linux/drivers/iio/dac/ltc2688.c
Matti Vaittinen 08f75f180d iio: dac: ltc2688: Simplify using devm_regulator_*get_enable()
Use devm_regulator_bulk_get_enable() instead of open coded bulk-get,
bulk-enable, add-action-to-disable-at-detach - pattern.

Signed-off-by: Matti Vaittinen <mazziesaccount@gmail.com>
Reviewed-by: Nuno Sá <nuno.sa@analog.com>
Link: https://lore.kernel.org/r/a29493f594c84b3bd852e462bbd3e591a8575a27.1660934107.git.mazziesaccount@gmail.com
Signed-off-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
2022-11-23 19:44:00 +00:00

1054 lines
27 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* LTC2688 16 channel, 16 bit Voltage Output SoftSpan DAC driver
*
* Copyright 2022 Analog Devices Inc.
*/
#include <linux/bitfield.h>
#include <linux/bits.h>
#include <linux/clk.h>
#include <linux/device.h>
#include <linux/gpio/consumer.h>
#include <linux/iio/iio.h>
#include <linux/limits.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/mod_devicetable.h>
#include <linux/mutex.h>
#include <linux/of.h>
#include <linux/property.h>
#include <linux/regmap.h>
#include <linux/regulator/consumer.h>
#include <linux/spi/spi.h>
#define LTC2688_DAC_CHANNELS 16
#define LTC2688_CMD_CH_CODE(x) (0x00 + (x))
#define LTC2688_CMD_CH_SETTING(x) (0x10 + (x))
#define LTC2688_CMD_CH_OFFSET(x) (0X20 + (x))
#define LTC2688_CMD_CH_GAIN(x) (0x30 + (x))
#define LTC2688_CMD_CH_CODE_UPDATE(x) (0x40 + (x))
#define LTC2688_CMD_CONFIG 0x70
#define LTC2688_CMD_POWERDOWN 0x71
#define LTC2688_CMD_A_B_SELECT 0x72
#define LTC2688_CMD_SW_TOGGLE 0x73
#define LTC2688_CMD_TOGGLE_DITHER_EN 0x74
#define LTC2688_CMD_THERMAL_STAT 0x77
#define LTC2688_CMD_UPDATE_ALL 0x7C
#define LTC2688_CMD_NOOP 0xFF
#define LTC2688_READ_OPERATION 0x80
/* Channel Settings */
#define LTC2688_CH_SPAN_MSK GENMASK(2, 0)
#define LTC2688_CH_OVERRANGE_MSK BIT(3)
#define LTC2688_CH_TD_SEL_MSK GENMASK(5, 4)
#define LTC2688_CH_TGP_MAX 3
#define LTC2688_CH_DIT_PER_MSK GENMASK(8, 6)
#define LTC2688_CH_DIT_PH_MSK GENMASK(10, 9)
#define LTC2688_CH_MODE_MSK BIT(11)
#define LTC2688_DITHER_RAW_MASK GENMASK(15, 2)
#define LTC2688_CH_CALIBBIAS_MASK GENMASK(15, 2)
#define LTC2688_DITHER_RAW_MAX_VAL (BIT(14) - 1)
#define LTC2688_CH_CALIBBIAS_MAX_VAL (BIT(14) - 1)
/* Configuration register */
#define LTC2688_CONFIG_RST BIT(15)
#define LTC2688_CONFIG_EXT_REF BIT(1)
#define LTC2688_DITHER_FREQ_AVAIL_N 5
enum {
LTC2688_SPAN_RANGE_0V_5V,
LTC2688_SPAN_RANGE_0V_10V,
LTC2688_SPAN_RANGE_M5V_5V,
LTC2688_SPAN_RANGE_M10V_10V,
LTC2688_SPAN_RANGE_M15V_15V,
LTC2688_SPAN_RANGE_MAX
};
enum {
LTC2688_MODE_DEFAULT,
LTC2688_MODE_DITHER_TOGGLE,
};
struct ltc2688_chan {
long dither_frequency[LTC2688_DITHER_FREQ_AVAIL_N];
bool overrange;
bool toggle_chan;
u8 mode;
};
struct ltc2688_state {
struct spi_device *spi;
struct regmap *regmap;
struct ltc2688_chan channels[LTC2688_DAC_CHANNELS];
struct iio_chan_spec *iio_chan;
/* lock to protect against multiple access to the device and shared data */
struct mutex lock;
int vref;
/*
* DMA (thus cache coherency maintenance) may require the
* transfer buffers to live in their own cache lines.
