linux/fs/xfs/xfs_buf.c
Dave Chinner ad1858d777 xfs: rework remote attr CRCs
Note: this changes the on-disk remote attribute format. I assert
that this is OK to do as CRCs are marked experimental and the first
kernel it is included in has not yet reached release yet. Further,
the userspace utilities are still evolving and so anyone using this
stuff right now is a developer or tester using volatile filesystems
for testing this feature. Hence changing the format right now to
save longer term pain is the right thing to do.

The fundamental change is to move from a header per extent in the
attribute to a header per filesytem block in the attribute. This
means there are more header blocks and the parsing of the attribute
data is slightly more complex, but it has the advantage that we
always know the size of the attribute on disk based on the length of
the data it contains.

This is where the header-per-extent method has problems. We don't
know the size of the attribute on disk without first knowing how
many extents are used to hold it. And we can't tell from a
mapping lookup, either, because remote attributes can be allocated
contiguously with other attribute blocks and so there is no obvious
way of determining the actual size of the atribute on disk short of
walking and mapping buffers.

The problem with this approach is that if we map a buffer
incorrectly (e.g. we make the last buffer for the attribute data too
long), we then get buffer cache lookup failure when we map it
correctly. i.e. we get a size mismatch on lookup. This is not
necessarily fatal, but it's a cache coherency problem that can lead
to returning the wrong data to userspace or writing the wrong data
to disk. And debug kernels will assert fail if this occurs.

I found lots of niggly little problems trying to fix this issue on a
4k block size filesystem, finally getting it to pass with lots of
fixes. The thing is, 1024 byte filesystems still failed, and it was
getting really complex handling all the corner cases that were
showing up. And there were clearly more that I hadn't found yet.

It is complex, fragile code, and if we don't fix it now, it will be
complex, fragile code forever more.

Hence the simple fix is to add a header to each filesystem block.
This gives us the same relationship between the attribute data
length and the number of blocks on disk as we have without CRCs -
it's a linear mapping and doesn't require us to guess anything. It
is simple to implement, too - the remote block count calculated at
lookup time can be used by the remote attribute set/get/remove code
without modification for both CRC and non-CRC filesystems. The world
becomes sane again.

Because the copy-in and copy-out now need to iterate over each
filesystem block, I moved them into helper functions so we separate
the block mapping and buffer manupulations from the attribute data
and CRC header manipulations. The code becomes much clearer as a
result, and it is a lot easier to understand and debug. It also
appears to be much more robust - once it worked on 4k block size
filesystems, it has worked without failure on 1k block size
filesystems, too.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Ben Myers <bpm@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
2013-05-23 18:04:06 -05:00

1879 lines
42 KiB
C

/*
* Copyright (c) 2000-2006 Silicon Graphics, Inc.
* All Rights Reserved.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it would be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "xfs.h"
#include <linux/stddef.h>
#include <linux/errno.h>
#include <linux/gfp.h>
#include <linux/pagemap.h>
#include <linux/init.h>
#include <linux/vmalloc.h>
#include <linux/bio.h>
#include <linux/sysctl.h>
#include <linux/proc_fs.h>
#include <linux/workqueue.h>
#include <linux/percpu.h>
#include <linux/blkdev.h>
#include <linux/hash.h>
#include <linux/kthread.h>
#include <linux/migrate.h>
#include <linux/backing-dev.h>
#include <linux/freezer.h>
#include "xfs_sb.h"
#include "xfs_log.h"
#include "xfs_ag.h"
#include "xfs_mount.h"
#include "xfs_trace.h"
static kmem_zone_t *xfs_buf_zone;
static struct workqueue_struct *xfslogd_workqueue;
#ifdef XFS_BUF_LOCK_TRACKING
# define XB_SET_OWNER(bp) ((bp)->b_last_holder = current->pid)
# define XB_CLEAR_OWNER(bp) ((bp)->b_last_holder = -1)
# define XB_GET_OWNER(bp) ((bp)->b_last_holder)
#else
# define XB_SET_OWNER(bp) do { } while (0)
# define XB_CLEAR_OWNER(bp) do { } while (0)
# define XB_GET_OWNER(bp) do { } while (0)
#endif
#define xb_to_gfp(flags) \
((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : GFP_NOFS) | __GFP_NOWARN)
static inline int
xfs_buf_is_vmapped(
struct xfs_buf *bp)
{
/*
* Return true if the buffer is vmapped.
*
* b_addr is null if the buffer is not mapped, but the code is clever
* enough to know it doesn't have to map a single page, so the check has
* to be both for b_addr and bp->b_page_count > 1.
*/
return bp->b_addr && bp->b_page_count > 1;
}
static inline int
xfs_buf_vmap_len(
struct xfs_buf *bp)
{
return (bp->b_page_count * PAGE_SIZE) - bp->b_offset;
}
/*
* xfs_buf_lru_add - add a buffer to the LRU.
*
* The LRU takes a new reference to the buffer so that it will only be freed
* once the shrinker takes the buffer off the LRU.
*/
STATIC void
xfs_buf_lru_add(
struct xfs_buf *bp)
{
struct xfs_buftarg *btp = bp->b_target;
spin_lock(&btp->bt_lru_lock);
if (list_empty(&bp->b_lru)) {
atomic_inc(&bp->b_hold);
list_add_tail(&bp->b_lru, &btp->bt_lru);
btp->bt_lru_nr++;
bp->b_lru_flags &= ~_XBF_LRU_DISPOSE;
}
spin_unlock(&btp->bt_lru_lock);
}
/*
* xfs_buf_lru_del - remove a buffer from the LRU
*
* The unlocked check is safe here because it only occurs when there are not
* b_lru_ref counts left on the inode under the pag->pag_buf_lock. it is there
* to optimise the shrinker removing the buffer from the LRU and calling
* xfs_buf_free(). i.e. it removes an unnecessary round trip on the
* bt_lru_lock.
*/
STATIC void
xfs_buf_lru_del(
struct xfs_buf *bp)
{
struct xfs_buftarg *btp = bp->b_target;
if (list_empty(&bp->b_lru))
return;
spin_lock(&btp->bt_lru_lock);
if (!list_empty(&bp->b_lru)) {
list_del_init(&bp->b_lru);
btp->bt_lru_nr--;
}
spin_unlock(&btp->bt_lru_lock);
}
/*
* When we mark a buffer stale, we remove the buffer from the LRU and clear the
* b_lru_ref count so that the buffer is freed immediately when the buffer
* reference count falls to zero. If the buffer is already on the LRU, we need
* to remove the reference that LRU holds on the buffer.
*
* This prevents build-up of stale buffers on the LRU.
*/
void
xfs_buf_stale(
struct xfs_buf *bp)
{
ASSERT(xfs_buf_islocked(bp));
bp->b_flags |= XBF_STALE;
/*
* Clear the delwri status so that a delwri queue walker will not
* flush this buffer to disk now that it is stale. The delwri queue has
* a reference to the buffer, so this is safe to do.
