mirror of
https://github.com/torvalds/linux.git
synced 2024-11-15 08:31:55 +00:00
573f203574
Moving the code to a more logical place and beautifying it. No real change in behavior. Signed-off-by: Vladislav Zolotarov <vladz@broadcom.com> Signed-off-by: Eilon Greenstein <eilong@broadcom.com> Signed-off-by: David S. Miller <davem@davemloft.net>
502 lines
16 KiB
C
502 lines
16 KiB
C
/* bnx2x_init_ops.h: Broadcom Everest network driver.
|
|
* Static functions needed during the initialization.
|
|
* This file is "included" in bnx2x_main.c.
|
|
*
|
|
* Copyright (c) 2007-2009 Broadcom Corporation
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation.
|
|
*
|
|
* Maintained by: Eilon Greenstein <eilong@broadcom.com>
|
|
* Written by: Vladislav Zolotarov <vladz@broadcom.com>
|
|
*/
|
|
|
|
#ifndef BNX2X_INIT_OPS_H
|
|
#define BNX2X_INIT_OPS_H
|
|
|
|
static int bnx2x_gunzip(struct bnx2x *bp, const u8 *zbuf, int len);
|
|
|
|
|
|
static void bnx2x_init_str_wr(struct bnx2x *bp, u32 addr, const u32 *data,
|
|
u32 len)
|
|
{
|
|
u32 i;
|
|
|
|
for (i = 0; i < len; i++)
|
|
REG_WR(bp, addr + i*4, data[i]);
|
|
}
|
|
|
|
static void bnx2x_init_ind_wr(struct bnx2x *bp, u32 addr, const u32 *data,
|
|
u32 len)
|
|
{
|
|
u32 i;
|
|
|
|
for (i = 0; i < len; i++)
|
|
REG_WR_IND(bp, addr + i*4, data[i]);
|
|
}
|
|
|
|
static void bnx2x_write_big_buf(struct bnx2x *bp, u32 addr, u32 len)
|
|
{
|
|
if (bp->dmae_ready)
|
|
bnx2x_write_dmae_phys_len(bp, GUNZIP_PHYS(bp), addr, len);
|
|
else
|
|
bnx2x_init_str_wr(bp, addr, GUNZIP_BUF(bp), len);
|
|
}
|
|
|
|
static void bnx2x_init_fill(struct bnx2x *bp, u32 addr, int fill, u32 len)
|
|
{
|
|
u32 buf_len = (((len*4) > FW_BUF_SIZE) ? FW_BUF_SIZE : (len*4));
|
|
u32 buf_len32 = buf_len/4;
|
|
u32 i;
|
|
|
|
memset(GUNZIP_BUF(bp), (u8)fill, buf_len);
|
|
|
|
for (i = 0; i < len; i += buf_len32) {
|
|
u32 cur_len = min(buf_len32, len - i);
|
|
|
|
bnx2x_write_big_buf(bp, addr + i*4, cur_len);
|
|
}
|
|
}
|
|
|
|
static void bnx2x_init_wr_64(struct bnx2x *bp, u32 addr, const u32 *data,
|
|
u32 len64)
|
|
{
|
|
u32 buf_len32 = FW_BUF_SIZE/4;
|
|
u32 len = len64*2;
|
|
u64 data64 = 0;
|
|
u32 i;
|
|
|
|
/* 64 bit value is in a blob: first low DWORD, then high DWORD */
|
|
data64 = HILO_U64((*(data + 1)), (*data));
|
|
|
|
len64 = min((u32)(FW_BUF_SIZE/8), len64);
|
|
for (i = 0; i < len64; i++) {
|
|
u64 *pdata = ((u64 *)(GUNZIP_BUF(bp))) + i;
|
|
|
|
*pdata = data64;
|
|
}
|
|
|
|
for (i = 0; i < len; i += buf_len32) {
|
|
u32 cur_len = min(buf_len32, len - i);
|
|
|
|
bnx2x_write_big_buf(bp, addr + i*4, cur_len);
|
|
}
|
|
}
|
|
|
|
/*********************************************************
|
|
There are different blobs for each PRAM section.