*/
u8 tx_data[6] __aligned(IIO_DMA_MINALIGN);
u8 rx_data[3];
};
static int ltc2688_spi_read(void *context, const void *reg, size_t reg_size,
void *val, size_t val_size)
{
struct ltc2688_state *st = context;
struct spi_transfer xfers[] = {
{
.tx_buf = st->tx_data,
.bits_per_word = 8,
.len = reg_size + val_size,
.cs_change = 1,
}, {
.tx_buf = st->tx_data + 3,
.rx_buf = st->rx_data,
.bits_per_word = 8,
.len = reg_size + val_size,
},
};
int ret;
memcpy(st->tx_data, reg, reg_size);
ret = spi_sync_transfer(st->spi, xfers, ARRAY_SIZE(xfers));
if (ret)
return ret;
memcpy(val, &st->rx_data[1], val_size);
return 0;
}
static int ltc2688_spi_write(void *context, const void *data, size_t count)
{
struct ltc2688_state *st = context;
return spi_write(st->spi, data, count);
}
static int ltc2688_span_get(const struct ltc2688_state *st, int c)
{
int ret, reg, span;
ret = regmap_read(st->regmap, LTC2688_CMD_CH_SETTING(c), &reg);
if (ret)
return ret;
span = FIELD_GET(LTC2688_CH_SPAN_MSK, reg);
/* sanity check to make sure we don't get any weird value from the HW */
if (span >= LTC2688_SPAN_RANGE_MAX)
return -EIO;
return span;
}
static const int ltc2688_span_helper[LTC2688_SPAN_RANGE_MAX][2] = {
{0, 5000}, {0, 10000}, {-5000, 5000}, {-10000, 10000}, {-15000, 15000},
};
static int ltc2688_scale_get(const struct ltc2688_state *st, int c, int *val)
{
const struct ltc2688_chan *chan = &st->channels[c];
int span, fs;
span = ltc2688_span_get(st, c);
if (span < 0)
return span;
fs = ltc2688_span_helper[span][1] - ltc2688_span_helper[span][0];
if (chan->overrange)
fs = mult_frac(fs, 105, 100);
*val = DIV_ROUND_CLOSEST(fs * st->vref, 4096);
return 0;
}
static int ltc2688_offset_get(const struct ltc2688_state *st, int c, int *val)
{
int span;
span = ltc2688_span_get(st, c);
if (span < 0)
return span;
if (ltc2688_span_helper[span][0] < 0)
*val = -32768;
else
*val = 0;
return 0;
}
enum {
LTC2688_INPUT_A,
LTC2688_INPUT_B,
LTC2688_INPUT_B_AVAIL,
LTC2688_DITHER_OFF,
LTC2688_DITHER_FREQ_AVAIL,
};
static int ltc2688_dac_code_write(struct ltc2688_state *st, u32 chan, u32 input,
u16 code)
{
struct ltc2688_chan *c = &st->channels[chan];
int ret, reg;
/* 2 LSBs set to 0 if writing dither amplitude */
if (!c->toggle_chan && input == LTC2688_INPUT_B) {
if (code > LTC2688_DITHER_RAW_MAX_VAL)
return -EINVAL;
code = FIELD_PREP(LTC2688_DITHER_RAW_MASK, code);
}
mutex_lock(&st->lock);
/* select the correct input register to read from */
ret = regmap_update_bits(st->regmap, LTC2688_CMD_A_B_SELECT, BIT(chan),
input << chan);
if (ret)
goto out_unlock;
/*
* If in dither/toggle mode the dac should be updated by an
* external signal (or sw toggle) and not here.