*/
bp->b_flags &= ~_XBF_DELWRI_Q;
atomic_set(&(bp)->b_lru_ref, 0);
if (!list_empty(&bp->b_lru)) {
struct xfs_buftarg *btp = bp->b_target;
spin_lock(&btp->bt_lru_lock);
if (!list_empty(&bp->b_lru) &&
!(bp->b_lru_flags & _XBF_LRU_DISPOSE)) {
list_del_init(&bp->b_lru);
btp->bt_lru_nr--;
atomic_dec(&bp->b_hold);
}
spin_unlock(&btp->bt_lru_lock);
}
ASSERT(atomic_read(&bp->b_hold) >= 1);
}
static int
xfs_buf_get_maps(
struct xfs_buf *bp,
int map_count)
{
ASSERT(bp->b_maps == NULL);
bp->b_map_count = map_count;
if (map_count == 1) {
bp->b_maps = &bp->__b_map;
return 0;
}
bp->b_maps = kmem_zalloc(map_count * sizeof(struct xfs_buf_map),
KM_NOFS);
if (!bp->b_maps)
return ENOMEM;
return 0;
}
/*
* Frees b_pages if it was allocated.
*/
static void
xfs_buf_free_maps(
struct xfs_buf *bp)
{
if (bp->b_maps != &bp->__b_map) {
kmem_free(bp->b_maps);
bp->b_maps = NULL;
}
}
struct xfs_buf *
_xfs_buf_alloc(
struct xfs_buftarg *target,
struct xfs_buf_map *map,
int nmaps,
xfs_buf_flags_t flags)
{
struct xfs_buf *bp;
int error;
int i;
bp = kmem_zone_zalloc(xfs_buf_zone, KM_NOFS);
if (unlikely(!bp))
return NULL;
/*
* We don't want certain flags to appear in b_flags unless they are
* specifically set by later operations on the buffer.
*/
flags &= ~(XBF_UNMAPPED | XBF_TRYLOCK | XBF_ASYNC | XBF_READ_AHEAD);
atomic_set(&bp->b_hold, 1);
atomic_set(&bp->b_lru_ref, 1);
init_completion(&bp->b_iowait);
INIT_LIST_HEAD(&bp->b_lru);
INIT_LIST_HEAD(&bp->b_list);
RB_CLEAR_NODE(&bp->b_rbnode);
sema_init(&bp->b_sema, 0); /* held, no waiters */
XB_SET_OWNER(bp);
bp->b_target = target;
bp->b_flags = flags;
/*
* Set length and io_length to the same value initially.
* I/O routines should use io_length, which will be the same in
* most cases but may be reset (e.g. XFS recovery).
*/
error = xfs_buf_get_maps(bp, nmaps);
if (error) {
kmem_zone_free(xfs_buf_zone, bp);
return NULL;
}
bp->b_bn = map[0].bm_bn;
bp->b_length = 0;
for (i = 0; i < nmaps; i++) {
bp->b_maps[i].bm_bn = map[i].bm_bn;
bp->b_maps[i].bm_len = map[i].bm_len;
bp->b_length += map[i].bm_len;
}
bp->b_io_length = bp->b_length;
atomic_set(&bp->b_pin_count, 0);
init_waitqueue_head(&bp->b_waiters);
XFS_STATS_INC(xb_create);
trace_xfs_buf_init(bp, _RET_IP_);
return bp;
}
/*
* Allocate a page array capable of holding a specified number
* of pages, and point the page buf at it.
*/
STATIC int
_xfs_buf_get_pages(
xfs_buf_t *bp,
int page_count,
xfs_buf_flags_t flags)
{
/* Make sure that we have a page list */
if (bp->b_pages == NULL) {
bp->b_page_count = page_count;
if (page_count <= XB_PAGES) {
bp->b_pages = bp->b_page_array;
} else {
bp->b_pages = kmem_alloc(sizeof(struct page *) *
page_count, KM_NOFS);
if (bp->b_pages == NULL)
return -ENOMEM;
}
memset(bp->b_pages, 0, sizeof(struct page *) * page_count);
}
return 0;
}
/*
* Frees b_pages if it was allocated.
*/
STATIC void
_xfs_buf_free_pages(
xfs_buf_t *bp)
{
if (bp->b_pages != bp->b_page_array) {
kmem_free(bp->b_pages);
bp->b_pages = NULL;
}
}
/*
* Releases the specified buffer.
*
* The modification state of any associated pages is left unchanged.
* The buffer most not be on any hash - use xfs_buf_rele instead for
* hashed and refcounted buffers
*/
void
xfs_buf_free(
xfs_buf_t *bp)
{
trace_xfs_buf_free(bp, _RET_IP_);
ASSERT(list_empty(&bp->b_lru));
if (bp->b_flags & _XBF_PAGES) {
uint i;
if (xfs_buf_is_vmapped(bp))
vm_unmap_ram(bp->b_addr - bp->b_offset,
bp->b_page_count);
for (i = 0; i < bp->b_page_count; i++) {
struct page *page = bp->b_pages[i];
__free_page(page);
}
} else if (bp->b_flags & _XBF_KMEM)
kmem_free(bp->b_addr);
_xfs_buf_free_pages(bp);
xfs_buf_free_maps(bp);
kmem_zone_free(xfs_buf_zone, bp);
}
/*
* Allocates all the pages for buffer in question and builds it's page list.
*/
STATIC int
xfs_buf_allocate_memory(
xfs_buf_t *bp,
uint flags)
{
size_t size;
size_t nbytes, offset;
gfp_t gfp_mask = xb_to_gfp(flags);
unsigned short page_count, i;
xfs_off_t start, end;
int error;
/*
* for buffers that are contained within a single page, just allocate
* the memory from the heap - there's no need for the complexity of
* page arrays to keep allocation down to order 0.
*/
size = BBTOB(bp->b_length);
if (size < PAGE_SIZE) {
bp->b_addr = kmem_alloc(size, KM_NOFS);
if (!bp->b_addr) {
/* low memory - use alloc_page loop instead */
goto use_alloc_page;
}
if (((unsigned long)(bp->b_addr + size - 1) & PAGE_MASK) !=
((unsigned long)bp->b_addr & PAGE_MASK)) {
/* b_addr spans two pages - use alloc_page instead */
kmem_free(bp->b_addr);
bp->b_addr = NULL;
goto use_alloc_page;
}
bp->b_offset = offset_in_page(bp->b_addr);
bp->b_pages = bp->b_page_array;
bp->b_pages[0] = virt_to_page(bp->b_addr);
bp->b_page_count = 1;
bp->b_flags |= _XBF_KMEM;
return 0;
}
use_alloc_page:
start = BBTOB(bp->b_maps[0].bm_bn) >> PAGE_SHIFT;
end = (BBTOB(bp->b_maps[0].bm_bn + bp->b_length) + PAGE_SIZE - 1)
>> PAGE_SHIFT;
page_count = end - start;
error = _xfs_buf_get_pages(bp, page_count, flags);
if (unlikely(error))
return error;
offset = bp->b_offset;
bp->b_flags |= _XBF_PAGES;
for (i = 0; i < bp->b_page_count; i++) {
struct page *page;
uint retries = 0;
retry:
page = alloc_page(gfp_mask);
if (unlikely(page == NULL)) {
if (flags & XBF_READ_AHEAD) {
bp->b_page_count = i;
error = ENOMEM;
goto out_free_pages;
}
/*
* This could deadlock.
