswap_pool *pool = hlist_entry(node, struct zswap_pool, node);
|
|
struct crypto_acomp_ctx *acomp_ctx = per_cpu_ptr(pool->acomp_ctx, cpu);
|
|
|
|
if (!IS_ERR_OR_NULL(acomp_ctx)) {
|
|
if (!IS_ERR_OR_NULL(acomp_ctx->req))
|
|
acomp_request_free(acomp_ctx->req);
|
|
if (!IS_ERR_OR_NULL(acomp_ctx->acomp))
|
|
crypto_free_acomp(acomp_ctx->acomp);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*********************************
|
|
* pool functions
|
|
**********************************/
|
|
|
|
static struct zswap_pool *__zswap_pool_current(void)
|
|
{
|
|
struct zswap_pool *pool;
|
|
|
|
pool = list_first_or_null_rcu(&zswap_pools, typeof(*pool), list);
|
|
WARN_ONCE(!pool && zswap_has_pool,
|
|
"%s: no page storage pool!\n", __func__);
|
|
|
|
return pool;
|
|
}
|
|
|
|
static struct zswap_pool *zswap_pool_current(void)
|
|
{
|
|
assert_spin_locked(&zswap_pools_lock);
|
|
|
|
return __zswap_pool_current();
|
|
}
|
|
|
|
static struct zswap_pool *zswap_pool_current_get(void)
|
|
{
|
|
struct zswap_pool *pool;
|
|
|
|
rcu_read_lock();
|
|
|
|
pool = __zswap_pool_current();
|
|
if (!zswap_pool_get(pool))
|
|
pool = NULL;
|
|
|
|
rcu_read_unlock();
|
|
|
|
return pool;
|
|
}
|
|
|
|
static struct zswap_pool *zswap_pool_last_get(void)
|
|
{
|
|
struct zswap_pool *pool, *last = NULL;
|
|
|
|
rcu_read_lock();
|
|
|
|
list_for_each_entry_rcu(pool, &zswap_pools, list)
|
|
last = pool;
|
|
WARN_ONCE(!last && zswap_has_pool,
|
|
"%s: no page storage pool!\n", __func__);
|
|
if (!zswap_pool_get(last))
|
|
last = NULL;
|
|
|
|
rcu_read_unlock();
|
|
|
|
return last;
|
|
}
|
|
|
|
/* type and compressor must be null-terminated */
|
|
static struct zswap_pool *zswap_pool_find_get(char *type, char *compressor)
|
|
{
|
|
struct zswap_pool *pool;
|
|
|
|
assert_spin_locked(&zswap_pools_lock);
|
|
|
|
list_for_each_entry_rcu(pool, &zswap_pools, list) {
|
|
if (strcmp(pool->tfm_name, compressor))
|
|
continue;
|
|
/* all zpools share the same type */
|
|
if (strcmp(zpool_get_type(pool->zpools[0]), type))
|
|
continue;
|
|
/* if we can't get it, it's about to be destroyed */
|
|
if (!zswap_pool_get(pool))
|
|
continue;
|
|
return pool;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* If the entry is still valid in the tree, drop the initial ref and remove it
|
|
* from the tree. This function must be called with an additional ref held,
|
|
* otherwise it may race with another invalidation freeing the entry.
|
|
*/
|
|
static void zswap_invalidate_entry(struct zswap_tree *tree,
|
|
struct zswap_entry *entry)
|
|
{
|
|
if (zswap_rb_erase(&tree->rbroot, entry))
|
|
zswap_entry_put(tree, entry);
|
|
}
|
|
|
|
static enum lru_status shrink_memcg_cb(struct list_head *item, struct list_lru_one *l,
|
|
spinlock_t *lock, void *arg)
|
|
{
|
|
struct zswap_entry *entry = container_of(item, struct zswap_entry, lru);
|
|
bool *encountered_page_in_swapcache = (bool *)arg;
|
|
struct zswap_tree *tree;
|
|
pgoff_t swpoffset;
|
|
enum lru_status ret = LRU_REMOVED_RETRY;
|
|
int writeback_result;
|
|
|
|
/*
|
|
* Once the lru lock is dropped, the entry might get freed. The
|
|
* swpoffset is copied to the stack, and entry isn't deref'd again
|
|
* until the entry is verified to still be alive in the tree.
|
|
*/
|
|
swpoffset = swp_offset(entry->swpentry);
|
|
tree = zswap_trees[swp_type(entry->swpentry)];
|
|
list_lru_isolate(l, item);
|
|
/*
|
|
* It's safe to drop the lock here because we return either
|
|
* LRU_REMOVED_RETRY or LRU_RETRY.
|
|
*/
|
|
spin_unlock(lock);
|
|
|
|
/* Check for invalidate() race */
|
|
spin_lock(&tree->lock);
|
|
if (entry != zswap_rb_search(&tree->rbroot, swpoffset))
|
|
goto unlock;
|
|
|
|
/* Hold a reference to prevent a free during writeback */
|
|
zswap_entry_get(entry);
|
|
spin_unlock(&tree->lock);
|
|
|
|
writeback_result = zswap_writeback_entry(entry, tree);
|
|
|
|
spin_lock(&tree->lock);
|
|
if (writeback_result) {
|
|
zswap_reject_reclaim_fail++;
|
|
zswap_lru_putback(&entry->pool->list_lru, entry);
|
|
ret = LRU_RETRY;
|
|
|
|
/*
|
|
* Encountering a page already in swap cache is a sign that we are shrinking
|
|
* into the warmer region. We should terminate shrinking (if we're in the dynamic
|
|
* shrinker context).
|
|
*/
|
|
if (writeback_result == -EEXIST && encountered_page_in_swapcache) {
|
|
ret = LRU_SKIP;
|
|
*encountered_page_in_swapcache = true;
|
|
}
|
|
|
|
goto put_unlock;
|
|
}
|
|
zswap_written_back_pages++;
|
|
|
|
if (entry->objcg)
|
|
count_objcg_event(entry->objcg, ZSWPWB);
|
|
|
|
count_vm_event(ZSWPWB);
|
|
/*
|
|
* Writeback started successfully, the page now belongs to the
|
|
* swapcache. Drop the entry from zswap - unless invalidate already
|
|
* took it out while we had the tree->lock released for IO.
