linux/fs/erofs/decompressor_zstd.c
Gao Xiang 7c35de4df1 erofs: Zstandard compression support
Add Zstandard compression as the 4th supported algorithm since it
becomes more popular now and some end users have asked this for
quite a while [1][2].

Each EROFS physical cluster contains only one valid standard
Zstandard frame as described in [3] so that decompression can be
performed on a per-pcluster basis independently.

Currently, it just leverages multi-call stream decompression APIs with
internal sliding window buffers.  One-shot or bufferless decompression
could be implemented later for even better performance if needed.

[1] https://github.com/erofs/erofs-utils/issues/6
[2] https://lore.kernel.org/r/Y08h+z6CZdnS1XBm@B-P7TQMD6M-0146.lan
[3] https://www.rfc-editor.org/rfc/rfc8478.txt

Acked-by: Chao Yu <chao@kernel.org>
Signed-off-by: Gao Xiang <hsiangkao@linux.alibaba.com>
Link: https://lore.kernel.org/r/20240508234453.17896-1-xiang@kernel.org
2024-05-09 07:46:56 +08:00

280 lines
7.2 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
#include <linux/zstd.h>
#include "compress.h"
struct z_erofs_zstd {
struct z_erofs_zstd *next;
u8 bounce[PAGE_SIZE];
void *wksp;
unsigned int wkspsz;
};
static DEFINE_SPINLOCK(z_erofs_zstd_lock);
static unsigned int z_erofs_zstd_max_dictsize;
static unsigned int z_erofs_zstd_nstrms, z_erofs_zstd_avail_strms;
static struct z_erofs_zstd *z_erofs_zstd_head;
static DECLARE_WAIT_QUEUE_HEAD(z_erofs_zstd_wq);
module_param_named(zstd_streams, z_erofs_zstd_nstrms, uint, 0444);
static struct z_erofs_zstd *z_erofs_isolate_strms(bool all)
{
struct z_erofs_zstd *strm;
again:
spin_lock(&z_erofs_zstd_lock);
strm = z_erofs_zstd_head;
if (!strm) {
spin_unlock(&z_erofs_zstd_lock);
wait_event(z_erofs_zstd_wq, READ_ONCE(z_erofs_zstd_head));
goto again;
}
z_erofs_zstd_head = all ? NULL : strm->next;
spin_unlock(&z_erofs_zstd_lock);
return strm;
}
void z_erofs_zstd_exit(void)
{
while (z_erofs_zstd_avail_strms) {
struct z_erofs_zstd *strm, *n;
for (strm = z_erofs_isolate_strms(true); strm; strm = n) {
n = strm->next;
kvfree(strm->wksp);
kfree(strm);
--z_erofs_zstd_avail_strms;
}
}
}
int __init z_erofs_zstd_init(void)
{
/* by default, use # of possible CPUs instead */
if (!z_erofs_zstd_nstrms)
z_erofs_zstd_nstrms = num_possible_cpus();
for (; z_erofs_zstd_avail_strms < z_erofs_zstd_nstrms;
++z_erofs_zstd_avail_strms) {
struct z_erofs_zstd *strm;
strm = kzalloc(sizeof(*strm), GFP_KERNEL);
if (!strm) {
z_erofs_zstd_exit();
return -ENOMEM;
}
spin_lock(&z_erofs_zstd_lock);
strm->next = z_erofs_zstd_head;
z_erofs_zstd_head = strm;
spin_unlock(&z_erofs_zstd_lock);
}
return 0;
}
int z_erofs_load_zstd_config(struct super_block *sb,
struct erofs_super_block *dsb, void *data, int size)
{
static DEFINE_MUTEX(zstd_resize_mutex);
struct z_erofs_zstd_cfgs *zstd = data;
unsigned int dict_size, wkspsz;
struct z_erofs_zstd *strm, *head = NULL;
void *wksp;
if (!zstd || size < sizeof(struct z_erofs_zstd_cfgs) || zstd->format) {
erofs_err(sb, "unsupported zstd format, size=%u", size);
return -EINVAL;
}
if (zstd->windowlog > ilog2(Z_EROFS_ZSTD_MAX_DICT_SIZE) - 10) {
erofs_err(sb, "unsupported zstd window log %u", zstd->windowlog);
return -EINVAL;
}
dict_size = 1U << (zstd->windowlog + 10);
/* in case 2 z_erofs_load_zstd_config() race to avoid deadlock */
mutex_lock(&zstd_resize_mutex);
if (z_erofs_zstd_max_dictsize >= dict_size) {
mutex_unlock(&zstd_resize_mutex);
return 0;
}
/* 1. collect/isolate all streams for the following check */
while (z_erofs_zstd_avail_strms) {
struct z_erofs_zstd *n;
for (strm = z_erofs_isolate_strms(true); strm; strm = n) {
n = strm->next;
strm->next = head;
head = strm;
--z_erofs_zstd_avail_strms;
}
}
/* 2. walk each isolated stream and grow max dict_size if needed */
wkspsz = zstd_dstream_workspace_bound(dict_size);
for (strm = head; strm; strm = strm->next) {
wksp = kvmalloc(wkspsz, GFP_KERNEL);
if (!wksp)
break;
kvfree(strm->wksp);
strm->wksp = wksp;