*
* But until all the XFS lowlevel code is revamped to
* handle buffer allocation failures we can't do much.
*/
if (!(++retries % 100))
xfs_err(NULL,
"possible memory allocation deadlock in %s (mode:0x%x)",
__func__, gfp_mask);
XFS_STATS_INC(xb_page_retries);
congestion_wait(BLK_RW_ASYNC, HZ/50);
goto retry;
}
XFS_STATS_INC(xb_page_found);
nbytes = min_t(size_t, size, PAGE_SIZE - offset);
size -= nbytes;
bp->b_pages[i] = page;
offset = 0;
}
return 0;
out_free_pages:
for (i = 0; i < bp->b_page_count; i++)
__free_page(bp->b_pages[i]);
return error;
}
/*
* Map buffer into kernel address-space if necessary.
*/
STATIC int
_xfs_buf_map_pages(
xfs_buf_t *bp,
uint flags)
{
ASSERT(bp->b_flags & _XBF_PAGES);
if (bp->b_page_count == 1) {
/* A single page buffer is always mappable */
bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset;
} else if (flags & XBF_UNMAPPED) {
bp->b_addr = NULL;
} else {
int retried = 0;
do {
bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count,
-1, PAGE_KERNEL);
if (bp->b_addr)
break;
vm_unmap_aliases();
} while (retried++ <= 1);
if (!bp->b_addr)
return -ENOMEM;
bp->b_addr += bp->b_offset;
}
return 0;
}
/*
* Finding and Reading Buffers
*/
/*
* Look up, and creates if absent, a lockable buffer for
* a given range of an inode. The buffer is returned
* locked. No I/O is implied by this call.
*/
xfs_buf_t *
_xfs_buf_find(
struct xfs_buftarg *btp,
struct xfs_buf_map *map,
int nmaps,
xfs_buf_flags_t flags,
xfs_buf_t *new_bp)
{
size_t numbytes;
struct xfs_perag *pag;
struct rb_node **rbp;
struct rb_node *parent;
xfs_buf_t *bp;
xfs_daddr_t blkno = map[0].bm_bn;
xfs_daddr_t eofs;
int numblks = 0;
int i;
for (i = 0; i < nmaps; i++)
numblks += map[i].bm_len;
numbytes = BBTOB(numblks);
/* Check for IOs smaller than the sector size / not sector aligned */
ASSERT(!(numbytes < (1 << btp->bt_sshift)));
ASSERT(!(BBTOB(blkno) & (xfs_off_t)btp->bt_smask));
/*
* Corrupted block numbers can get through to here, unfortunately, so we
* have to check that the buffer falls within the filesystem bounds.
*/
eofs = XFS_FSB_TO_BB(btp->bt_mount, btp->bt_mount->m_sb.sb_dblocks);
if (blkno >= eofs) {
/*
* XXX (dgc): we should really be returning EFSCORRUPTED here,
* but none of the higher level infrastructure supports
* returning a specific error on buffer lookup failures.
*/
xfs_alert(btp->bt_mount,
"%s: Block out of range: block 0x%llx, EOFS 0x%llx ",
__func__, blkno, eofs);
WARN_ON(1);
return NULL;
}
/* get tree root */
pag = xfs_perag_get(btp->bt_mount,
xfs_daddr_to_agno(btp->bt_mount, blkno));
/* walk tree */
spin_lock(&pag->pag_buf_lock);
rbp = &pag->pag_buf_tree.rb_node;
parent = NULL;
bp = NULL;
while (*rbp) {
parent = *rbp;
bp = rb_entry(parent, struct xfs_buf, b_rbnode);
if (blkno < bp->b_bn)
rbp = &(*rbp)->rb_left;
else if (blkno > bp->b_bn)
rbp = &(*rbp)->rb_right;
else {
/*
* found a block number match. If the range doesn't
* match, the only way this is allowed is if the buffer
* in the cache is stale and the transaction that made
* it stale has not yet committed. i.e. we are
* reallocating a busy extent. Skip this buffer and
* continue searching to the right for an exact match.
*/
if (bp->b_length != numblks) {
ASSERT(bp->b_flags & XBF_STALE);
rbp = &(*rbp)->rb_right;
continue;
}
atomic_inc(&bp->b_hold);
goto found;
}
}
/* No match found */
if (new_bp) {
rb_link_node(&new_bp->b_rbnode, parent, rbp);
rb_insert_color(&new_bp->b_rbnode, &pag->pag_buf_tree);
/* the buffer keeps the perag reference until it is freed */
new_bp->b_pag = pag;
spin_unlock(&pag->pag_buf_lock);
} else {
XFS_STATS_INC(xb_miss_locked);
spin_unlock(&pag->pag_buf_lock);
xfs_perag_put(pag);
}
return new_bp;
found:
spin_unlock(&pag->pag_buf_lock);
xfs_perag_put(pag);
if (!xfs_buf_trylock(bp)) {
if (flags & XBF_TRYLOCK) {
xfs_buf_rele(bp);
XFS_STATS_INC(xb_busy_locked);
return NULL;
}
xfs_buf_lock(bp);
XFS_STATS_INC(xb_get_locked_waited);
}
/*
* if the buffer is stale, clear all the external state associated with
* it. We need to keep flags such as how we allocated the buffer memory
* intact here.
*/
if (bp->b_flags & XBF_STALE) {
ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
ASSERT(bp->b_iodone == NULL);
bp->b_flags &= _XBF_KMEM | _XBF_PAGES;
bp->b_ops = NULL;
}
trace_xfs_buf_find(bp, flags, _RET_IP_);
XFS_STATS_INC(xb_get_locked);
return bp;
}
/*
* Assembles a buffer covering the specified range. The code is optimised for
* cache hits, as metadata intensive workloads will see 3 orders of magnitude
* more hits than misses.