|
|
*/
|
|
zswap_invalidate_entry(tree, entry);
|
|
|
|
put_unlock:
|
|
/* Drop local reference */
|
|
zswap_entry_put(tree, entry);
|
|
unlock:
|
|
spin_unlock(&tree->lock);
|
|
spin_lock(lock);
|
|
return ret;
|
|
}
|
|
|
|
static int shrink_memcg(struct mem_cgroup *memcg)
|
|
{
|
|
struct zswap_pool *pool;
|
|
int nid, shrunk = 0;
|
|
|
|
/*
|
|
* Skip zombies because their LRUs are reparented and we would be
|
|
* reclaiming from the parent instead of the dead memcg.
|
|
*/
|
|
if (memcg && !mem_cgroup_online(memcg))
|
|
return -ENOENT;
|
|
|
|
pool = zswap_pool_current_get();
|
|
if (!pool)
|
|
return -EINVAL;
|
|
|
|
for_each_node_state(nid, N_NORMAL_MEMORY) {
|
|
unsigned long nr_to_walk = 1;
|
|
|
|
shrunk += list_lru_walk_one(&pool->list_lru, nid, memcg,
|
|
&shrink_memcg_cb, NULL, &nr_to_walk);
|
|
}
|
|
zswap_pool_put(pool);
|
|
return shrunk ? 0 : -EAGAIN;
|
|
}
|
|
|
|
static void shrink_worker(struct work_struct *w)
|
|
{
|
|
struct zswap_pool *pool = container_of(w, typeof(*pool),
|
|
shrink_work);
|
|
struct mem_cgroup *memcg;
|
|
int ret, failures = 0;
|
|
|
|
/* global reclaim will select cgroup in a round-robin fashion. */
|
|
do {
|
|
spin_lock(&zswap_pools_lock);
|
|
pool->next_shrink = mem_cgroup_iter(NULL, pool->next_shrink, NULL);
|
|
memcg = pool->next_shrink;
|
|
|
|
/*
|
|
* We need to retry if we have gone through a full round trip, or if we
|
|
* got an offline memcg (or else we risk undoing the effect of the
|
|
* zswap memcg offlining cleanup callback). This is not catastrophic
|
|
* per se, but it will keep the now offlined memcg hostage for a while.
|
|
*
|
|
* Note that if we got an online memcg, we will keep the extra
|
|
* reference in case the original reference obtained by mem_cgroup_iter
|
|
* is dropped by the zswap memcg offlining callback, ensuring that the
|
|
* memcg is not killed when we are reclaiming.
|
|
*/
|
|
if (!memcg) {
|
|
spin_unlock(&zswap_pools_lock);
|
|
if (++failures == MAX_RECLAIM_RETRIES)
|
|
break;
|
|
|
|
goto resched;
|
|
}
|
|
|
|
if (!mem_cgroup_tryget_online(memcg)) {
|
|
/* drop the reference from mem_cgroup_iter() */
|
|
mem_cgroup_iter_break(NULL, memcg);
|
|
pool->next_shrink = NULL;
|
|
spin_unlock(&zswap_pools_lock);
|
|
|
|
if (++failures == MAX_RECLAIM_RETRIES)
|
|
break;
|
|
|
|
goto resched;
|
|
}
|
|
spin_unlock(&zswap_pools_lock);
|
|
|
|
ret = shrink_memcg(memcg);
|
|
/* drop the extra reference */
|
|
mem_cgroup_put(memcg);
|
|
|
|
if (ret == -EINVAL)
|
|
break;
|
|
if (ret && ++failures == MAX_RECLAIM_RETRIES)
|
|
break;
|
|
|
|
resched:
|
|
cond_resched();
|
|
} while (!zswap_can_accept());
|
|
zswap_pool_put(pool);
|
|
}
|
|
|
|
static struct zswap_pool *zswap_pool_create(char *type, char *compressor)
|
|
{
|
|
int i;
|
|
struct zswap_pool *pool;
|
|
char name[38]; /* 'zswap' + 32 char (max) num + \0 */
|
|
gfp_t gfp = __GFP_NORETRY | __GFP_NOWARN | __GFP_KSWAPD_RECLAIM;
|
|
int ret;
|
|
|
|
if (!zswap_has_pool) {
|
|
/* if either are unset, pool initialization failed, and we
|
|
* need both params to be set correctly before trying to
|
|
* create a pool.