*/
if (c->mode == LTC2688_MODE_DEFAULT)
reg = LTC2688_CMD_CH_CODE_UPDATE(chan);
else
reg = LTC2688_CMD_CH_CODE(chan);
ret = regmap_write(st->regmap, reg, code);
out_unlock:
mutex_unlock(&st->lock);
return ret;
}
static int ltc2688_dac_code_read(struct ltc2688_state *st, u32 chan, u32 input,
u32 *code)
{
struct ltc2688_chan *c = &st->channels[chan];
int ret;
mutex_lock(&st->lock);
ret = regmap_update_bits(st->regmap, LTC2688_CMD_A_B_SELECT, BIT(chan),
input << chan);
if (ret)
goto out_unlock;
ret = regmap_read(st->regmap, LTC2688_CMD_CH_CODE(chan), code);
out_unlock:
mutex_unlock(&st->lock);
if (!c->toggle_chan && input == LTC2688_INPUT_B)
*code = FIELD_GET(LTC2688_DITHER_RAW_MASK, *code);
return ret;
}
static const int ltc2688_raw_range[] = {0, 1, U16_MAX};
static int ltc2688_read_avail(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
const int **vals, int *type, int *length,
long info)
{
switch (info) {
case IIO_CHAN_INFO_RAW:
*vals = ltc2688_raw_range;
*type = IIO_VAL_INT;
return IIO_AVAIL_RANGE;
default:
return -EINVAL;
}
}
static int ltc2688_read_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan, int *val,
int *val2, long info)
{
struct ltc2688_state *st = iio_priv(indio_dev);
int ret;
switch (info) {
case IIO_CHAN_INFO_RAW:
ret = ltc2688_dac_code_read(st, chan->channel, LTC2688_INPUT_A,
val);
if (ret)
return ret;
return IIO_VAL_INT;
case IIO_CHAN_INFO_OFFSET:
ret = ltc2688_offset_get(st, chan->channel, val);
if (ret)
return ret;
return IIO_VAL_INT;
case IIO_CHAN_INFO_SCALE:
ret = ltc2688_scale_get(st, chan->channel, val);
if (ret)
return ret;
*val2 = 16;
return IIO_VAL_FRACTIONAL_LOG2;
case IIO_CHAN_INFO_CALIBBIAS:
ret = regmap_read(st->regmap,
LTC2688_CMD_CH_OFFSET(chan->channel), val);
if (ret)
return ret;
*val = FIELD_GET(LTC2688_CH_CALIBBIAS_MASK, *val);
return IIO_VAL_INT;
case IIO_CHAN_INFO_CALIBSCALE:
ret = regmap_read(st->regmap,
LTC2688_CMD_CH_GAIN(chan->channel), val);
if (ret)
return ret;
return IIO_VAL_INT;
default:
return -EINVAL;
}
}
static int ltc2688_write_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan, int val,
int val2, long info)
{
struct ltc2688_state *st = iio_priv(indio_dev);
switch (info) {
case IIO_CHAN_INFO_RAW:
if (val > U16_MAX || val < 0)
return -EINVAL;
return ltc2688_dac_code_write(st, chan->channel,
LTC2688_INPUT_A, val);
case IIO_CHAN_INFO_CALIBBIAS:
if (val > LTC2688_CH_CALIBBIAS_MAX_VAL)
return -EINVAL;
return regmap_write(st->regmap,
LTC2688_CMD_CH_OFFSET(chan->channel),
FIELD_PREP(LTC2688_CH_CALIBBIAS_MASK, val));
case IIO_CHAN_INFO_CALIBSCALE:
return regmap_write(st->regmap,
LTC2688_CMD_CH_GAIN(chan->channel), val);
default:
return -EINVAL;
}
}
static ssize_t ltc2688_dither_toggle_set(struct iio_dev *indio_dev,
uintptr_t private,
const struct iio_chan_spec *chan,
const char *buf, size_t len)
{
struct ltc2688_state *st = iio_priv(indio_dev);
struct ltc2688_chan *c = &st->channels[chan->channel];
int ret;
bool en;
ret = kstrtobool(buf, &en);
if (ret)
return ret;
mutex_lock(&st->lock);
ret = regmap_update_bits(st->regmap, LTC2688_CMD_TOGGLE_DITHER_EN,
BIT(chan->channel), en << chan->channel);
if (ret)
goto out_unlock;
c->mode = en ? LTC2688_MODE_DITHER_TOGGLE : LTC2688_MODE_DEFAULT;
out_unlock:
mutex_unlock(&st->lock);
return ret ?: len;
}
static ssize_t ltc2688_reg_bool_get(struct iio_dev *indio_dev,
uintptr_t private,
const struct iio_chan_spec *chan,
char *buf)
{
const struct ltc2688_state *st = iio_priv(indio_dev);
int ret;
u32 val;
ret = regmap_read(st->regmap, private, &val);
if (ret)
return ret;
return sysfs_emit(buf, "%u\n", !!(val & BIT(chan->channel)));
}
static ssize_t ltc2688_reg_bool_set(struct iio_dev *indio_dev,
uintptr_t private,
const struct iio_chan_spec *chan,
const char *buf, size_t len)
{
const struct ltc2688_state *st = iio_priv(indio_dev);
int ret;
bool en;
ret = kstrtobool(buf, &en);
if (ret)
return ret;
ret = regmap_update_bits(st->regmap, private, BIT(chan->channel),
en << chan->channel);
if (ret)
return ret;
return len;
}
static ssize_t ltc2688_dither_freq_avail(const struct ltc2688_state *st,