*/
struct xfs_buf *
xfs_buf_get_map(
struct xfs_buftarg *target,
struct xfs_buf_map *map,
int nmaps,
xfs_buf_flags_t flags)
{
struct xfs_buf *bp;
struct xfs_buf *new_bp;
int error = 0;
bp = _xfs_buf_find(target, map, nmaps, flags, NULL);
if (likely(bp))
goto found;
new_bp = _xfs_buf_alloc(target, map, nmaps, flags);
if (unlikely(!new_bp))
return NULL;
error = xfs_buf_allocate_memory(new_bp, flags);
if (error) {
xfs_buf_free(new_bp);
return NULL;
}
bp = _xfs_buf_find(target, map, nmaps, flags, new_bp);
if (!bp) {
xfs_buf_free(new_bp);
return NULL;
}
if (bp != new_bp)
xfs_buf_free(new_bp);
found:
if (!bp->b_addr) {
error = _xfs_buf_map_pages(bp, flags);
if (unlikely(error)) {
xfs_warn(target->bt_mount,
"%s: failed to map pages\n", __func__);
xfs_buf_relse(bp);
return NULL;
}
}
XFS_STATS_INC(xb_get);
trace_xfs_buf_get(bp, flags, _RET_IP_);
return bp;
}
STATIC int
_xfs_buf_read(
xfs_buf_t *bp,
xfs_buf_flags_t flags)
{
ASSERT(!(flags & XBF_WRITE));
ASSERT(bp->b_maps[0].bm_bn != XFS_BUF_DADDR_NULL);
bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_READ_AHEAD);
bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | XBF_READ_AHEAD);
xfs_buf_iorequest(bp);
if (flags & XBF_ASYNC)
return 0;
return xfs_buf_iowait(bp);
}
xfs_buf_t *
xfs_buf_read_map(
struct xfs_buftarg *target,
struct xfs_buf_map *map,
int nmaps,
xfs_buf_flags_t flags,
const struct xfs_buf_ops *ops)
{
struct xfs_buf *bp;
flags |= XBF_READ;
bp = xfs_buf_get_map(target, map, nmaps, flags);
if (bp) {
trace_xfs_buf_read(bp, flags, _RET_IP_);
if (!XFS_BUF_ISDONE(bp)) {
XFS_STATS_INC(xb_get_read);
bp->b_ops = ops;
_xfs_buf_read(bp, flags);
} else if (flags & XBF_ASYNC) {
/*
* Read ahead call which is already satisfied,
* drop the buffer
*/
xfs_buf_relse(bp);
return NULL;
} else {
/* We do not want read in the flags */
bp->b_flags &= ~XBF_READ;
}
}
return bp;
}
/*
* If we are not low on memory then do the readahead in a deadlock
* safe manner.
*/
void
xfs_buf_readahead_map(
struct xfs_buftarg *target,
struct xfs_buf_map *map,
int nmaps,
const struct xfs_buf_ops *ops)
{
if (bdi_read_congested(target->bt_bdi))
return;
xfs_buf_read_map(target, map, nmaps,
XBF_TRYLOCK|XBF_ASYNC|XBF_READ_AHEAD, ops);
}
/*
* Read an uncached buffer from disk. Allocates and returns a locked
* buffer containing the disk contents or nothing.
*/
struct xfs_buf *
xfs_buf_read_uncached(
struct xfs_buftarg *target,
xfs_daddr_t daddr,
size_t numblks,
int flags,
const struct xfs_buf_ops *ops)
{
struct xfs_buf *bp;
bp = xfs_buf_get_uncached(target, numblks, flags);
if (!bp)
return NULL;
/* set up the buffer for a read IO */
ASSERT(bp->b_map_count == 1);
bp->b_bn = daddr;
bp->b_maps[0].bm_bn = daddr;
bp->b_flags |= XBF_READ;
bp->b_ops = ops;
xfsbdstrat(target->bt_mount, bp);
xfs_buf_iowait(bp);
return bp;
}
/*
* Return a buffer allocated as an empty buffer and associated to external
* memory via xfs_buf_associate_memory() back to it's empty state.
*/
void
xfs_buf_set_empty(
struct xfs_buf *bp,
size_t numblks)
{
if (bp->b_pages)
_xfs_buf_free_pages(bp);
bp->b_pages = NULL;
bp->b_page_count = 0;
bp->b_addr = NULL;
bp->b_length = numblks;
bp->b_io_length = numblks;
ASSERT(bp->b_map_count == 1);
bp->b_bn = XFS_BUF_DADDR_NULL;
bp->b_maps[0].bm_bn = XFS_BUF_DADDR_NULL;
bp->b_maps[0].bm_len = bp->b_length;
}
static inline struct page *
mem_to_page(
void *addr)
{
if ((!is_vmalloc_addr(addr))) {
return virt_to_page(addr);
} else {
return vmalloc_to_page(addr);
}
}
int
xfs_buf_associate_memory(
xfs_buf_t *bp,
void *mem,
size_t len)
{
int rval;
int i = 0;
unsigned long pageaddr;
unsigned long offset;
size_t buflen;
int page_count;
pageaddr = (unsigned long)mem & PAGE_MASK;
offset = (unsigned long)mem - pageaddr;
buflen = PAGE_ALIGN(len + offset);
page_count = buflen >> PAGE_SHIFT;
/* Free any previous set of page pointers */
if (bp->b_pages)
_xfs_buf_free_pages(bp);
bp->b_pages = NULL;
bp->b_addr = mem;
rval = _xfs_buf_get_pages(bp, page_count, 0);
if (rval)
return rval;
bp->b_offset = offset;
for (i = 0; i < bp->b_page_count; i++) {
bp->b_pages[i] = mem_to_page((void *)pageaddr);
pageaddr += PAGE_SIZE;
}
bp->b_io_length = BTOBB(len);
bp->b_length = BTOBB(buflen);
return 0;
}
xfs_buf_t *
xfs_buf_get_uncached(
struct xfs_buftarg *target,
size_t numblks,
int flags)
{
unsigned long page_count;
int error, i;
struct xfs_buf *bp;
DEFINE_SINGLE_BUF_MAP(map, XFS_BUF_DADDR_NULL, numblks);
bp = _xfs_buf_alloc(target, &map, 1, 0);
if (unlikely(bp == NULL))
goto fail;
page_count = PAGE_ALIGN(numblks << BBSHIFT) >> PAGE_SHIFT;
error = _xfs_buf_get_pages(bp, page_count, 0);
if (error)
goto fail_free_buf;
for (i = 0; i < page_count; i++) {
bp->b_pages[i] = alloc_page(xb_to_gfp(flags));
if (!bp->b_pages[i])
goto fail_free_mem;
}
bp->b_flags |= _XBF_PAGES;
error = _xfs_buf_map_pages(bp, 0);
if (unlikely(error)) {
xfs_warn(target->bt_mount,
"%s: failed to map pages\n", __func__);
goto fail_free_mem;
}
trace_xfs_buf_get_uncached(bp, _RET_IP_);
return bp;
fail_free_mem:
while (--i >= 0)
__free_page(bp->b_pages[i]);
_xfs_buf_free_pages(bp);
fail_free_buf:
xfs_buf_free_maps(bp);
kmem_zone_free(xfs_buf_zone, bp);
fail:
return NULL;
}
/*
* Increment reference count on buffer, to hold the buffer concurrently
* with another thread which may release (free) the buffer asynchronously.