|
|
In addition, each blob write operation is divided into a few operations
|
|
in order to decrease the amount of phys. contiguous buffer needed.
|
|
Thus, when we select a blob the address may be with some offset
|
|
from the beginning of PRAM section.
|
|
The same holds for the INT_TABLE sections.
|
|
**********************************************************/
|
|
#define IF_IS_INT_TABLE_ADDR(base, addr) \
|
|
if (((base) <= (addr)) && ((base) + 0x400 >= (addr)))
|
|
|
|
#define IF_IS_PRAM_ADDR(base, addr) \
|
|
if (((base) <= (addr)) && ((base) + 0x40000 >= (addr)))
|
|
|
|
static const u8 *bnx2x_sel_blob(struct bnx2x *bp, u32 addr, const u8 *data)
|
|
{
|
|
IF_IS_INT_TABLE_ADDR(TSEM_REG_INT_TABLE, addr)
|
|
data = INIT_TSEM_INT_TABLE_DATA(bp);
|
|
else
|
|
IF_IS_INT_TABLE_ADDR(CSEM_REG_INT_TABLE, addr)
|
|
data = INIT_CSEM_INT_TABLE_DATA(bp);
|
|
else
|
|
IF_IS_INT_TABLE_ADDR(USEM_REG_INT_TABLE, addr)
|
|
data = INIT_USEM_INT_TABLE_DATA(bp);
|
|
else
|
|
IF_IS_INT_TABLE_ADDR(XSEM_REG_INT_TABLE, addr)
|
|
data = INIT_XSEM_INT_TABLE_DATA(bp);
|
|
else
|
|
IF_IS_PRAM_ADDR(TSEM_REG_PRAM, addr)
|
|
data = INIT_TSEM_PRAM_DATA(bp);
|
|
else
|
|
IF_IS_PRAM_ADDR(CSEM_REG_PRAM, addr)
|
|
data = INIT_CSEM_PRAM_DATA(bp);
|
|
else
|
|
IF_IS_PRAM_ADDR(USEM_REG_PRAM, addr)
|
|
data = INIT_USEM_PRAM_DATA(bp);
|
|
else
|
|
IF_IS_PRAM_ADDR(XSEM_REG_PRAM, addr)
|
|
data = INIT_XSEM_PRAM_DATA(bp);
|
|
|
|
return data;
|
|
}
|
|
|
|
static void bnx2x_write_big_buf_wb(struct bnx2x *bp, u32 addr, u32 len)
|
|
{
|
|
if (bp->dmae_ready)
|
|
bnx2x_write_dmae_phys_len(bp, GUNZIP_PHYS(bp), addr, len);
|
|
else
|
|
bnx2x_init_ind_wr(bp, addr, GUNZIP_BUF(bp), len);
|
|
}
|
|
|
|
static void bnx2x_init_wr_wb(struct bnx2x *bp, u32 addr, const u32 *data,
|
|
u32 len)
|
|
{
|
|
data = (const u32 *)bnx2x_sel_blob(bp, addr, (const u8 *)data);
|
|
|
|
if (bp->dmae_ready)
|
|
VIRT_WR_DMAE_LEN(bp, data, addr, len);
|
|
else
|
|
bnx2x_init_ind_wr(bp, addr, data, len);
|
|
}
|
|
|
|
static void bnx2x_init_wr_zp(struct bnx2x *bp, u32 addr, u32 len, u32 blob_off)
|
|
{
|
|
const u8 *data = NULL;
|
|
int rc;
|
|
u32 i;
|
|
|
|
data = bnx2x_sel_blob(bp, addr, data) + blob_off*4;
|
|
|
|
rc = bnx2x_gunzip(bp, data, len);
|
|
if (rc)
|
|
return;
|
|
|
|
/* gunzip_outlen is in dwords */
|
|
len = GUNZIP_OUTLEN(bp);
|
|