|
|
*/
|
|
if (!strcmp(type, ZSWAP_PARAM_UNSET))
|
|
return NULL;
|
|
if (!strcmp(compressor, ZSWAP_PARAM_UNSET))
|
|
return NULL;
|
|
}
|
|
|
|
pool = kzalloc(sizeof(*pool), GFP_KERNEL);
|
|
if (!pool)
|
|
return NULL;
|
|
|
|
for (i = 0; i < ZSWAP_NR_ZPOOLS; i++) {
|
|
/* unique name for each pool specifically required by zsmalloc */
|
|
snprintf(name, 38, "zswap%x",
|
|
atomic_inc_return(&zswap_pools_count));
|
|
|
|
pool->zpools[i] = zpool_create_pool(type, name, gfp);
|
|
if (!pool->zpools[i]) {
|
|
pr_err("%s zpool not available\n", type);
|
|
goto error;
|
|
}
|
|
}
|
|
pr_debug("using %s zpool\n", zpool_get_type(pool->zpools[0]));
|
|
|
|
strscpy(pool->tfm_name, compressor, sizeof(pool->tfm_name));
|
|
|
|
pool->acomp_ctx = alloc_percpu(*pool->acomp_ctx);
|
|
if (!pool->acomp_ctx) {
|
|
pr_err("percpu alloc failed\n");
|
|
goto error;
|
|
}
|
|
|
|
ret = cpuhp_state_add_instance(CPUHP_MM_ZSWP_POOL_PREPARE,
|
|
&pool->node);
|
|
if (ret)
|
|
goto error;
|
|
|
|
zswap_alloc_shrinker(pool);
|
|
if (!pool->shrinker)
|
|
goto error;
|
|
|
|
pr_debug("using %s compressor\n", pool->tfm_name);
|
|
|
|
/* being the current pool takes 1 ref; this func expects the
|
|
* caller to always add the new pool as the current pool
|
|
*/
|
|
kref_init(&pool->kref);
|
|
INIT_LIST_HEAD(&pool->list);
|
|
if (list_lru_init_memcg(&pool->list_lru, pool->shrinker))
|
|
goto lru_fail;
|
|
shrinker_register(pool->shrinker);
|
|
INIT_WORK(&pool->shrink_work, shrink_worker);
|
|
atomic_set(&pool->nr_stored, 0);
|
|
|
|
zswap_pool_debug("created", pool);
|
|
|
|
return pool;
|
|
|
|
lru_fail:
|
|
list_lru_destroy(&pool->list_lru);
|
|
shrinker_free(pool->shrinker);
|
|
error:
|
|
if (pool->acomp_ctx)
|
|
free_percpu(pool->acomp_ctx);
|
|
while (i--)
|
|
zpool_destroy_pool(pool->zpools[i]);
|
|
kfree(pool);
|
|
return NULL;
|
|
}
|
|
|
|
static struct zswap_pool *__zswap_pool_create_fallback(void)
|
|
{
|
|
bool has_comp, has_zpool;
|
|
|
|
has_comp = crypto_has_acomp(zswap_compressor, 0, 0);
|
|
if (!has_comp && strcmp(zswap_compressor,
|
|
CONFIG_ZSWAP_COMPRESSOR_DEFAULT)) {
|
|
pr_err("compressor %s not available, using default %s\n",
|
|
zswap_compressor, CONFIG_ZSWAP_COMPRESSOR_DEFAULT);
|
|
param_free_charp(&zswap_compressor);
|
|
zswap_compressor = CONFIG_ZSWAP_COMPRESSOR_DEFAULT;
|
|
has_comp = crypto_has_acomp(zswap_compressor, 0, 0);
|
|
}
|
|
if (!has_comp) {
|
|
pr_err("default compressor %s not available\n",
|
|
zswap_compressor);
|
|
param_free_charp(&zswap_compressor);
|
|
zswap_compressor = ZSWAP_PARAM_UNSET;
|
|
}
|
|
|
|
has_zpool = zpool_has_pool(zswap_zpool_type);
|
|
if (!has_zpool && strcmp(zswap_zpool_type,
|
|
CONFIG_ZSWAP_ZPOOL_DEFAULT)) {
|
|
pr_err("zpool %s not available, using default %s\n",
|
|
zswap_zpool_type, CONFIG_ZSWAP_ZPOOL_DEFAULT);
|
|
param_free_charp(&zswap_zpool_type);
|
|
zswap_zpool_type = CONFIG_ZSWAP_ZPOOL_DEFAULT;
|
|
has_zpool = zpool_has_pool(zswap_zpool_type);
|
|
}
|
|
if (!has_zpool) {
|
|
pr_err("default zpool %s not available\n",
|
|
zswap_zpool_type);
|
|
param_free_charp(&zswap_zpool_type);
|
|
zswap_zpool_type = ZSWAP_PARAM_UNSET;
|
|
}
|
|
|
|
if (!has_comp || !has_zpool)
|
|
return NULL;
|
|
|
|
return zswap_pool_create(zswap_zpool_type, zswap_compressor);
|
|
}
|
|
|
|
static void zswap_pool_destroy(struct zswap_pool *pool)
|
|
{
|
|
int i;
|
|
|
|
zswap_pool_debug("destroying", pool);
|
|
|
|
shrinker_free(pool->shrinker);
|
|
cpuhp_state_remove_instance(CPUHP_MM_ZSWP_POOL_PREPARE, &pool->node);
|
|
free_percpu(pool->acomp_ctx);
|
|
list_lru_destroy(&pool->list_lru);
|
|
|
|
spin_lock(&zswap_pools_lock);
|
|
mem_cgroup_iter_break(NULL, pool->next_shrink);
|
|
pool->next_shrink = NULL;
|
|
spin_unlock(&zswap_pools_lock);
|
|
|
|
for (i = 0; i < ZSWAP_NR_ZPOOLS; i++)
|
|
zpool_destroy_pool(pool->zpools[i]);
|
|
kfree(pool);
|
|
}
|
|
|
|
static int __must_check zswap_pool_get(struct zswap_pool *pool)
|
|
{
|
|
if (!pool)
|
|
return 0;
|
|
|
|
return kref_get_unless_zero(&pool->kref);
|
|
}
|
|
|
|
static void __zswap_pool_release(struct work_struct *work)
|
|
{
|
|
struct zswap_pool *pool = container_of(work, typeof(*pool),
|
|
release_work);
|
|
|
|
synchronize_rcu();
|
|
|
|
/* nobody should have been able to get a kref... */
|
|
WARN_ON(kref_get_unless_zero(&pool->kref));
|
|
|
|
/* pool is now off zswap_pools list and has no references. */
|
|
zswap_pool_destroy(pool);
|
|
}
|
|
|
|
static void __zswap_pool_empty(struct kref *kref)
|
|
{
|
|
struct zswap_pool *pool;
|
|
|
|
pool = container_of(kref, typeof(*pool), kref);
|
|
|
|
spin_lock(&zswap_pools_lock);
|
|
|
|
WARN_ON(pool == zswap_pool_current());
|
|
|
|
list_del_rcu(&pool->list);
|
|
|
|
INIT_WORK(&pool->release_work, __zswap_pool_release);
|
|
schedule_work(&pool->release_work);
|
|
|
|
spin_unlock(&zswap_pools_lock);
|
|
}
|
|
|
|
static void zswap_pool_put(struct zswap_pool *pool)
|
|
{
|
|
kref_put(&pool->kref, __zswap_pool_empty);
|
|
}
|
|
|
|
/*********************************
|
|
* param callbacks
|
|
**********************************/
|
|
|
|
static bool zswap_pool_changed(const char *s, const struct kernel_param *kp)
|
|
{
|
|
/* no change required */
|
|
if (!strcmp(s, *(char **)kp->arg) && zswap_has_pool)
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
/* val must be a null-terminated string */
|
|
static int __zswap_param_set(const char *val, const struct kernel_param *kp,
|
|
char *type, char *compressor)
|
|
{
|
|
struct zswap_pool *pool, *put_pool = NULL;
|
|
char *s = strstrip((char *)val);
|
|
int ret = 0;
|
|
bool new_pool = false;
|
|
|
|
mutex_lock(&zswap_init_lock);
|
|
switch (zswap_init_state) {
|
|
case ZSWAP_UNINIT:
|
|
/* if this is load-time (pre-init) param setting,
|
|
* don't create a pool; that's done during init.