const struct ltc2688_chan *chan,
char *buf)
{
int sz = 0;
u32 f;
for (f = 0; f < ARRAY_SIZE(chan->dither_frequency); f++)
sz += sysfs_emit_at(buf, sz, "%ld ", chan->dither_frequency[f]);
buf[sz - 1] = '\n';
return sz;
}
static ssize_t ltc2688_dither_freq_get(struct iio_dev *indio_dev,
uintptr_t private,
const struct iio_chan_spec *chan,
char *buf)
{
const struct ltc2688_state *st = iio_priv(indio_dev);
const struct ltc2688_chan *c = &st->channels[chan->channel];
u32 reg, freq;
int ret;
if (private == LTC2688_DITHER_FREQ_AVAIL)
return ltc2688_dither_freq_avail(st, c, buf);
ret = regmap_read(st->regmap, LTC2688_CMD_CH_SETTING(chan->channel),
&reg);
if (ret)
return ret;
freq = FIELD_GET(LTC2688_CH_DIT_PER_MSK, reg);
if (freq >= ARRAY_SIZE(c->dither_frequency))
return -EIO;
return sysfs_emit(buf, "%ld\n", c->dither_frequency[freq]);
}
static ssize_t ltc2688_dither_freq_set(struct iio_dev *indio_dev,
uintptr_t private,
const struct iio_chan_spec *chan,
const char *buf, size_t len)
{
const struct ltc2688_state *st = iio_priv(indio_dev);
const struct ltc2688_chan *c = &st->channels[chan->channel];
long val;
u32 freq;
int ret;
if (private == LTC2688_DITHER_FREQ_AVAIL)
return -EINVAL;
ret = kstrtol(buf, 10, &val);
if (ret)
return ret;
for (freq = 0; freq < ARRAY_SIZE(c->dither_frequency); freq++) {
if (val == c->dither_frequency[freq])
break;
}
if (freq == ARRAY_SIZE(c->dither_frequency))
return -EINVAL;
ret = regmap_update_bits(st->regmap,
LTC2688_CMD_CH_SETTING(chan->channel),
LTC2688_CH_DIT_PER_MSK,
FIELD_PREP(LTC2688_CH_DIT_PER_MSK, freq));
if (ret)
return ret;
return len;
}
static ssize_t ltc2688_dac_input_read(struct iio_dev *indio_dev,
uintptr_t private,
const struct iio_chan_spec *chan,
char *buf)
{
struct ltc2688_state *st = iio_priv(indio_dev);
int ret;
u32 val;
if (private == LTC2688_INPUT_B_AVAIL)
return sysfs_emit(buf, "[%u %u %u]\n", ltc2688_raw_range[0],
ltc2688_raw_range[1],
ltc2688_raw_range[2] / 4);
if (private == LTC2688_DITHER_OFF)
return sysfs_emit(buf, "0\n");
ret = ltc2688_dac_code_read(st, chan->channel, private, &val);
if (ret)
return ret;
return sysfs_emit(buf, "%u\n", val);
}
static ssize_t ltc2688_dac_input_write(struct iio_dev *indio_dev,
uintptr_t private,
const struct iio_chan_spec *chan,
const char *buf, size_t len)
{
struct ltc2688_state *st = iio_priv(indio_dev);
int ret;
u16 val;
if (private == LTC2688_INPUT_B_AVAIL || private == LTC2688_DITHER_OFF)
return -EINVAL;
ret = kstrtou16(buf, 10, &val);
if (ret)
return ret;
ret = ltc2688_dac_code_write(st, chan->channel, private, val);
if (ret)
return ret;
return len;
}
static int ltc2688_get_dither_phase(struct iio_dev *dev,
const struct iio_chan_spec *chan)
{
struct ltc2688_state *st = iio_priv(dev);
int ret, regval;
ret = regmap_read(st->regmap, LTC2688_CMD_CH_SETTING(chan->channel),
&regval);
if (ret)
return ret;
return FIELD_GET(LTC2688_CH_DIT_PH_MSK, regval);
}
static int ltc2688_set_dither_phase(struct iio_dev *dev,
const struct iio_chan_spec *chan,
unsigned int phase)
{
struct ltc2688_state *st = iio_priv(dev);
return regmap_update_bits(st->regmap,
LTC2688_CMD_CH_SETTING(chan->channel),
LTC2688_CH_DIT_PH_MSK,
FIELD_PREP(LTC2688_CH_DIT_PH_MSK, phase));
}
static int ltc2688_reg_access(struct iio_dev *indio_dev,
unsigned int reg,
unsigned int writeval,
unsigned int *readval)
{
struct ltc2688_state *st = iio_priv(indio_dev);
if (readval)
return regmap_read(st->regmap, reg, readval);
return regmap_write(st->regmap, reg, writeval);
}
static const char * const ltc2688_dither_phase[] = {
"0", "1.5708", "3.14159", "4.71239",
};
static const struct iio_enum ltc2688_dither_phase_enum = {
.items = ltc2688_dither_phase,
.num_items = ARRAY_SIZE(ltc2688_dither_phase),
.set = ltc2688_set_dither_phase,
.get = ltc2688_get_dither_phase,
};
#define LTC2688_CHAN_EXT_INFO(_name, _what, _shared, _read, _write) { \
.name = _name, \
.read = (_read), \
.write = (_write), \
.private = (_what), \
.shared = (_shared), \
}
/*
* For toggle mode we only expose the symbol attr (sw_toggle) in case a TGPx is
* not provided in dts.