for (i = 0; i < len; i++)
|
|
((u32 *)GUNZIP_BUF(bp))[i] =
|
|
cpu_to_le32(((u32 *)GUNZIP_BUF(bp))[i]);
|
|
|
|
bnx2x_write_big_buf_wb(bp, addr, len);
|
|
}
|
|
|
|
static void bnx2x_init_block(struct bnx2x *bp, u32 block, u32 stage)
|
|
{
|
|
u16 op_start =
|
|
INIT_OPS_OFFSETS(bp)[BLOCK_OPS_IDX(block, stage, STAGE_START)];
|
|
u16 op_end =
|
|
INIT_OPS_OFFSETS(bp)[BLOCK_OPS_IDX(block, stage, STAGE_END)];
|
|
union init_op *op;
|
|
int hw_wr;
|
|
u32 i, op_type, addr, len;
|
|
const u32 *data, *data_base;
|
|
|
|
/* If empty block */
|
|
if (op_start == op_end)
|
|
return;
|
|
|
|
if (CHIP_REV_IS_FPGA(bp))
|
|
hw_wr = OP_WR_FPGA;
|
|
else if (CHIP_REV_IS_EMUL(bp))
|
|
hw_wr = OP_WR_EMUL;
|
|
else
|
|
hw_wr = OP_WR_ASIC;
|
|
|
|
data_base = INIT_DATA(bp);
|
|
|
|
for (i = op_start; i < op_end; i++) {
|
|
|
|
op = (union init_op *)&(INIT_OPS(bp)[i]);
|
|
|
|
op_type = op->str_wr.op;
|
|
addr = op->str_wr.offset;
|
|
len = op->str_wr.data_len;
|
|
data = data_base + op->str_wr.data_off;
|
|
|
|
/* HW/EMUL specific */
|
|
if ((op_type > OP_WB) && (op_type == hw_wr))
|
|
op_type = OP_WR;
|
|
|
|
switch (op_type) {
|
|
case OP_RD:
|
|
REG_RD(bp, addr);
|
|
break;
|
|
case OP_WR:
|
|
REG_WR(bp, addr, op->write.val);
|
|
break;
|
|
case OP_SW:
|
|
bnx2x_init_str_wr(bp, addr, data, len);
|
|
break;
|
|
case OP_WB:
|
|
bnx2x_init_wr_wb(bp, addr, data, len);
|
|
break;
|
|
case OP_SI:
|
|
bnx2x_init_ind_wr(bp, addr, data, len);
|
|
break;
|
|
case OP_ZR:
|
|
bnx2x_init_fill(bp, addr, 0, op->zero.len);
|
|
break;
|
|
case OP_ZP:
|
|
bnx2x_init_wr_zp(bp, addr, len,
|
|
op->str_wr.data_off);
|
|
break;
|
|
case OP_WR_64:
|
|
bnx2x_init_wr_64(bp, addr, data, len);
|
|
break;
|
|
default:
|
|
/* happens whenever an op is of a diff HW */
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/****************************************************************************
|
|
* PXP Arbiter
|
|
****************************************************************************/
|
|
/*
|
|
* This code configures the PCI read/write arbiter
|
|
* which implements a weighted round robin
|
|
* between the virtual queues in the chip.
|
|
*
|
|
* The values were derived for each PCI max payload and max request size.
|
|
* since max payload and max request size are only known at run time,
|
|
* this is done as a separate init stage.