|
|
*/
|
|
ret = param_set_charp(s, kp);
|
|
break;
|
|
case ZSWAP_INIT_SUCCEED:
|
|
new_pool = zswap_pool_changed(s, kp);
|
|
break;
|
|
case ZSWAP_INIT_FAILED:
|
|
pr_err("can't set param, initialization failed\n");
|
|
ret = -ENODEV;
|
|
}
|
|
mutex_unlock(&zswap_init_lock);
|
|
|
|
/* no need to create a new pool, return directly */
|
|
if (!new_pool)
|
|
return ret;
|
|
|
|
if (!type) {
|
|
if (!zpool_has_pool(s)) {
|
|
pr_err("zpool %s not available\n", s);
|
|
return -ENOENT;
|
|
}
|
|
type = s;
|
|
} else if (!compressor) {
|
|
if (!crypto_has_acomp(s, 0, 0)) {
|
|
pr_err("compressor %s not available\n", s);
|
|
return -ENOENT;
|
|
}
|
|
compressor = s;
|
|
} else {
|
|
WARN_ON(1);
|
|
return -EINVAL;
|
|
}
|
|
|
|
spin_lock(&zswap_pools_lock);
|
|
|
|
pool = zswap_pool_find_get(type, compressor);
|
|
if (pool) {
|
|
zswap_pool_debug("using existing", pool);
|
|
WARN_ON(pool == zswap_pool_current());
|
|
list_del_rcu(&pool->list);
|
|
}
|
|
|
|
spin_unlock(&zswap_pools_lock);
|
|
|
|
if (!pool)
|
|
pool = zswap_pool_create(type, compressor);
|
|
|
|
if (pool)
|
|
ret = param_set_charp(s, kp);
|
|
else
|
|
ret = -EINVAL;
|
|
|
|
spin_lock(&zswap_pools_lock);
|
|
|
|
if (!ret) {
|
|
put_pool = zswap_pool_current();
|
|
list_add_rcu(&pool->list, &zswap_pools);
|
|
zswap_has_pool = true;
|
|
} else if (pool) {
|
|
/* add the possibly pre-existing pool to the end of the pools
|
|
* list; if it's new (and empty) then it'll be removed and
|
|
* destroyed by the put after we drop the lock
|
|
*/
|
|
list_add_tail_rcu(&pool->list, &zswap_pools);
|
|
put_pool = pool;
|
|
}
|
|
|
|
spin_unlock(&zswap_pools_lock);
|
|
|
|
if (!zswap_has_pool && !pool) {
|
|
/* if initial pool creation failed, and this pool creation also
|
|
* failed, maybe both compressor and zpool params were bad.
|
|
* Allow changing this param, so pool creation will succeed
|
|
* when the other param is changed. We already verified this
|
|
* param is ok in the zpool_has_pool() or crypto_has_acomp()
|
|
* checks above.
|
|
*/
|
|
ret = param_set_charp(s, kp);
|
|
}
|
|
|
|
/* drop the ref from either the old current pool,
|
|
* or the new pool we failed to add
|
|
*/
|
|
if (put_pool)
|
|
zswap_pool_put(put_pool);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int zswap_compressor_param_set(const char *val,
|
|
const struct kernel_param *kp)
|
|
{
|
|
return __zswap_param_set(val, kp, zswap_zpool_type, NULL);
|
|
}
|
|
|
|
static int zswap_zpool_param_set(const char *val,
|
|
const struct kernel_param *kp)
|
|
{
|
|
return __zswap_param_set(val, kp, NULL, zswap_compressor);
|
|
}
|
|
|
|
static int zswap_enabled_param_set(const char *val,
|
|
const struct kernel_param *kp)
|
|
{
|
|
int ret = -ENODEV;
|
|
|
|
/* if this is load-time (pre-init) param setting, only set param. */
|
|
if (system_state != SYSTEM_RUNNING)
|
|
return param_set_bool(val, kp);
|
|
|
|
mutex_lock(&zswap_init_lock);
|
|
switch (zswap_init_state) {
|
|
case ZSWAP_UNINIT:
|
|
if (zswap_setup())
|
|
break;
|
|
fallthrough;
|
|
case ZSWAP_INIT_SUCCEED:
|
|
if (!zswap_has_pool)
|
|
pr_err("can't enable, no pool configured\n");
|
|
else
|
|
ret = param_set_bool(val, kp);
|
|
break;
|
|
case ZSWAP_INIT_FAILED:
|
|
pr_err("can't enable, initialization failed\n");
|
|
}
|
|
mutex_unlock(&zswap_init_lock);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*********************************
|
|
* writeback code
|
|
**********************************/
|
|
/*
|
|
* Attempts to free an entry by adding a page to the swap cache,
|
|
* decompressing the entry data into the page, and issuing a
|
|
* bio write to write the page back to the swap device.
|
|
*
|
|
* This can be thought of as a "resumed writeback" of the page
|
|
* to the swap device. We are basically resuming the same swap
|
|
* writeback path that was intercepted with the zswap_store()
|
|
* in the first place. After the page has been decompressed into
|
|
* the swap cache, the compressed version stored by zswap can be
|
|
* freed.