strm->wkspsz = wkspsz;
}
/* 3. push back all to the global list and update max dict_size */
spin_lock(&z_erofs_zstd_lock);
DBG_BUGON(z_erofs_zstd_head);
z_erofs_zstd_head = head;
spin_unlock(&z_erofs_zstd_lock);
z_erofs_zstd_avail_strms = z_erofs_zstd_nstrms;
wake_up_all(&z_erofs_zstd_wq);
if (!strm)
z_erofs_zstd_max_dictsize = dict_size;
mutex_unlock(&zstd_resize_mutex);
return strm ? -ENOMEM : 0;
}
int z_erofs_zstd_decompress(struct z_erofs_decompress_req *rq,
struct page **pgpl)
{
const unsigned int nrpages_out =
PAGE_ALIGN(rq->pageofs_out + rq->outputsize) >> PAGE_SHIFT;
const unsigned int nrpages_in =
PAGE_ALIGN(rq->inputsize) >> PAGE_SHIFT;
zstd_dstream *stream;
struct super_block *sb = rq->sb;
unsigned int insz, outsz, pofs;
struct z_erofs_zstd *strm;
zstd_in_buffer in_buf = { NULL, 0, 0 };
zstd_out_buffer out_buf = { NULL, 0, 0 };
u8 *kin, *kout = NULL;
bool bounced = false;
int no = -1, ni = 0, j = 0, zerr, err;
/* 1. get the exact compressed size */
kin = kmap_local_page(*rq->in);
err = z_erofs_fixup_insize(rq, kin + rq->pageofs_in,
min_t(unsigned int, rq->inputsize,
sb->s_blocksize - rq->pageofs_in));
if (err) {
kunmap_local(kin);
return err;
}
/* 2. get an available ZSTD context */
strm = z_erofs_isolate_strms(false);
/* 3. multi-call decompress */
insz = rq->inputsize;
outsz = rq->outputsize;
stream = zstd_init_dstream(z_erofs_zstd_max_dictsize, strm->wksp, strm->wkspsz);
if (!stream) {
err = -EIO;
goto failed_zinit;
}
pofs = rq->pageofs_out;
in_buf.size = min_t(u32, insz, PAGE_SIZE - rq->pageofs_in);
insz -= in_buf.size;
in_buf.src = kin + rq->pageofs_in;
do {
if (out_buf.size == out_buf.pos) {
if (++no >= nrpages_out || !outsz) {
erofs_err(sb, "insufficient space for decompressed data");
err = -EFSCORRUPTED;
break;
}
if (kout)
kunmap_local(kout);
out_buf.size = min_t(u32, outsz, PAGE_SIZE - pofs);
outsz -= out_buf.size;
if (!rq->out[no]) {
rq->out[no] = erofs_allocpage(pgpl, rq->gfp);
if (!rq->out[no]) {
kout = NULL;
err = -ENOMEM;
break;
}
set_page_private(rq->out[no],
Z_EROFS_SHORTLIVED_PAGE);
}
kout = kmap_local_page(rq->out[no]);
out_buf.dst = kout + pofs;
out_buf.pos = 0;
pofs = 0;
}
if (in_buf.size == in_buf.pos && insz) {
if (++ni >= nrpages_in) {
erofs_err(sb, "invalid compressed data");
err = -EFSCORRUPTED;
break;
}
if (kout) /* unlike kmap(), take care of the orders */
kunmap_local(kout);
kunmap_local(kin);
in_buf.size = min_t(u32, insz, PAGE_SIZE);
insz -= in_buf.size;
kin = kmap_local_page(rq->in[ni]);
in_buf.src = kin;
in_buf.pos = 0;
bounced = false;
if (kout) {
j = (u8 *)out_buf.dst - kout;
kout = kmap_local_page(rq->out[no]);
out_buf.dst = kout + j;
}
}
/*
* Handle overlapping: Use bounced buffer if the compressed
* data is under processing; Or use short-lived pages from the
* on-stack pagepool where pages share among the same request
* and not _all_ inplace I/O pages are needed to be doubled.
*/
if (!bounced && rq->out[no] == rq->in[ni]) {
memcpy(strm->bounce, in_buf.src, in_buf.size);
in_buf.src = strm->bounce;
bounced = true;
}
for (j = ni + 1; j < nrpages_in; ++j) {
struct page *tmppage;
if (rq->out[no] != rq->in[j])
continue;
tmppage = erofs_allocpage(pgpl, rq->gfp);
if (!tmppage) {
err = -ENOMEM;
goto failed;
}
set_page_private(tmppage, Z_EROFS_SHORTLIVED_PAGE);
copy_highpage(tmppage, rq->in[j]);
rq->in[j] = tmppage;
}
zerr = zstd_decompress_stream(stream, &out_buf, &in_buf);
if (zstd_is_error(zerr) || (!zerr && outsz)) {
erofs_err(sb, "failed to decompress in[%u] out[%u]: %s",
rq->inputsize, rq->outputsize,
zerr ? zstd_get_error_name(zerr) : "unexpected end of stream");
err = -EFSCORRUPTED;
break;
}
} while (outsz || out_buf.pos < out_buf.size);
failed:
if (kout)
kunmap_local(kout);
failed_zinit:
kunmap_local(kin);
/* 4. push back ZSTD stream context to the global list */
spin_lock(&z_erofs_zstd_lock);
strm->next = z_erofs_zstd_head;
z_erofs_zstd_head = strm;
spin_unlock(&z_erofs_zstd_lock);
wake_up(&z_erofs_zstd_wq);
return err;
}