|
|
*/
|
|
|
|
#define NUM_WR_Q 13
|
|
#define NUM_RD_Q 29
|
|
#define MAX_RD_ORD 3
|
|
#define MAX_WR_ORD 2
|
|
|
|
/* configuration for one arbiter queue */
|
|
struct arb_line {
|
|
int l;
|
|
int add;
|
|
int ubound;
|
|
};
|
|
|
|
/* derived configuration for each read queue for each max request size */
|
|
static const struct arb_line read_arb_data[NUM_RD_Q][MAX_RD_ORD + 1] = {
|
|
/* 1 */ { {8, 64, 25}, {16, 64, 25}, {32, 64, 25}, {64, 64, 41} },
|
|
{ {4, 8, 4}, {4, 8, 4}, {4, 8, 4}, {4, 8, 4} },
|
|
{ {4, 3, 3}, {4, 3, 3}, {4, 3, 3}, {4, 3, 3} },
|
|
{ {8, 3, 6}, {16, 3, 11}, {16, 3, 11}, {16, 3, 11} },
|
|
{ {8, 64, 25}, {16, 64, 25}, {32, 64, 25}, {64, 64, 41} },
|
|
{ {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {64, 3, 41} },
|
|
{ {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {64, 3, 41} },
|
|
{ {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {64, 3, 41} },
|
|
{ {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {64, 3, 41} },
|
|
/* 10 */{ {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
|
|
{ {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
|
|
{ {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
|
|
{ {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
|
|
{ {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
|
|
{ {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
|
|
{ {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
|
|
{ {8, 64, 6}, {16, 64, 11}, {32, 64, 21}, {32, 64, 21} },
|
|
{ {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
|
|
{ {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
|
|
/* 20 */{ {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
|
|
{ {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
|
|
{ {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
|
|
{ {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
|
|
{ {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
|
|
{ {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
|
|
{ {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
|
|
{ {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
|
|
{ {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
|
|
{ {8, 64, 25}, {16, 64, 41}, {32, 64, 81}, {64, 64, 120} }
|
|
};
|
|
|
|
/* derived configuration for each write queue for each max request size */
|
|
static const struct arb_line write_arb_data[NUM_WR_Q][MAX_WR_ORD + 1] = {
|
|
/* 1 */ { {4, 6, 3}, {4, 6, 3}, {4, 6, 3} },