|
|
*/
|
|
static int zswap_writeback_entry(struct zswap_entry *entry,
|
|
struct zswap_tree *tree)
|
|
{
|
|
swp_entry_t swpentry = entry->swpentry;
|
|
struct page *page;
|
|
struct mempolicy *mpol;
|
|
struct scatterlist input, output;
|
|
struct crypto_acomp_ctx *acomp_ctx;
|
|
struct zpool *pool = zswap_find_zpool(entry);
|
|
bool page_was_allocated;
|
|
u8 *src, *tmp = NULL;
|
|
unsigned int dlen;
|
|
int ret;
|
|
struct writeback_control wbc = {
|
|
.sync_mode = WB_SYNC_NONE,
|
|
};
|
|
|
|
if (!zpool_can_sleep_mapped(pool)) {
|
|
tmp = kmalloc(PAGE_SIZE, GFP_KERNEL);
|
|
if (!tmp)
|
|
return -ENOMEM;
|
|
}
|
|
|
|
/* try to allocate swap cache page */
|
|
mpol = get_task_policy(current);
|
|
page = __read_swap_cache_async(swpentry, GFP_KERNEL, mpol,
|
|
NO_INTERLEAVE_INDEX, &page_was_allocated, true);
|
|
if (!page) {
|
|
ret = -ENOMEM;
|
|
goto fail;
|
|
}
|
|
|
|
/* Found an existing page, we raced with load/swapin */
|
|
if (!page_was_allocated) {
|
|
put_page(page);
|
|
ret = -EEXIST;
|
|
goto fail;
|
|
}
|
|
|
|
/*
|
|
* Page is locked, and the swapcache is now secured against
|
|
* concurrent swapping to and from the slot. Verify that the
|
|
* swap entry hasn't been invalidated and recycled behind our
|
|
* backs (our zswap_entry reference doesn't prevent that), to
|
|
* avoid overwriting a new swap page with old compressed data.
|
|
*/
|
|
spin_lock(&tree->lock);
|
|
if (zswap_rb_search(&tree->rbroot, swp_offset(entry->swpentry)) != entry) {
|
|
spin_unlock(&tree->lock);
|
|
delete_from_swap_cache(page_folio(page));
|
|
ret = -ENOMEM;
|
|
goto fail;
|
|
}
|
|
spin_unlock(&tree->lock);
|
|
|
|
/* decompress */
|
|
acomp_ctx = raw_cpu_ptr(entry->pool->acomp_ctx);
|
|
dlen = PAGE_SIZE;
|
|
|
|
src = zpool_map_handle(pool, entry->handle, ZPOOL_MM_RO);
|
|
if (!zpool_can_sleep_mapped(pool)) {
|
|
memcpy(tmp, src, entry->length);
|
|
src = tmp;
|
|
zpool_unmap_handle(pool, entry->handle);
|
|
}
|
|
|
|
mutex_lock(acomp_ctx->mutex);
|
|
sg_init_one(&input, src, entry->length);
|
|
sg_init_table(&output, 1);
|
|
sg_set_page(&output, page, PAGE_SIZE, 0);
|
|
acomp_request_set_params(acomp_ctx->req, &input, &output, entry->length, dlen);
|
|
ret = crypto_wait_req(crypto_acomp_decompress(acomp_ctx->req), &acomp_ctx->wait);
|
|
dlen = acomp_ctx->req->dlen;
|
|
mutex_unlock(acomp_ctx->mutex);
|
|
|
|
if (!zpool_can_sleep_mapped(pool))
|
|
kfree(tmp);
|
|
else
|
|
zpool_unmap_handle(pool, entry->handle);
|
|
|
|
BUG_ON(ret);
|
|
BUG_ON(dlen != PAGE_SIZE);
|
|
|
|
/* page is up to date */
|
|
SetPageUptodate(page);
|
|
|
|
/* move it to the tail of the inactive list after end_writeback */
|
|
SetPageReclaim(page);
|
|
|
|
/* start writeback */
|
|
__swap_writepage(page, &wbc);
|
|
put_page(page);
|
|
|
|
return ret;
|
|
|
|
fail:
|
|
if (!zpool_can_sleep_mapped(pool))
|
|
kfree(tmp);
|
|
|
|
/*
|
|
* If we get here because the page is already in swapcache, a
|
|
* load may be happening concurrently. It is safe and okay to
|
|
* not free the entry. It is also okay to return !0.
|
|
*/
|
|
return ret;
|
|
}
|
|
|
|
static int zswap_is_page_same_filled(void *ptr, unsigned long *value)
|
|
{
|
|
unsigned long *page;
|
|
unsigned long val;
|
|
unsigned int pos, last_pos = PAGE_SIZE / sizeof(*page) - 1;
|
|
|
|
page = (unsigned long *)ptr;
|
|
val = page[0];
|
|
|
|
if (val != page[last_pos])
|
|
return 0;
|
|
|
|
for (pos = 1; pos < last_pos; pos++) {
|
|
if (val != page[pos])
|
|
return 0;
|
|
}
|
|
|
|
*value = val;
|
|
|
|
return 1;
|
|
}
|
|
|
|
static void zswap_fill_page(void *ptr, unsigned long value)
|
|
{
|
|
unsigned long *page;
|
|
|
|
page = (unsigned long *)ptr;
|
|
memset_l(page, value, PAGE_SIZE / sizeof(unsigned long));
|
|
}
|
|
|
|
bool zswap_store(struct folio *folio)
|
|
{
|
|
swp_entry_t swp = folio->swap;
|
|
int type = swp_type(swp);
|
|
pgoff_t offset = swp_offset(swp);
|
|
struct page *page = &folio->page;
|
|
struct zswap_tree *tree = zswap_trees[type];
|
|
struct zswap_entry *entry, *dupentry;
|
|
struct scatterlist input, output;
|
|
struct crypto_acomp_ctx *acomp_ctx;
|
|
struct obj_cgroup *objcg = NULL;
|
|
struct mem_cgroup *memcg = NULL;
|
|
struct zswap_pool *pool;
|
|
struct zpool *zpool;
|
|
unsigned int dlen = PAGE_SIZE;
|
|
unsigned long handle, value;
|
|
char *buf;
|
|
u8 *src, *dst;
|
|
gfp_t gfp;
|
|
int ret;
|
|
|
|
VM_WARN_ON_ONCE(!folio_test_locked(folio));
|
|
VM_WARN_ON_ONCE(!folio_test_swapcache(folio));
|
|
|
|
/* Large folios aren't supported */
|
|
if (folio_test_large(folio))
|
|
return false;
|
|
|
|
if (!zswap_enabled || !tree)
|
|
return false;
|
|
|
|
/*
|
|
* If this is a duplicate, it must be removed before attempting to store
|
|
* it, otherwise, if the store fails the old page won't be removed from
|
|
* the tree, and it might be written back overriding the new data.