*/
static const struct iio_chan_spec_ext_info ltc2688_toggle_sym_ext_info[] = {
LTC2688_CHAN_EXT_INFO("raw0", LTC2688_INPUT_A, IIO_SEPARATE,
ltc2688_dac_input_read, ltc2688_dac_input_write),
LTC2688_CHAN_EXT_INFO("raw1", LTC2688_INPUT_B, IIO_SEPARATE,
ltc2688_dac_input_read, ltc2688_dac_input_write),
LTC2688_CHAN_EXT_INFO("toggle_en", LTC2688_CMD_TOGGLE_DITHER_EN,
IIO_SEPARATE, ltc2688_reg_bool_get,
ltc2688_dither_toggle_set),
LTC2688_CHAN_EXT_INFO("powerdown", LTC2688_CMD_POWERDOWN, IIO_SEPARATE,
ltc2688_reg_bool_get, ltc2688_reg_bool_set),
LTC2688_CHAN_EXT_INFO("symbol", LTC2688_CMD_SW_TOGGLE, IIO_SEPARATE,
ltc2688_reg_bool_get, ltc2688_reg_bool_set),
{}
};
static const struct iio_chan_spec_ext_info ltc2688_toggle_ext_info[] = {
LTC2688_CHAN_EXT_INFO("raw0", LTC2688_INPUT_A, IIO_SEPARATE,
ltc2688_dac_input_read, ltc2688_dac_input_write),
LTC2688_CHAN_EXT_INFO("raw1", LTC2688_INPUT_B, IIO_SEPARATE,
ltc2688_dac_input_read, ltc2688_dac_input_write),
LTC2688_CHAN_EXT_INFO("toggle_en", LTC2688_CMD_TOGGLE_DITHER_EN,
IIO_SEPARATE, ltc2688_reg_bool_get,
ltc2688_dither_toggle_set),
LTC2688_CHAN_EXT_INFO("powerdown", LTC2688_CMD_POWERDOWN, IIO_SEPARATE,
ltc2688_reg_bool_get, ltc2688_reg_bool_set),
{}
};
static struct iio_chan_spec_ext_info ltc2688_dither_ext_info[] = {
LTC2688_CHAN_EXT_INFO("dither_raw", LTC2688_INPUT_B, IIO_SEPARATE,
ltc2688_dac_input_read, ltc2688_dac_input_write),
LTC2688_CHAN_EXT_INFO("dither_raw_available", LTC2688_INPUT_B_AVAIL,
IIO_SEPARATE, ltc2688_dac_input_read,
ltc2688_dac_input_write),
LTC2688_CHAN_EXT_INFO("dither_offset", LTC2688_DITHER_OFF, IIO_SEPARATE,
ltc2688_dac_input_read, ltc2688_dac_input_write),
/*
* Not IIO_ENUM because the available freq needs to be computed at
* probe. We could still use it, but it didn't felt much right.