|
|
{ {4, 2, 3}, {4, 2, 3}, {4, 2, 3} },
|
|
{ {8, 2, 6}, {16, 2, 11}, {16, 2, 11} },
|
|
{ {8, 2, 6}, {16, 2, 11}, {32, 2, 21} },
|
|
{ {8, 2, 6}, {16, 2, 11}, {32, 2, 21} },
|
|
{ {8, 2, 6}, {16, 2, 11}, {32, 2, 21} },
|
|
{ {8, 64, 25}, {16, 64, 25}, {32, 64, 25} },
|
|
{ {8, 2, 6}, {16, 2, 11}, {16, 2, 11} },
|
|
{ {8, 2, 6}, {16, 2, 11}, {16, 2, 11} },
|
|
/* 10 */{ {8, 9, 6}, {16, 9, 11}, {32, 9, 21} },
|
|
{ {8, 47, 19}, {16, 47, 19}, {32, 47, 21} },
|
|
{ {8, 9, 6}, {16, 9, 11}, {16, 9, 11} },
|
|
{ {8, 64, 25}, {16, 64, 41}, {32, 64, 81} }
|
|
};
|
|
|
|
/* register addresses for read queues */
|
|
static const struct arb_line read_arb_addr[NUM_RD_Q-1] = {
|
|
/* 1 */ {PXP2_REG_RQ_BW_RD_L0, PXP2_REG_RQ_BW_RD_ADD0,
|
|
PXP2_REG_RQ_BW_RD_UBOUND0},
|
|
{PXP2_REG_PSWRQ_BW_L1, PXP2_REG_PSWRQ_BW_ADD1,
|
|
PXP2_REG_PSWRQ_BW_UB1},
|
|
{PXP2_REG_PSWRQ_BW_L2, PXP2_REG_PSWRQ_BW_ADD2,
|
|
PXP2_REG_PSWRQ_BW_UB2},
|
|
{PXP2_REG_PSWRQ_BW_L3, PXP2_REG_PSWRQ_BW_ADD3,
|
|
PXP2_REG_PSWRQ_BW_UB3},
|
|
{PXP2_REG_RQ_BW_RD_L4, PXP2_REG_RQ_BW_RD_ADD4,
|
|
PXP2_REG_RQ_BW_RD_UBOUND4},
|
|
{PXP2_REG_RQ_BW_RD_L5, PXP2_REG_RQ_BW_RD_ADD5,
|
|
PXP2_REG_RQ_BW_RD_UBOUND5},
|
|
{PXP2_REG_PSWRQ_BW_L6, PXP2_REG_PSWRQ_BW_ADD6,
|
|
PXP2_REG_PSWRQ_BW_UB6},
|
|
{PXP2_REG_PSWRQ_BW_L7, PXP2_REG_PSWRQ_BW_ADD7,
|
|
PXP2_REG_PSWRQ_BW_UB7},
|
|
{PXP2_REG_PSWRQ_BW_L8, PXP2_REG_PSWRQ_BW_ADD8,
|
|
PXP2_REG_PSWRQ_BW_UB8},
|
|
/* 10 */{PXP2_REG_PSWRQ_BW_L9, PXP2_REG_PSWRQ_BW_ADD9,
|
|
PXP2_REG_PSWRQ_BW_UB9},
|
|
{PXP2_REG_PSWRQ_BW_L10, PXP2_REG_PSWRQ_BW_ADD10,
|
|
PXP2_REG_PSWRQ_BW_UB10},
|
|
{PXP2_REG_PSWRQ_BW_L11, PXP2_REG_PSWRQ_BW_ADD11,
|
|
PXP2_REG_PSWRQ_BW_UB11},
|
|
{PXP2_REG_RQ_BW_RD_L12, PXP2_REG_RQ_BW_RD_ADD12,
|
|
PXP2_REG_RQ_BW_RD_UBOUND12},
|
|
{PXP2_REG_RQ_BW_RD_L13, PXP2_REG_RQ_BW_RD_ADD13,
|
|
PXP2_REG_RQ_BW_RD_UBOUND13},
|
|
{PXP2_REG_RQ_BW_RD_L14, PXP2_REG_RQ_BW_RD_ADD14,
|
|
PXP2_REG_RQ_BW_RD_UBOUND14},
|
|
{PXP2_REG_RQ_BW_RD_L15, PXP2_REG_RQ_BW_RD_ADD15,
|
|
PXP2_REG_RQ_BW_RD_UBOUND15},
|
|
{PXP2_REG_RQ_BW_RD_L16, PXP2_REG_RQ_BW_RD_ADD16,
|
|
PXP2_REG_RQ_BW_RD_UBOUND16},
|
|
{PXP2_REG_RQ_BW_RD_L17, PXP2_REG_RQ_BW_RD_ADD17,
|
|
PXP2_REG_RQ_BW_RD_UBOUND17},
|
|
{PXP2_REG_RQ_BW_RD_L18, PXP2_REG_RQ_BW_RD_ADD18,
|
|
PXP2_REG_RQ_BW_RD_UBOUND18},
|
|
/* 20 */{PXP2_REG_RQ_BW_RD_L19, PXP2_REG_RQ_BW_RD_ADD19,
|
|
PXP2_REG_RQ_BW_RD_UBOUND19},
|
|
{PXP2_REG_RQ_BW_RD_L20, PXP2_REG_RQ_BW_RD_ADD20,
|
|
PXP2_REG_RQ_BW_RD_UBOUND20},
|