|
|
*/
|
|
spin_lock(&tree->lock);
|
|
dupentry = zswap_rb_search(&tree->rbroot, offset);
|
|
if (dupentry) {
|
|
zswap_duplicate_entry++;
|
|
zswap_invalidate_entry(tree, dupentry);
|
|
}
|
|
spin_unlock(&tree->lock);
|
|
objcg = get_obj_cgroup_from_folio(folio);
|
|
if (objcg && !obj_cgroup_may_zswap(objcg)) {
|
|
memcg = get_mem_cgroup_from_objcg(objcg);
|
|
if (shrink_memcg(memcg)) {
|
|
mem_cgroup_put(memcg);
|
|
goto reject;
|
|
}
|
|
mem_cgroup_put(memcg);
|
|
}
|
|
|
|
/* reclaim space if needed */
|
|
if (zswap_is_full()) {
|
|
zswap_pool_limit_hit++;
|
|
zswap_pool_reached_full = true;
|
|
goto shrink;
|
|
}
|
|
|
|
if (zswap_pool_reached_full) {
|
|
if (!zswap_can_accept())
|
|
goto shrink;
|
|
else
|
|
zswap_pool_reached_full = false;
|
|
}
|
|
|
|
/* allocate entry */
|
|
entry = zswap_entry_cache_alloc(GFP_KERNEL, page_to_nid(page));
|
|
if (!entry) {
|
|
zswap_reject_kmemcache_fail++;
|
|
goto reject;
|
|
}
|
|
|
|
if (zswap_same_filled_pages_enabled) {
|
|
src = kmap_local_page(page);
|
|
if (zswap_is_page_same_filled(src, &value)) {
|
|
kunmap_local(src);
|
|
entry->swpentry = swp_entry(type, offset);
|
|
entry->length = 0;
|
|
entry->value = value;
|
|
atomic_inc(&zswap_same_filled_pages);
|
|
goto insert_entry;
|
|
}
|
|
kunmap_local(src);
|
|
}
|
|
|
|
if (!zswap_non_same_filled_pages_enabled)
|
|
goto freepage;
|
|
|
|
/* if entry is successfully added, it keeps the reference */
|
|
entry->pool = zswap_pool_current_get();
|
|
if (!entry->pool)
|
|
goto freepage;
|
|
|
|
if (objcg) {
|
|
memcg = get_mem_cgroup_from_objcg(objcg);
|
|
if (memcg_list_lru_alloc(memcg, &entry->pool->list_lru, GFP_KERNEL)) {
|
|
mem_cgroup_put(memcg);
|
|
goto put_pool;
|
|
}
|
|
mem_cgroup_put(memcg);
|
|
}
|
|
|
|
/* compress */
|
|
acomp_ctx = raw_cpu_ptr(entry->pool->acomp_ctx);
|
|
|
|
mutex_lock(acomp_ctx->mutex);
|
|
|
|
dst = acomp_ctx->dstmem;
|
|
sg_init_table(&input, 1);
|
|
sg_set_page(&input, page, PAGE_SIZE, 0);
|
|
|
|
/* zswap_dstmem is of size (PAGE_SIZE * 2). Reflect same in sg_list */
|
|
sg_init_one(&output, dst, PAGE_SIZE * 2);
|
|
acomp_request_set_params(acomp_ctx->req, &input, &output, PAGE_SIZE, dlen);
|
|
/*
|
|
* it maybe looks a little bit silly that we send an asynchronous request,
|
|
* then wait for its completion synchronously. This makes the process look
|
|
* synchronous in fact.
|
|
* Theoretically, acomp supports users send multiple acomp requests in one
|
|
* acomp instance, then get those requests done simultaneously. but in this
|
|
* case, zswap actually does store and load page by page, there is no
|
|
* existing method to send the second page before the first page is done
|
|
* in one thread doing zwap.
|
|
* but in different threads running on different cpu, we have different
|
|
* acomp instance, so multiple threads can do (de)compression in parallel.
|
|
*/
|
|
ret = crypto_wait_req(crypto_acomp_compress(acomp_ctx->req), &acomp_ctx->wait);
|
|
dlen = acomp_ctx->req->dlen;
|
|
|
|
if (ret) {
|
|
zswap_reject_compress_fail++;
|
|
goto put_dstmem;
|
|
}
|
|
|
|
/* store */
|
|
zpool = zswap_find_zpool(entry);
|
|
gfp = __GFP_NORETRY | __GFP_NOWARN | __GFP_KSWAPD_RECLAIM;
|
|
if (zpool_malloc_support_movable(zpool))
|
|
gfp |= __GFP_HIGHMEM | __GFP_MOVABLE;
|
|
ret = zpool_malloc(zpool, dlen, gfp, &handle);
|
|
if (ret == -ENOSPC) {
|
|
zswap_reject_compress_poor++;
|
|
goto put_dstmem;
|
|
}
|
|
if (ret) {
|
|
zswap_reject_alloc_fail++;
|
|
goto put_dstmem;
|
|
}
|
|
buf = zpool_map_handle(zpool, handle, ZPOOL_MM_WO);
|
|
memcpy(buf, dst, dlen);
|
|
zpool_unmap_handle(zpool, handle);
|
|
mutex_unlock(acomp_ctx->mutex);
|
|
|
|
/* populate entry */
|
|
entry->swpentry = swp_entry(type, offset);
|
|
entry->handle = handle;
|
|
entry->length = dlen;
|
|
|
|
insert_entry:
|
|
entry->objcg = objcg;
|
|
if (objcg) {
|
|
obj_cgroup_charge_zswap(objcg, entry->length);
|
|
/* Account before objcg ref is moved to tree */
|
|
count_objcg_event(objcg, ZSWPOUT);
|
|
}
|
|
|
|
/* map */
|
|
spin_lock(&tree->lock);
|
|
/*
|
|
* A duplicate entry should have been removed at the beginning of this
|
|
* function. Since the swap entry should be pinned, if a duplicate is
|
|
* found again here it means that something went wrong in the swap
|
|
* cache.