*/
LTC2688_CHAN_EXT_INFO("dither_frequency", 0, IIO_SEPARATE,
ltc2688_dither_freq_get, ltc2688_dither_freq_set),
LTC2688_CHAN_EXT_INFO("dither_frequency_available",
LTC2688_DITHER_FREQ_AVAIL, IIO_SEPARATE,
ltc2688_dither_freq_get, ltc2688_dither_freq_set),
IIO_ENUM("dither_phase", IIO_SEPARATE, &ltc2688_dither_phase_enum),
IIO_ENUM_AVAILABLE("dither_phase", IIO_SEPARATE,
&ltc2688_dither_phase_enum),
LTC2688_CHAN_EXT_INFO("dither_en", LTC2688_CMD_TOGGLE_DITHER_EN,
IIO_SEPARATE, ltc2688_reg_bool_get,
ltc2688_dither_toggle_set),
LTC2688_CHAN_EXT_INFO("powerdown", LTC2688_CMD_POWERDOWN, IIO_SEPARATE,
ltc2688_reg_bool_get, ltc2688_reg_bool_set),
{}
};
static const struct iio_chan_spec_ext_info ltc2688_ext_info[] = {
LTC2688_CHAN_EXT_INFO("powerdown", LTC2688_CMD_POWERDOWN, IIO_SEPARATE,
ltc2688_reg_bool_get, ltc2688_reg_bool_set),
{}
};
#define LTC2688_CHANNEL(_chan) { \
.type = IIO_VOLTAGE, \
.indexed = 1, \
.output = 1, \
.channel = (_chan), \
.info_mask_separate = BIT(IIO_CHAN_INFO_CALIBSCALE) | \
BIT(IIO_CHAN_INFO_SCALE) | BIT(IIO_CHAN_INFO_OFFSET) | \
BIT(IIO_CHAN_INFO_CALIBBIAS) | BIT(IIO_CHAN_INFO_RAW), \
.info_mask_separate_available = BIT(IIO_CHAN_INFO_RAW), \
.ext_info = ltc2688_ext_info, \
}
static const struct iio_chan_spec ltc2688_channels[] = {
LTC2688_CHANNEL(0),
LTC2688_CHANNEL(1),
LTC2688_CHANNEL(2),
LTC2688_CHANNEL(3),
LTC2688_CHANNEL(4),
LTC2688_CHANNEL(5),
LTC2688_CHANNEL(6),
LTC2688_CHANNEL(7),
LTC2688_CHANNEL(8),
LTC2688_CHANNEL(9),
LTC2688_CHANNEL(10),
LTC2688_CHANNEL(11),
LTC2688_CHANNEL(12),
LTC2688_CHANNEL(13),
LTC2688_CHANNEL(14),
LTC2688_CHANNEL(15),
};
static void ltc2688_clk_disable(void *clk)
{
clk_disable_unprepare(clk);
}
static const int ltc2688_period[LTC2688_DITHER_FREQ_AVAIL_N] = {
4, 8, 16, 32, 64,
};
static int ltc2688_tgp_clk_setup(struct ltc2688_state *st,
struct ltc2688_chan *chan,
struct fwnode_handle *node, int tgp)
{
struct device *dev = &st->spi->dev;
unsigned long rate;
struct clk *clk;
int ret, f;
clk = devm_get_clk_from_child(dev, to_of_node(node), NULL);
if (IS_ERR(clk))
return dev_err_probe(dev, PTR_ERR(clk), "failed to get tgp clk.\n");
ret = clk_prepare_enable(clk);
if (ret)
return dev_err_probe(dev, ret, "failed to enable tgp clk.\n");
ret = devm_add_action_or_reset(dev, ltc2688_clk_disable, clk);
if (ret)
return ret;
if (chan->toggle_chan)
return 0;
/* calculate available dither frequencies */
rate = clk_get_rate(clk);
for (f = 0; f < ARRAY_SIZE(chan->dither_frequency); f++)
chan->dither_frequency[f] = DIV_ROUND_CLOSEST(rate, ltc2688_period[f]);
return 0;
}
static int ltc2688_span_lookup(const struct ltc2688_state *st, int min, int max)
{
u32 span;
for (span = 0; span < ARRAY_SIZE(ltc2688_span_helper); span++) {
if (min == ltc2688_span_helper[span][0] &&
max == ltc2688_span_helper[span][1])
return span;
}
return -EINVAL;
}
static int ltc2688_channel_config(struct ltc2688_state *st)
{
struct device *dev = &st->spi->dev;
struct fwnode_handle *child;
u32 reg, clk_input, val, tmp[2];
int ret, span;
device_for_each_child_node(dev, child) {
struct ltc2688_chan *chan;
ret = fwnode_property_read_u32(child, "reg", &reg);
if (ret) {
fwnode_handle_put(child);
return dev_err_probe(dev, ret,
"Failed to get reg property\n");
}
if (reg >= LTC2688_DAC_CHANNELS) {
fwnode_handle_put(child);
return dev_err_probe(dev, -EINVAL,
"reg bigger than: %d\n",
LTC2688_DAC_CHANNELS);
}
val = 0;
chan = &st->channels[reg];
if (fwnode_property_read_bool(child, "adi,toggle-mode")) {
chan->toggle_chan = true;
/* assume sw toggle ABI */
st->iio_chan[reg].ext_info = ltc2688_toggle_sym_ext_info;
/*
* Clear IIO_CHAN_INFO_RAW bit as toggle channels expose
* out_voltage_raw{0|1} files.