|
{PXP2_REG_RQ_BW_RD_L22, PXP2_REG_RQ_BW_RD_ADD22,
|
|
PXP2_REG_RQ_BW_RD_UBOUND22},
|
|
{PXP2_REG_RQ_BW_RD_L23, PXP2_REG_RQ_BW_RD_ADD23,
|
|
PXP2_REG_RQ_BW_RD_UBOUND23},
|
|
{PXP2_REG_RQ_BW_RD_L24, PXP2_REG_RQ_BW_RD_ADD24,
|
|
PXP2_REG_RQ_BW_RD_UBOUND24},
|
|
{PXP2_REG_RQ_BW_RD_L25, PXP2_REG_RQ_BW_RD_ADD25,
|
|
PXP2_REG_RQ_BW_RD_UBOUND25},
|
|
{PXP2_REG_RQ_BW_RD_L26, PXP2_REG_RQ_BW_RD_ADD26,
|
|
PXP2_REG_RQ_BW_RD_UBOUND26},
|
|
{PXP2_REG_RQ_BW_RD_L27, PXP2_REG_RQ_BW_RD_ADD27,
|
|
PXP2_REG_RQ_BW_RD_UBOUND27},
|
|
{PXP2_REG_PSWRQ_BW_L28, PXP2_REG_PSWRQ_BW_ADD28,
|
|
PXP2_REG_PSWRQ_BW_UB28}
|
|
};
|
|
|
|
/* register addresses for write queues */
|
|
static const struct arb_line write_arb_addr[NUM_WR_Q-1] = {
|
|
/* 1 */ {PXP2_REG_PSWRQ_BW_L1, PXP2_REG_PSWRQ_BW_ADD1,
|
|
PXP2_REG_PSWRQ_BW_UB1},
|
|
{PXP2_REG_PSWRQ_BW_L2, PXP2_REG_PSWRQ_BW_ADD2,
|
|
PXP2_REG_PSWRQ_BW_UB2},
|
|
{PXP2_REG_PSWRQ_BW_L3, PXP2_REG_PSWRQ_BW_ADD3,
|
|
PXP2_REG_PSWRQ_BW_UB3},
|
|
{PXP2_REG_PSWRQ_BW_L6, PXP2_REG_PSWRQ_BW_ADD6,
|
|
PXP2_REG_PSWRQ_BW_UB6},
|
|
{PXP2_REG_PSWRQ_BW_L7, PXP2_REG_PSWRQ_BW_ADD7,
|
|
PXP2_REG_PSWRQ_BW_UB7},
|
|
{PXP2_REG_PSWRQ_BW_L8, PXP2_REG_PSWRQ_BW_ADD8,
|
|
PXP2_REG_PSWRQ_BW_UB8},
|
|
{PXP2_REG_PSWRQ_BW_L9, PXP2_REG_PSWRQ_BW_ADD9,
|
|
PXP2_REG_PSWRQ_BW_UB9},
|
|
{PXP2_REG_PSWRQ_BW_L10, PXP2_REG_PSWRQ_BW_ADD10,
|
|
PXP2_REG_PSWRQ_BW_UB10},
|
|
{PXP2_REG_PSWRQ_BW_L11, PXP2_REG_PSWRQ_BW_ADD11,
|
|
PXP2_REG_PSWRQ_BW_UB11},
|
|
/* 10 */{PXP2_REG_PSWRQ_BW_L28, PXP2_REG_PSWRQ_BW_ADD28,
|
|
PXP2_REG_PSWRQ_BW_UB28},
|
|
{PXP2_REG_RQ_BW_WR_L29, PXP2_REG_RQ_BW_WR_ADD29,
|
|
PXP2_REG_RQ_BW_WR_UBOUND29},
|
|
{PXP2_REG_RQ_BW_WR_L30, PXP2_REG_RQ_BW_WR_ADD30,
|
|
PXP2_REG_RQ_BW_WR_UBOUND30}
|
|
};
|
|
|
|
static void bnx2x_init_pxp_arb(struct bnx2x *bp, int r_order, int w_order)
|
|
{
|
|
u32 val, i;
|
|
|
|
if (r_order > MAX_RD_ORD) {
|
|
DP(NETIF_MSG_HW, "read order of %d order adjusted to %d\n",
|
|
r_order, MAX_RD_ORD);
|
|
r_order = MAX_RD_ORD;
|
|
}
|
|
if (w_order > MAX_WR_ORD) {
|
|
DP(NETIF_MSG_HW, "write order of %d order adjusted to %d\n",
|
|
w_order, MAX_WR_ORD);
|
|
w_order = MAX_WR_ORD;
|
|
}
|
|
if (CHIP_REV_IS_FPGA(bp)) {
|
|
DP(NETIF_MSG_HW, "write order adjusted to 1 for FPGA\n");
|
|
w_order = 0;
|
|
}
|
|
DP(NETIF_MSG_HW, "read order %d write order %d\n", r_order, w_order);
|
|
|
|
for (i = 0; i < NUM_RD_Q-1; i++) {
|
|
REG_WR(bp, read_arb_addr[i].l, read_arb_data[i][r_order].l);
|
|