|
|
*/
|
|
while (zswap_rb_insert(&tree->rbroot, entry, &dupentry) == -EEXIST) {
|
|
WARN_ON(1);
|
|
zswap_duplicate_entry++;
|
|
zswap_invalidate_entry(tree, dupentry);
|
|
}
|
|
if (entry->length) {
|
|
INIT_LIST_HEAD(&entry->lru);
|
|
zswap_lru_add(&entry->pool->list_lru, entry);
|
|
atomic_inc(&entry->pool->nr_stored);
|
|
}
|
|
spin_unlock(&tree->lock);
|
|
|
|
/* update stats */
|
|
atomic_inc(&zswap_stored_pages);
|
|
zswap_update_total_size();
|
|
count_vm_event(ZSWPOUT);
|
|
|
|
return true;
|
|
|
|
put_dstmem:
|
|
mutex_unlock(acomp_ctx->mutex);
|
|
put_pool:
|
|
zswap_pool_put(entry->pool);
|
|
freepage:
|
|
zswap_entry_cache_free(entry);
|
|
reject:
|
|
if (objcg)
|
|
obj_cgroup_put(objcg);
|
|
return false;
|
|
|
|
shrink:
|
|
pool = zswap_pool_last_get();
|
|
if (pool && !queue_work(shrink_wq, &pool->shrink_work))
|
|
zswap_pool_put(pool);
|
|
goto reject;
|
|
}
|
|
|
|
bool zswap_load(struct folio *folio)
|
|
{
|
|
swp_entry_t swp = folio->swap;
|
|
int type = swp_type(swp);
|
|
pgoff_t offset = swp_offset(swp);
|
|
struct page *page = &folio->page;
|
|
struct zswap_tree *tree = zswap_trees[type];
|
|
struct zswap_entry *entry;
|
|
struct scatterlist input, output;
|
|
struct crypto_acomp_ctx *acomp_ctx;
|
|
u8 *src, *dst, *tmp;
|
|
struct zpool *zpool;
|
|
unsigned int dlen;
|
|
bool ret;
|
|
|
|
VM_WARN_ON_ONCE(!folio_test_locked(folio));
|
|
|
|
/* find */
|
|
spin_lock(&tree->lock);
|
|
entry = zswap_entry_find_get(&tree->rbroot, offset);
|
|
if (!entry) {
|
|
spin_unlock(&tree->lock);
|
|
return false;
|
|
}
|
|
spin_unlock(&tree->lock);
|
|
|
|
if (!entry->length) {
|
|
dst = kmap_local_page(page);
|
|
zswap_fill_page(dst, entry->value);
|
|
kunmap_local(dst);
|
|
ret = true;
|
|
goto stats;
|
|
}
|
|
|
|
zpool = zswap_find_zpool(entry);
|
|
if (!zpool_can_sleep_mapped(zpool)) {
|
|
tmp = kmalloc(entry->length, GFP_KERNEL);
|
|
if (!tmp) {
|
|
ret = false;
|
|
goto freeentry;
|
|
}
|
|
}
|
|
|
|
/* decompress */
|
|
dlen = PAGE_SIZE;
|
|
src = zpool_map_handle(zpool, entry->handle, ZPOOL_MM_RO);
|
|
|
|
if (!zpool_can_sleep_mapped(zpool)) {
|
|
memcpy(tmp, src, entry->length);
|
|
src = tmp;
|
|
zpool_unmap_handle(zpool, entry->handle);
|
|
}
|
|
|
|
acomp_ctx = raw_cpu_ptr(entry->pool->acomp_ctx);
|
|
mutex_lock(acomp_ctx->mutex);
|
|
sg_init_one(&input, src, entry->length);
|
|
sg_init_table(&output, 1);
|
|
sg_set_page(&output, page, PAGE_SIZE, 0);
|
|
acomp_request_set_params(acomp_ctx->req, &input, &output, entry->length, dlen);
|
|
if (crypto_wait_req(crypto_acomp_decompress(acomp_ctx->req), &acomp_ctx->wait))
|
|
WARN_ON(1);
|
|
mutex_unlock(acomp_ctx->mutex);
|
|
|
|
if (zpool_can_sleep_mapped(zpool))
|
|
zpool_unmap_handle(zpool, entry->handle);
|
|
else
|
|
kfree(tmp);
|
|
|
|
ret = true;
|
|
stats:
|
|
count_vm_event(ZSWPIN);
|
|
if (entry->objcg)
|
|
count_objcg_event(entry->objcg, ZSWPIN);
|
|
freeentry:
|
|
spin_lock(&tree->lock);
|
|
if (ret && zswap_exclusive_loads_enabled) {
|
|
zswap_invalidate_entry(tree, entry);
|
|
folio_mark_dirty(folio);
|
|
} else if (entry->length) {
|
|
zswap_lru_del(&entry->pool->list_lru, entry);
|
|
zswap_lru_add(&entry->pool->list_lru, entry);
|
|
}
|
|
zswap_entry_put(tree, entry);
|
|
spin_unlock(&tree->lock);
|
|
|
|
return ret;
|
|
}
|
|
|
|
void zswap_invalidate(int type, pgoff_t offset)
|
|
{
|
|
struct zswap_tree *tree = zswap_trees[type];
|
|
struct zswap_entry *entry;
|
|
|
|
/* find */
|
|
spin_lock(&tree->lock);
|
|
entry = zswap_rb_search(&tree->rbroot, offset);
|
|
if (!entry) {
|
|
/* entry was written back */
|
|
spin_unlock(&tree->lock);
|
|
return;
|
|
}
|
|
zswap_invalidate_entry(tree, entry);
|
|
spin_unlock(&tree->lock);
|
|
}
|
|
|
|
void zswap_swapon(int type)
|
|
{
|
|
struct zswap_tree *tree;
|
|
|
|
tree = kzalloc(sizeof(*tree), GFP_KERNEL);
|
|
if (!tree) {
|
|
pr_err("alloc failed, zswap disabled for swap type %d\n", type);
|
|
return;
|
|
}
|
|
|
|
tree->rbroot = RB_ROOT;
|
|
spin_lock_init(&tree->lock);
|
|
zswap_trees[type] = tree;
|
|
}
|
|
|
|
void zswap_swapoff(int type)