*/
__clear_bit(IIO_CHAN_INFO_RAW,
&st->iio_chan[reg].info_mask_separate);
}
ret = fwnode_property_read_u32_array(child, "adi,output-range-microvolt",
tmp, ARRAY_SIZE(tmp));
if (!ret) {
span = ltc2688_span_lookup(st, (int)tmp[0] / 1000,
tmp[1] / 1000);
if (span < 0) {
fwnode_handle_put(child);
return dev_err_probe(dev, -EINVAL,
"output range not valid:[%d %d]\n",
tmp[0], tmp[1]);
}
val |= FIELD_PREP(LTC2688_CH_SPAN_MSK, span);
}
ret = fwnode_property_read_u32(child, "adi,toggle-dither-input",
&clk_input);
if (!ret) {
if (clk_input >= LTC2688_CH_TGP_MAX) {
fwnode_handle_put(child);
return dev_err_probe(dev, -EINVAL,
"toggle-dither-input inv value(%d)\n",
clk_input);
}
ret = ltc2688_tgp_clk_setup(st, chan, child, clk_input);
if (ret) {
fwnode_handle_put(child);
return ret;
}
/*
* 0 means software toggle which is the default mode.
* Hence the +1.
*/
val |= FIELD_PREP(LTC2688_CH_TD_SEL_MSK, clk_input + 1);
/*
* If a TGPx is given, we automatically assume a dither
* capable channel (unless toggle is already enabled).
* On top of this we just set here the dither bit in the
* channel settings. It won't have any effect until the
* global toggle/dither bit is enabled.
*/
if (!chan->toggle_chan) {
val |= FIELD_PREP(LTC2688_CH_MODE_MSK, 1);
st->iio_chan[reg].ext_info = ltc2688_dither_ext_info;
} else {
/* wait, no sw toggle after all */
st->iio_chan[reg].ext_info = ltc2688_toggle_ext_info;
}
}
if (fwnode_property_read_bool(child, "adi,overrange")) {
chan->overrange = true;
val |= LTC2688_CH_OVERRANGE_MSK;
}
if (!val)
continue;
ret = regmap_write(st->regmap, LTC2688_CMD_CH_SETTING(reg),
val);
if (ret) {
fwnode_handle_put(child);
return dev_err_probe(dev, -EINVAL,
"failed to set chan settings\n");
}
}
return 0;
}
static int ltc2688_setup(struct ltc2688_state *st, struct regulator *vref)
{
struct device *dev = &st->spi->dev;
struct gpio_desc *gpio;
int ret;
/*
* If we have a reset pin, use that to reset the board, If not, use
* the reset bit.
*/
gpio = devm_gpiod_get_optional(dev, "clr", GPIOD_OUT_HIGH);
if (IS_ERR(gpio))
return dev_err_probe(dev, PTR_ERR(gpio), "Failed to get reset gpio");
if (gpio) {
usleep_range(1000, 1200);
/* bring device out of reset */
gpiod_set_value_cansleep(gpio, 0);
} else {
ret = regmap_update_bits(st->regmap, LTC2688_CMD_CONFIG,
LTC2688_CONFIG_RST,
LTC2688_CONFIG_RST);
if (ret)
return ret;
}
usleep_range(10000, 12000);
/*
* Duplicate the default channel configuration as it can change during
* @ltc2688_channel_config()
*/
st->iio_chan = devm_kmemdup(dev, ltc2688_channels,
sizeof(ltc2688_channels), GFP_KERNEL);
if (!st->iio_chan)
return -ENOMEM;
ret = ltc2688_channel_config(st);
if (ret)
return ret;
if (!vref)
return 0;
return regmap_set_bits(st->regmap, LTC2688_CMD_CONFIG,
LTC2688_CONFIG_EXT_REF);
}
static void ltc2688_disable_regulator(void *regulator)
{
regulator_disable(regulator);
}
static bool ltc2688_reg_readable(struct device *dev, unsigned int reg)
{
switch (reg) {
case LTC2688_CMD_CH_CODE(0) ... LTC2688_CMD_CH_GAIN(15):
return true;
case LTC2688_CMD_CONFIG ... LTC2688_CMD_THERMAL_STAT:
return true;
default:
return false;
}
}
static bool ltc2688_reg_writable(struct device *dev, unsigned int reg)
{
/*
* There's a jump from 0x76 to 0x78 in the write codes and the thermal
* status code is 0x77 (which is read only) so that we need to check
* that special condition.