REG_WR(bp, read_arb_addr[i].add,
|
|
read_arb_data[i][r_order].add);
|
|
REG_WR(bp, read_arb_addr[i].ubound,
|
|
read_arb_data[i][r_order].ubound);
|
|
}
|
|
|
|
for (i = 0; i < NUM_WR_Q-1; i++) {
|
|
if ((write_arb_addr[i].l == PXP2_REG_RQ_BW_WR_L29) ||
|
|
(write_arb_addr[i].l == PXP2_REG_RQ_BW_WR_L30)) {
|
|
|
|
REG_WR(bp, write_arb_addr[i].l,
|
|
write_arb_data[i][w_order].l);
|
|
|
|
REG_WR(bp, write_arb_addr[i].add,
|
|
write_arb_data[i][w_order].add);
|
|
|
|
REG_WR(bp, write_arb_addr[i].ubound,
|
|
write_arb_data[i][w_order].ubound);
|
|
} else {
|
|
|
|
val = REG_RD(bp, write_arb_addr[i].l);
|
|
REG_WR(bp, write_arb_addr[i].l,
|
|
val | (write_arb_data[i][w_order].l << 10));
|
|
|
|
val = REG_RD(bp, write_arb_addr[i].add);
|
|
REG_WR(bp, write_arb_addr[i].add,
|
|
val | (write_arb_data[i][w_order].add << 10));
|
|
|
|
val = REG_RD(bp, write_arb_addr[i].ubound);
|
|
REG_WR(bp, write_arb_addr[i].ubound,
|
|
val | (write_arb_data[i][w_order].ubound << 7));
|
|
}
|
|
}
|
|
|
|
val = write_arb_data[NUM_WR_Q-1][w_order].add;
|
|
val += write_arb_data[NUM_WR_Q-1][w_order].ubound << 10;
|
|
val += write_arb_data[NUM_WR_Q-1][w_order].l << 17;
|
|
REG_WR(bp, PXP2_REG_PSWRQ_BW_RD, val);
|
|
|
|
val = read_arb_data[NUM_RD_Q-1][r_order].add;
|
|
val += read_arb_data[NUM_RD_Q-1][r_order].ubound << 10;
|
|
val += read_arb_data[NUM_RD_Q-1][r_order].l << 17;
|
|
REG_WR(bp, PXP2_REG_PSWRQ_BW_WR, val);
|
|
|
|
REG_WR(bp, PXP2_REG_RQ_WR_MBS0, w_order);
|
|
REG_WR(bp, PXP2_REG_RQ_WR_MBS1, w_order);
|
|
REG_WR(bp, PXP2_REG_RQ_RD_MBS0, r_order);
|
|
REG_WR(bp, PXP2_REG_RQ_RD_MBS1, r_order);
|
|
|
|
if (r_order == MAX_RD_ORD)
|
|
REG_WR(bp, PXP2_REG_RQ_PDR_LIMIT, 0xe00);
|
|
|
|
REG_WR(bp, PXP2_REG_WR_USDMDP_TH, (0x18 << w_order));
|
|
|
|
if (CHIP_IS_E1H(bp)) {
|
|
/* MPS w_order optimal TH presently TH
|
|
* 128 0 0 2
|
|
* 256 1 1 3
|
|
* >=512 2 2 3
|
|
*/
|
|
val = ((w_order == 0) ? 2 : 3);
|
|
REG_WR(bp, PXP2_REG_WR_HC_MPS, val);
|
|
REG_WR(bp, PXP2_REG_WR_USDM_MPS, val);
|
|
REG_WR(bp, PXP2_REG_WR_CSDM_MPS, val);
|
|
REG_WR(bp, PXP2_REG_WR_TSDM_MPS, val);
|
|
REG_WR(bp, PXP2_REG_WR_XSDM_MPS, val);
|
|
REG_WR(bp, PXP2_REG_WR_QM_MPS, val);
|
|
REG_WR(bp, PXP2_REG_WR_TM_MPS, val);
|
|
REG_WR(bp, PXP2_REG_WR_SRC_MPS, val);
|
|
REG_WR(bp, PXP2_REG_WR_DBG_MPS, val);
|
|
REG_WR(bp, PXP2_REG_WR_DMAE_MPS, 2); /* DMAE is special */
|
|
REG_WR(bp, PXP2_REG_WR_CDU_MPS, val);
|
|
}
|
|
}
|
|
|
|
#endif /* BNX2X_INIT_OPS_H */
|