* Must hold the buffer already to call this function.
*/
void
xfs_buf_hold(
xfs_buf_t *bp)
{
trace_xfs_buf_hold(bp, _RET_IP_);
atomic_inc(&bp->b_hold);
}
/*
* Releases a hold on the specified buffer. If the
* the hold count is 1, calls xfs_buf_free.
*/
void
xfs_buf_rele(
xfs_buf_t *bp)
{
struct xfs_perag *pag = bp->b_pag;
trace_xfs_buf_rele(bp, _RET_IP_);
if (!pag) {
ASSERT(list_empty(&bp->b_lru));
ASSERT(RB_EMPTY_NODE(&bp->b_rbnode));
if (atomic_dec_and_test(&bp->b_hold))
xfs_buf_free(bp);
return;
}
ASSERT(!RB_EMPTY_NODE(&bp->b_rbnode));
ASSERT(atomic_read(&bp->b_hold) > 0);
if (atomic_dec_and_lock(&bp->b_hold, &pag->pag_buf_lock)) {
if (!(bp->b_flags & XBF_STALE) &&
atomic_read(&bp->b_lru_ref)) {
xfs_buf_lru_add(bp);
spin_unlock(&pag->pag_buf_lock);
} else {
xfs_buf_lru_del(bp);
ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
rb_erase(&bp->b_rbnode, &pag->pag_buf_tree);
spin_unlock(&pag->pag_buf_lock);
xfs_perag_put(pag);
xfs_buf_free(bp);
}
}
}
/*
* Lock a buffer object, if it is not already locked.
*
* If we come across a stale, pinned, locked buffer, we know that we are
* being asked to lock a buffer that has been reallocated. Because it is
* pinned, we know that the log has not been pushed to disk and hence it
* will still be locked. Rather than continuing to have trylock attempts
* fail until someone else pushes the log, push it ourselves before
* returning. This means that the xfsaild will not get stuck trying
* to push on stale inode buffers.
*/
int
xfs_buf_trylock(
struct xfs_buf *bp)
{
int locked;
locked = down_trylock(&bp->b_sema) == 0;
if (locked)
XB_SET_OWNER(bp);
trace_xfs_buf_trylock(bp, _RET_IP_);
return locked;
}
/*
* Lock a buffer object.
*
* If we come across a stale, pinned, locked buffer, we know that we
* are being asked to lock a buffer that has been reallocated. Because
* it is pinned, we know that the log has not been pushed to disk and
* hence it will still be locked. Rather than sleeping until someone
* else pushes the log, push it ourselves before trying to get the lock.
*/
void
xfs_buf_lock(
struct xfs_buf *bp)
{
trace_xfs_buf_lock(bp, _RET_IP_);
if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
xfs_log_force(bp->b_target->bt_mount, 0);
down(&bp->b_sema);
XB_SET_OWNER(bp);
trace_xfs_buf_lock_done(bp, _RET_IP_);
}
void
xfs_buf_unlock(
struct xfs_buf *bp)
{
XB_CLEAR_OWNER(bp);
up(&bp->b_sema);
trace_xfs_buf_unlock(bp, _RET_IP_);
}
STATIC void
xfs_buf_wait_unpin(
xfs_buf_t *bp)
{
DECLARE_WAITQUEUE (wait, current);
if (atomic_read(&bp->b_pin_count) == 0)
return;
add_wait_queue(&bp->b_waiters, &wait);
for (;;) {
set_current_state(TASK_UNINTERRUPTIBLE);
if (atomic_read(&bp->b_pin_count) == 0)
break;
io_schedule();
}
remove_wait_queue(&bp->b_waiters, &wait);
set_current_state(TASK_RUNNING);
}
/*
* Buffer Utility Routines
*/
STATIC void
xfs_buf_iodone_work(
struct work_struct *work)
{
struct xfs_buf *bp =
container_of(work, xfs_buf_t, b_iodone_work);
bool read = !!(bp->b_flags & XBF_READ);
bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD);
/* only validate buffers that were read without errors */
if (read && bp->b_ops && !bp->b_error && (bp->b_flags & XBF_DONE))
bp->b_ops->verify_read(bp);
if (bp->b_iodone)
(*(bp->b_iodone))(bp);
else if (bp->b_flags & XBF_ASYNC)
xfs_buf_relse(bp);
else {
ASSERT(read && bp->b_ops);
complete(&bp->b_iowait);
}
}
void
xfs_buf_ioend(
struct xfs_buf *bp,
int schedule)
{
bool read = !!(bp->b_flags & XBF_READ);
trace_xfs_buf_iodone(bp, _RET_IP_);
if (bp->b_error == 0)
bp->b_flags |= XBF_DONE;
if (bp->b_iodone || (read && bp->b_ops) || (bp->b_flags & XBF_ASYNC)) {
if (schedule) {
INIT_WORK(&bp->b_iodone_work, xfs_buf_iodone_work);
queue_work(xfslogd_workqueue, &bp->b_iodone_work);
} else {
xfs_buf_iodone_work(&bp->b_iodone_work);
}
} else {
bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD);
complete(&bp->b_iowait);
}
}
void
xfs_buf_ioerror(
xfs_buf_t *bp,
int error)
{
ASSERT(error >= 0 && error <= 0xffff);
bp->b_error = (unsigned short)error;
trace_xfs_buf_ioerror(bp, error, _RET_IP_);
}
void
xfs_buf_ioerror_alert(
struct xfs_buf *bp,
const char *func)
{
xfs_alert(bp->b_target->bt_mount,
"metadata I/O error: block 0x%llx (\"%s\") error %d numblks %d",
(__uint64_t)XFS_BUF_ADDR(bp), func, bp->b_error, bp->b_length);
}
/*
* Called when we want to stop a buffer from getting written or read.
* We attach the EIO error, muck with its flags, and call xfs_buf_ioend
* so that the proper iodone callbacks get called.
*/
STATIC int
xfs_bioerror(
xfs_buf_t *bp)
{
#ifdef XFSERRORDEBUG
ASSERT(XFS_BUF_ISREAD(bp) || bp->b_iodone);
#endif
/*
* No need to wait until the buffer is unpinned, we aren't flushing it.
*/
xfs_buf_ioerror(bp, EIO);
/*
* We're calling xfs_buf_ioend, so delete XBF_DONE flag.
*/
XFS_BUF_UNREAD(bp);
XFS_BUF_UNDONE(bp);
xfs_buf_stale(bp);
xfs_buf_ioend(bp, 0);
return EIO;
}
/*
* Same as xfs_bioerror, except that we are releasing the buffer
* here ourselves, and avoiding the xfs_buf_ioend call.
* This is meant for userdata errors; metadata bufs come with
* iodone functions attached, so that we can track down errors.