*/
if (reg <= LTC2688_CMD_UPDATE_ALL && reg != LTC2688_CMD_THERMAL_STAT)
return true;
return false;
}
static struct regmap_bus ltc2688_regmap_bus = {
.read = ltc2688_spi_read,
.write = ltc2688_spi_write,
.read_flag_mask = LTC2688_READ_OPERATION,
.reg_format_endian_default = REGMAP_ENDIAN_BIG,
.val_format_endian_default = REGMAP_ENDIAN_BIG,
};
static const struct regmap_config ltc2688_regmap_config = {
.reg_bits = 8,
.val_bits = 16,
.readable_reg = ltc2688_reg_readable,
.writeable_reg = ltc2688_reg_writable,
/* ignoring the no op command */
.max_register = LTC2688_CMD_UPDATE_ALL,
};
static const struct iio_info ltc2688_info = {
.write_raw = ltc2688_write_raw,
.read_raw = ltc2688_read_raw,
.read_avail = ltc2688_read_avail,
.debugfs_reg_access = ltc2688_reg_access,
};
static int ltc2688_probe(struct spi_device *spi)
{
static const char * const regulators[] = { "vcc", "iovcc" };
struct ltc2688_state *st;
struct iio_dev *indio_dev;
struct regulator *vref_reg;
struct device *dev = &spi->dev;
int ret;
indio_dev = devm_iio_device_alloc(dev, sizeof(*st));
if (!indio_dev)
return -ENOMEM;
st = iio_priv(indio_dev);
st->spi = spi;
/* Just write this once. No need to do it in every regmap read. */
st->tx_data[3] = LTC2688_CMD_NOOP;
mutex_init(&st->lock);
st->regmap = devm_regmap_init(dev, &ltc2688_regmap_bus, st,
&ltc2688_regmap_config);
if (IS_ERR(st->regmap))
return dev_err_probe(dev, PTR_ERR(st->regmap),
"Failed to init regmap");
ret = devm_regulator_bulk_get_enable(dev, ARRAY_SIZE(regulators),
regulators);
if (ret)
return dev_err_probe(dev, ret, "Failed to enable regulators\n");
vref_reg = devm_regulator_get_optional(dev, "vref");
if (IS_ERR(vref_reg)) {
if (PTR_ERR(vref_reg) != -ENODEV)
return dev_err_probe(dev, PTR_ERR(vref_reg),
"Failed to get vref regulator");
vref_reg = NULL;
/* internal reference */
st->vref = 4096;
} else {
ret = regulator_enable(vref_reg);
if (ret)
return dev_err_probe(dev, ret,
"Failed to enable vref regulators\n");
ret = devm_add_action_or_reset(dev, ltc2688_disable_regulator,
vref_reg);
if (ret)
return ret;
ret = regulator_get_voltage(vref_reg);
if (ret < 0)
return dev_err_probe(dev, ret, "Failed to get vref\n");
st->vref = ret / 1000;
}
ret = ltc2688_setup(st, vref_reg);
if (ret)
return ret;
indio_dev->name = "ltc2688";
indio_dev->info = &ltc2688_info;
indio_dev->modes = INDIO_DIRECT_MODE;
indio_dev->channels = st->iio_chan;
indio_dev->num_channels = ARRAY_SIZE(ltc2688_channels);
return devm_iio_device_register(dev, indio_dev);
}
static const struct of_device_id ltc2688_of_id[] = {
{ .compatible = "adi,ltc2688" },
{}
};
MODULE_DEVICE_TABLE(of, ltc2688_of_id);
static const struct spi_device_id ltc2688_id[] = {
{ "ltc2688" },
{}
};
MODULE_DEVICE_TABLE(spi, ltc2688_id);
static struct spi_driver ltc2688_driver = {
.driver = {
.name = "ltc2688",
.of_match_table = ltc2688_of_id,
},
.probe = ltc2688_probe,
.id_table = ltc2688_id,
};
module_spi_driver(ltc2688_driver);
MODULE_AUTHOR("Nuno Sá <nuno.sa@analog.com>");
MODULE_DESCRIPTION("Analog Devices LTC2688 DAC");
MODULE_LICENSE("GPL");