|
|
{
|
|
struct zswap_tree *tree = zswap_trees[type];
|
|
struct zswap_entry *entry, *n;
|
|
|
|
if (!tree)
|
|
return;
|
|
|
|
/* walk the tree and free everything */
|
|
spin_lock(&tree->lock);
|
|
rbtree_postorder_for_each_entry_safe(entry, n, &tree->rbroot, rbnode)
|
|
zswap_free_entry(entry);
|
|
tree->rbroot = RB_ROOT;
|
|
spin_unlock(&tree->lock);
|
|
kfree(tree);
|
|
zswap_trees[type] = NULL;
|
|
}
|
|
|
|
/*********************************
|
|
* debugfs functions
|
|
**********************************/
|
|
#ifdef CONFIG_DEBUG_FS
|
|
#include <linux/debugfs.h>
|
|
|
|
static struct dentry *zswap_debugfs_root;
|
|
|
|
static int zswap_debugfs_init(void)
|
|
{
|
|
if (!debugfs_initialized())
|
|
return -ENODEV;
|
|
|
|
zswap_debugfs_root = debugfs_create_dir("zswap", NULL);
|
|
|
|
debugfs_create_u64("pool_limit_hit", 0444,
|
|
zswap_debugfs_root, &zswap_pool_limit_hit);
|
|
debugfs_create_u64("reject_reclaim_fail", 0444,
|
|
zswap_debugfs_root, &zswap_reject_reclaim_fail);
|
|
debugfs_create_u64("reject_alloc_fail", 0444,
|
|
zswap_debugfs_root, &zswap_reject_alloc_fail);
|
|
debugfs_create_u64("reject_kmemcache_fail", 0444,
|
|
zswap_debugfs_root, &zswap_reject_kmemcache_fail);
|
|
debugfs_create_u64("reject_compress_fail", 0444,
|
|
zswap_debugfs_root, &zswap_reject_compress_fail);
|
|
debugfs_create_u64("reject_compress_poor", 0444,
|
|
zswap_debugfs_root, &zswap_reject_compress_poor);
|
|
debugfs_create_u64("written_back_pages", 0444,
|
|
zswap_debugfs_root, &zswap_written_back_pages);
|
|
debugfs_create_u64("duplicate_entry", 0444,
|
|
zswap_debugfs_root, &zswap_duplicate_entry);
|
|
debugfs_create_u64("pool_total_size", 0444,
|
|
zswap_debugfs_root, &zswap_pool_total_size);
|
|
debugfs_create_atomic_t("stored_pages", 0444,
|
|
zswap_debugfs_root, &zswap_stored_pages);
|
|
debugfs_create_atomic_t("same_filled_pages", 0444,
|
|
zswap_debugfs_root, &zswap_same_filled_pages);
|
|
|
|
return 0;
|
|
}
|
|
#else
|
|
static int zswap_debugfs_init(void)
|
|
{
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
/*********************************
|
|
* module init and exit
|
|
**********************************/
|
|
static int zswap_setup(void)
|
|
{
|
|
struct zswap_pool *pool;
|
|
int ret;
|
|
|
|
zswap_entry_cache = KMEM_CACHE(zswap_entry, 0);
|
|
if (!zswap_entry_cache) {
|
|
pr_err("entry cache creation failed\n");
|
|
goto cache_fail;
|
|
}
|
|
|
|
ret = cpuhp_setup_state(CPUHP_MM_ZSWP_MEM_PREPARE, "mm/zswap:prepare",
|
|
zswap_dstmem_prepare, zswap_dstmem_dead);
|
|
if (ret) {
|
|
pr_err("dstmem alloc failed\n");
|
|
goto dstmem_fail;
|
|
}
|
|
|
|
ret = cpuhp_setup_state_multi(CPUHP_MM_ZSWP_POOL_PREPARE,
|
|
"mm/zswap_pool:prepare",
|
|
zswap_cpu_comp_prepare,
|
|
zswap_cpu_comp_dead);
|
|
if (ret)
|
|
goto hp_fail;
|
|
|
|
pool = __zswap_pool_create_fallback();
|
|
if (pool) {
|
|
pr_info("loaded using pool %s/%s\n", pool->tfm_name,
|
|
zpool_get_type(pool->zpools[0]));
|
|
list_add(&pool->list, &zswap_pools);
|
|
zswap_has_pool = true;
|
|
} else {
|
|
pr_err("pool creation failed\n");
|
|
zswap_enabled = false;
|
|
}
|
|
|
|
shrink_wq = create_workqueue("zswap-shrink");
|
|
if (!shrink_wq)
|
|
goto fallback_fail;
|
|
|
|
if (zswap_debugfs_init())
|
|
pr_warn("debugfs initialization failed\n");
|
|
zswap_init_state = ZSWAP_INIT_SUCCEED;
|
|
return 0;
|
|
|
|
fallback_fail:
|
|
if (pool)
|
|
zswap_pool_destroy(pool);
|
|
hp_fail:
|
|
cpuhp_remove_state(CPUHP_MM_ZSWP_MEM_PREPARE);
|
|
dstmem_fail:
|
|
kmem_cache_destroy(zswap_entry_cache);
|
|
cache_fail:
|
|
/* if built-in, we aren't unloaded on failure; don't allow use */
|
|
zswap_init_state = ZSWAP_INIT_FAILED;
|
|
zswap_enabled = false;
|
|
return -ENOMEM;
|
|
}
|
|
|
|
static int __init zswap_init(void)
|
|
{
|
|
if (!zswap_enabled)
|
|
return 0;
|
|
return zswap_setup();
|
|
}
|
|
/* must be late so crypto has time to come up */
|
|
late_initcall(zswap_init);
|
|
|
|
MODULE_AUTHOR("Seth Jennings <sjennings@variantweb.net>");
|
|
MODULE_DESCRIPTION("Compressed cache for swap pages");
|