*/
STATIC int
xfs_bioerror_relse(
struct xfs_buf *bp)
{
int64_t fl = bp->b_flags;
/*
* No need to wait until the buffer is unpinned.
* We aren't flushing it.
*
* chunkhold expects B_DONE to be set, whether
* we actually finish the I/O or not. We don't want to
* change that interface.
*/
XFS_BUF_UNREAD(bp);
XFS_BUF_DONE(bp);
xfs_buf_stale(bp);
bp->b_iodone = NULL;
if (!(fl & XBF_ASYNC)) {
/*
* Mark b_error and B_ERROR _both_.
* Lot's of chunkcache code assumes that.
* There's no reason to mark error for
* ASYNC buffers.
*/
xfs_buf_ioerror(bp, EIO);
complete(&bp->b_iowait);
} else {
xfs_buf_relse(bp);
}
return EIO;
}
STATIC int
xfs_bdstrat_cb(
struct xfs_buf *bp)
{
if (XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) {
trace_xfs_bdstrat_shut(bp, _RET_IP_);
/*
* Metadata write that didn't get logged but
* written delayed anyway. These aren't associated
* with a transaction, and can be ignored.
*/
if (!bp->b_iodone && !XFS_BUF_ISREAD(bp))
return xfs_bioerror_relse(bp);
else
return xfs_bioerror(bp);
}
xfs_buf_iorequest(bp);
return 0;
}
int
xfs_bwrite(
struct xfs_buf *bp)
{
int error;
ASSERT(xfs_buf_islocked(bp));
bp->b_flags |= XBF_WRITE;
bp->b_flags &= ~(XBF_ASYNC | XBF_READ | _XBF_DELWRI_Q);
xfs_bdstrat_cb(bp);
error = xfs_buf_iowait(bp);
if (error) {
xfs_force_shutdown(bp->b_target->bt_mount,
SHUTDOWN_META_IO_ERROR);
}
return error;
}
/*
* Wrapper around bdstrat so that we can stop data from going to disk in case
* we are shutting down the filesystem. Typically user data goes thru this
* path; one of the exceptions is the superblock.
*/
void
xfsbdstrat(
struct xfs_mount *mp,
struct xfs_buf *bp)
{
if (XFS_FORCED_SHUTDOWN(mp)) {
trace_xfs_bdstrat_shut(bp, _RET_IP_);
xfs_bioerror_relse(bp);
return;
}
xfs_buf_iorequest(bp);
}
STATIC void
_xfs_buf_ioend(
xfs_buf_t *bp,
int schedule)
{
if (atomic_dec_and_test(&bp->b_io_remaining) == 1)
xfs_buf_ioend(bp, schedule);
}
STATIC void
xfs_buf_bio_end_io(
struct bio *bio,
int error)
{
xfs_buf_t *bp = (xfs_buf_t *)bio->bi_private;
/*
* don't overwrite existing errors - otherwise we can lose errors on
* buffers that require multiple bios to complete.
*/
if (!bp->b_error)
xfs_buf_ioerror(bp, -error);
if (!bp->b_error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ))
invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp));
_xfs_buf_ioend(bp, 1);
bio_put(bio);
}
static void
xfs_buf_ioapply_map(
struct xfs_buf *bp,
int map,
int *buf_offset,
int *count,
int rw)
{
int page_index;
int total_nr_pages = bp->b_page_count;
int nr_pages;
struct bio *bio;
sector_t sector = bp->b_maps[map].bm_bn;
int size;
int offset;
total_nr_pages = bp->b_page_count;
/* skip the pages in the buffer before the start offset */
page_index = 0;
offset = *buf_offset;
while (offset >= PAGE_SIZE) {
page_index++;
offset -= PAGE_SIZE;
}
/*
* Limit the IO size to the length of the current vector, and update the
* remaining IO count for the next time around.
*/
size = min_t(int, BBTOB(bp->b_maps[map].bm_len), *count);
*count -= size;
*buf_offset += size;
next_chunk:
atomic_inc(&bp->b_io_remaining);
nr_pages = BIO_MAX_SECTORS >> (PAGE_SHIFT - BBSHIFT);
if (nr_pages > total_nr_pages)
nr_pages = total_nr_pages;
bio = bio_alloc(GFP_NOIO, nr_pages);
bio->bi_bdev = bp->b_target->bt_bdev;
bio->bi_sector = sector;
bio->bi_end_io = xfs_buf_bio_end_io;
bio->bi_private = bp;
for (; size && nr_pages; nr_pages--, page_index++) {
int rbytes, nbytes = PAGE_SIZE - offset;
if (nbytes > size)
nbytes = size;
rbytes = bio_add_page(bio, bp->b_pages[page_index], nbytes,
offset);
if (rbytes < nbytes)
break;
offset = 0;
sector += BTOBB(nbytes);
size -= nbytes;
total_nr_pages--;
}
if (likely(bio->bi_size)) {
if (xfs_buf_is_vmapped(bp)) {
flush_kernel_vmap_range(bp->b_addr,
xfs_buf_vmap_len(bp));
}
submit_bio(rw, bio);
if (size)
goto next_chunk;
} else {
/*
* This is guaranteed not to be the last io reference count
* because the caller (xfs_buf_iorequest) holds a count itself.
*/
atomic_dec(&bp->b_io_remaining);
xfs_buf_ioerror(bp, EIO);
bio_put(bio);
}
}
STATIC void
_xfs_buf_ioapply(
struct xfs_buf *bp)
{
struct blk_plug plug;
int rw;
int offset;
int size;
int i;
/*
* Make sure we capture only current IO errors rather than stale errors
* left over from previous use of the buffer (e.g. failed readahead).
*/
bp->b_error = 0;
if (bp->b_flags & XBF_WRITE) {
if (bp->b_flags & XBF_SYNCIO)
rw = WRITE_SYNC;
else
rw = WRITE;
if (bp->b_flags & XBF_FUA)
rw |= REQ_FUA;
if (bp->b_flags & XBF_FLUSH)
rw |= REQ_FLUSH;
/*
* Run the write verifier callback function if it exists. If
* this function fails it will mark the buffer with an error and
* the IO should not be dispatched.
*/
if (bp->b_ops) {
bp->b_ops->verify_write(bp);
if (bp->b_error) {
xfs_force_shutdown(bp->b_target->bt_mount,
SHUTDOWN_CORRUPT_INCORE);
return;
}
}
} else if (bp->b_flags & XBF_READ_AHEAD) {
rw = READA;
} else {
rw = READ;
}
/* we only use the buffer cache for meta-data */
rw |= REQ_META;
/*
* Walk all the vectors issuing IO on them. Set up the initial offset
* into the buffer and the desired IO size before we start -
* _xfs_buf_ioapply_vec() will modify them appropriately for each
* subsequent call.
*/
offset = bp->b_offset;
size = BBTOB(bp->b_io_length);
blk_start_plug(&plug);
for (i = 0; i < bp->b_map_count; i++) {
xfs_buf_ioapply_map(bp, i, &offset, &size, rw);
if (bp->b_error)
break;
if (size <= 0)
break; /* all done */
}
blk_finish_plug(&plug);
}
void
xfs_buf_iorequest(
xfs_buf_t *bp)
{
trace_xfs_buf_iorequest(bp, _RET_IP_);
ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
if (bp->b_flags & XBF_WRITE)
xfs_buf_wait_unpin(bp);
xfs_buf_hold(bp);
/* Set the count to 1 initially, this will stop an I/O
* completion callout which happens before we have started
* all the I/O from calling xfs_buf_ioend too early.
*/
atomic_set(&bp->b_io_remaining, 1);
_xfs_buf_ioapply(bp);
_xfs_buf_ioend(bp, 1);
xfs_buf_rele(bp);
}
/*
* Waits for I/O to complete on the buffer supplied. It returns immediately if
* no I/O is pending or there is already a pending error on the buffer. It
* returns the I/O error code, if any, or 0 if there was no error.
*/
int
xfs_buf_iowait(
xfs_buf_t *bp)
{
trace_xfs_buf_iowait(bp, _RET_IP_);
if (!bp->b_error)
wait_for_completion(&bp->b_iowait);
trace_xfs_buf_iowait_done(bp, _RET_IP_);
return bp->b_error;
}
xfs_caddr_t
xfs_buf_offset(
xfs_buf_t *bp,
size_t offset)
{
struct page *page;
if (bp->b_addr)
return bp->b_addr + offset;
offset += bp->b_offset;
page = bp->b_pages[offset >> PAGE_SHIFT];
return (xfs_caddr_t)page_address(page) + (offset & (PAGE_SIZE-1));
}
/*
* Move data into or out of a buffer.
*/
void
xfs_buf_iomove(
xfs_buf_t *bp, /* buffer to process */
size_t boff, /* starting buffer offset */
size_t bsize, /* length to copy */
void *data, /* data address */
xfs_buf_rw_t mode) /* read/write/zero flag */
{
size_t bend;
bend = boff + bsize;
while (boff < bend) {
struct page *page;
int page_index, page_offset, csize;
page_index = (boff + bp->b_offset) >> PAGE_SHIFT;
page_offset = (boff + bp->b_offset) & ~PAGE_MASK;
page = bp->b_pages[page_index];
csize = min_t(size_t, PAGE_SIZE - page_offset,
BBTOB(bp->b_io_length) - boff);
ASSERT((csize + page_offset) <= PAGE_SIZE);
switch (mode) {
case XBRW_ZERO:
memset(page_address(page) + page_offset, 0, csize);
break;
case XBRW_READ:
memcpy(data, page_address(page) + page_offset, csize);
break;
case XBRW_WRITE:
memcpy(page_address(page) + page_offset, data, csize);
}
boff += csize;
data += csize;
}
}
/*
* Handling of buffer targets (buftargs).
*/
/*
* Wait for any bufs with callbacks that have been submitted but have not yet
* returned. These buffers will have an elevated hold count, so wait on those
* while freeing all the buffers only held by the LRU.
*/
void
xfs_wait_buftarg(
struct xfs_buftarg *btp)
{
struct xfs_buf *bp;
restart:
spin_lock(&btp->bt_lru_lock);
while (!list_empty(&btp->bt_lru)) {
bp = list_first_entry(&btp->bt_lru, struct xfs_buf, b_lru);
if (atomic_read(&bp->b_hold) > 1) {
trace_xfs_buf_wait_buftarg(bp, _RET_IP_);
list_move_tail(&bp->b_lru, &btp->bt_lru);
spin_unlock(&btp->bt_lru_lock);
delay(100);
goto restart;
}
/*
* clear the LRU reference count so the buffer doesn't get
* ignored in xfs_buf_rele().
*/
atomic_set(&bp->b_lru_ref, 0);
spin_unlock(&btp->bt_lru_lock);
xfs_buf_rele(bp);
spin_lock(&btp->bt_lru_lock);
}
spin_unlock(&btp->bt_lru_lock);
}
int
xfs_buftarg_shrink(
struct shrinker *shrink,
struct shrink_control *sc)
{
struct xfs_buftarg *btp = container_of(shrink,
struct xfs_buftarg, bt_shrinker);
struct xfs_buf *bp;
int nr_to_scan = sc->nr_to_scan;
LIST_HEAD(dispose);
if (!nr_to_scan)
return btp->bt_lru_nr;
spin_lock(&btp->bt_lru_lock);
while (!list_empty(&btp->bt_lru)) {
if (nr_to_scan-- <= 0)
break;
bp = list_first_entry(&btp->bt_lru, struct xfs_buf, b_lru);
/*
* Decrement the b_lru_ref count unless the value is already
* zero. If the value is already zero, we need to reclaim the
* buffer, otherwise it gets another trip through the LRU.
*/
if (!atomic_add_unless(&bp->b_lru_ref, -1, 0)) {
list_move_tail(&bp->b_lru, &btp->bt_lru);
continue;
}
/*
* remove the buffer from the LRU now to avoid needing another
* lock round trip inside xfs_buf_rele().
*/
list_move(&bp->b_lru, &dispose);
btp->bt_lru_nr--;
bp->b_lru_flags |= _XBF_LRU_DISPOSE;
}
spin_unlock(&btp->bt_lru_lock);
while (!list_empty(&dispose)) {
bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
list_del_init(&bp->b_lru);
xfs_buf_rele(bp);
}
return btp->bt_lru_nr;
}
void
xfs_free_buftarg(
struct xfs_mount *mp,
struct xfs_buftarg *btp)
{
unregister_shrinker(&btp->bt_shrinker);
if (mp->m_flags & XFS_MOUNT_BARRIER)
xfs_blkdev_issue_flush(btp);
kmem_free(btp);
}
STATIC int
xfs_setsize_buftarg_flags(
xfs_buftarg_t *btp,
unsigned int blocksize,
unsigned int sectorsize,
int verbose)
{
btp->bt_bsize = blocksize;
btp->bt_sshift = ffs(sectorsize) - 1;
btp->bt_smask = sectorsize - 1;
if (set_blocksize(btp->bt_bdev, sectorsize)) {
char name[BDEVNAME_SIZE];
bdevname(btp->bt_bdev, name);
xfs_warn(btp->bt_mount,
"Cannot set_blocksize to %u on device %s\n",
sectorsize, name);
return EINVAL;
}
return 0;
}
/*
* When allocating the initial buffer target we have not yet
* read in the superblock, so don't know what sized sectors
* are being used is at this early stage. Play safe.
*/
STATIC int
xfs_setsize_buftarg_early(
xfs_buftarg_t *btp,
struct block_device *bdev)
{
return xfs_setsize_buftarg_flags(btp,
PAGE_SIZE, bdev_logical_block_size(bdev), 0);
}
int
xfs_setsize_buftarg(
xfs_buftarg_t *btp,
unsigned int blocksize,
unsigned int sectorsize)
{
return xfs_setsize_buftarg_flags(btp, blocksize, sectorsize, 1);
}
xfs_buftarg_t *
xfs_alloc_buftarg(
struct xfs_mount *mp,
struct block_device *bdev,
int external,
const char *fsname)
{
xfs_buftarg_t *btp;
btp = kmem_zalloc(sizeof(*btp), KM_SLEEP | KM_NOFS);
btp->bt_mount = mp;
btp->bt_dev = bdev->bd_dev;
btp->bt_bdev = bdev;
btp->bt_bdi = blk_get_backing_dev_info(bdev);
if (!btp->bt_bdi)
goto error;
INIT_LIST_HEAD(&btp->bt_lru);
spin_lock_init(&btp->bt_lru_lock);
if (xfs_setsize_buftarg_early(btp, bdev))
goto error;
btp->bt_shrinker.shrink = xfs_buftarg_shrink;
btp->bt_shrinker.seeks = DEFAULT_SEEKS;
register_shrinker(&btp->bt_shrinker);
return btp;
error:
kmem_free(btp);
return NULL;
}
/*
* Add a buffer to the delayed write list.
*
* This queues a buffer for writeout if it hasn't already been. Note that
* neither this routine nor the buffer list submission functions perform
* any internal synchronization. It is expected that the lists are thread-local
* to the callers.
*
* Returns true if we queued up the buffer, or false if it already had
* been on the buffer list.
*/
bool
xfs_buf_delwri_queue(
struct xfs_buf *bp,
struct list_head *list)
{
ASSERT(xfs_buf_islocked(bp));
ASSERT(!(bp->b_flags & XBF_READ));
/*
* If the buffer is already marked delwri it already is queued up
* by someone else for imediate writeout. Just ignore it in that
* case.
*/
if (bp->b_flags & _XBF_DELWRI_Q) {
trace_xfs_buf_delwri_queued(bp, _RET_IP_);
return false;
}
trace_xfs_buf_delwri_queue(bp, _RET_IP_);
/*
* If a buffer gets written out synchronously or marked stale while it
* is on a delwri list we lazily remove it. To do this, the other party
* clears the _XBF_DELWRI_Q flag but otherwise leaves the buffer alone.
* It remains referenced and on the list. In a rare corner case it
* might get readded to a delwri list after the synchronous writeout, in
* which case we need just need to re-add the flag here.
*/
bp->b_flags |= _XBF_DELWRI_Q;
if (list_empty(&bp->b_list)) {
atomic_inc(&bp->b_hold);
list_add_tail(&bp->b_list, list);
}
return true;
}
/*
* Compare function is more complex than it needs to be because
* the return value is only 32 bits and we are doing comparisons
* on 64 bit values
*/
static int
xfs_buf_cmp(
void *priv,
struct list_head *a,
struct list_head *b)
{
struct xfs_buf *ap = container_of(a, struct xfs_buf, b_list);
struct xfs_buf *bp = container_of(b, struct xfs_buf, b_list);
xfs_daddr_t diff;
diff = ap->b_maps[0].bm_bn - bp->b_maps[0].bm_bn;
if (diff < 0)
return -1;
if (diff > 0)
return 1;
return 0;
}
static int
__xfs_buf_delwri_submit(
struct list_head *buffer_list,
struct list_head *io_list,
bool wait)
{
struct blk_plug plug;
struct xfs_buf *bp, *n;
int pinned = 0;
list_for_each_entry_safe(bp, n, buffer_list, b_list) {
if (!wait) {
if (xfs_buf_ispinned(bp)) {
pinned++;
continue;
}
if (!xfs_buf_trylock(bp))
continue;
} else {
xfs_buf_lock(bp);
}
/*
* Someone else might have written the buffer synchronously or
* marked it stale in the meantime. In that case only the
* _XBF_DELWRI_Q flag got cleared, and we have to drop the
* reference and remove it from the list here.
*/
if (!(bp->b_flags & _XBF_DELWRI_Q)) {
list_del_init(&bp->b_list);
xfs_buf_relse(bp);
continue;
}
list_move_tail(&bp->b_list, io_list);
trace_xfs_buf_delwri_split(bp, _RET_IP_);
}
list_sort(NULL, io_list, xfs_buf_cmp);
blk_start_plug(&plug);
list_for_each_entry_safe(bp, n, io_list, b_list) {
bp->b_flags &= ~(_XBF_DELWRI_Q | XBF_ASYNC);
bp->b_flags |= XBF_WRITE;
if (!wait) {
bp->b_flags |= XBF_ASYNC;
list_del_init(&bp->b_list);
}
xfs_bdstrat_cb(bp);
}
blk_finish_plug(&plug);
return pinned;
}
/*
* Write out a buffer list asynchronously.
*
* This will take the @buffer_list, write all non-locked and non-pinned buffers
* out and not wait for I/O completion on any of the buffers. This interface
* is only safely useable for callers that can track I/O completion by higher
* level means, e.g. AIL pushing as the @buffer_list is consumed in this
* function.
*/
int
xfs_buf_delwri_submit_nowait(
struct list_head *buffer_list)
{
LIST_HEAD (io_list);
return __xfs_buf_delwri_submit(buffer_list, &io_list, false);
}
/*
* Write out a buffer list synchronously.
*
* This will take the @buffer_list, write all buffers out and wait for I/O
* completion on all of the buffers. @buffer_list is consumed by the function,
* so callers must have some other way of tracking buffers if they require such
* functionality.
*/
int
xfs_buf_delwri_submit(
struct list_head *buffer_list)
{
LIST_HEAD (io_list);
int error = 0, error2;
struct xfs_buf *bp;
__xfs_buf_delwri_submit(buffer_list, &io_list, true);
/* Wait for IO to complete. */
while (!list_empty(&io_list)) {
bp = list_first_entry(&io_list, struct xfs_buf, b_list);
list_del_init(&bp->b_list);
error2 = xfs_buf_iowait(bp);
xfs_buf_relse(bp);
if (!error)
error = error2;
}
return error;
}
int __init
xfs_buf_init(void)
{
xfs_buf_zone = kmem_zone_init_flags(sizeof(xfs_buf_t), "xfs_buf",
KM_ZONE_HWALIGN, NULL);
if (!xfs_buf_zone)
goto out;
xfslogd_workqueue = alloc_workqueue("xfslogd",
WQ_MEM_RECLAIM | WQ_HIGHPRI, 1);
if (!xfslogd_workqueue)
goto out_free_buf_zone;
return 0;
out_free_buf_zone:
kmem_zone_destroy(xfs_buf_zone);
out:
return -ENOMEM;
}
void
xfs_buf_terminate(void)
{
destroy_workqueue(xfslogd_workqueue);
kmem_zone_destroy(xfs_buf_zone);
}