linux/rust/macros/lib.rs
Benno Lossin 071cedc84e rust: add derive macro for Zeroable
Add a derive proc-macro for the `Zeroable` trait. The macro supports
structs where every field implements the `Zeroable` trait. This way
`unsafe` implementations can be avoided.

The macro is split into two parts:
- a proc-macro to parse generics into impl and ty generics,
- a declarative macro that expands to the impl block.

Suggested-by: Asahi Lina <lina@asahilina.net>
Signed-off-by: Benno Lossin <benno.lossin@proton.me>
Reviewed-by: Gary Guo <gary@garyguo.net>
Reviewed-by: Martin Rodriguez Reboredo <yakoyoku@gmail.com>
Link: https://lore.kernel.org/r/20230814084602.25699-4-benno.lossin@proton.me
[ Added `ignore` to the `lib.rs` example and cleaned trivial nit. ]
Signed-off-by: Miguel Ojeda <ojeda@kernel.org>
2023-08-21 14:31:48 +02:00

366 lines
10 KiB
Rust

// SPDX-License-Identifier: GPL-2.0
//! Crate for all kernel procedural macros.
#[macro_use]
mod quote;
mod concat_idents;
mod helpers;
mod module;
mod paste;
mod pin_data;
mod pinned_drop;
mod vtable;
mod zeroable;
use proc_macro::TokenStream;
/// Declares a kernel module.
///
/// The `type` argument should be a type which implements the [`Module`]
/// trait. Also accepts various forms of kernel metadata.
///
/// C header: [`include/linux/moduleparam.h`](../../../include/linux/moduleparam.h)
///
/// [`Module`]: ../kernel/trait.Module.html
///
/// # Examples
///
/// ```ignore
/// use kernel::prelude::*;
///
/// module!{
/// type: MyModule,
/// name: "my_kernel_module",
/// author: "Rust for Linux Contributors",
/// description: "My very own kernel module!",
/// license: "GPL",
/// params: {
/// my_i32: i32 {
/// default: 42,
/// permissions: 0o000,
/// description: "Example of i32",
/// },
/// writeable_i32: i32 {
/// default: 42,
/// permissions: 0o644,
/// description: "Example of i32",
/// },
/// },
/// }
///
/// struct MyModule;
///
/// impl kernel::Module for MyModule {
/// fn init() -> Result<Self> {
/// // If the parameter is writeable, then the kparam lock must be
/// // taken to read the parameter:
/// {
/// let lock = THIS_MODULE.kernel_param_lock();
/// pr_info!("i32 param is: {}\n", writeable_i32.read(&lock));
/// }
/// // If the parameter is read only, it can be read without locking
/// // the kernel parameters:
/// pr_info!("i32 param is: {}\n", my_i32.read());
/// Ok(Self)
/// }
/// }
/// ```
///
/// # Supported argument types
/// - `type`: type which implements the [`Module`] trait (required).
/// - `name`: byte array of the name of the kernel module (required).
/// - `author`: byte array of the author of the kernel module.
/// - `description`: byte array of the description of the kernel module.
/// - `license`: byte array of the license of the kernel module (required).
/// - `alias`: byte array of alias name of the kernel module.
#[proc_macro]
pub fn module(ts: TokenStream) -> TokenStream {
module::module(ts)
}
/// Declares or implements a vtable trait.
///
/// Linux's use of pure vtables is very close to Rust traits, but they differ
/// in how unimplemented functions are represented. In Rust, traits can provide
/// default implementation for all non-required methods (and the default
/// implementation could just return `Error::EINVAL`); Linux typically use C
/// `NULL` pointers to represent these functions.
///
/// This attribute is intended to close the gap. Traits can be declared and
/// implemented with the `#[vtable]` attribute, and a `HAS_*` associated constant
/// will be generated for each method in the trait, indicating if the implementor
/// has overridden a method.
///
/// This attribute is not needed if all methods are required.
///
/// # Examples
///
/// ```ignore
/// use kernel::prelude::*;
///
/// // Declares a `#[vtable]` trait
/// #[vtable]
/// pub trait Operations: Send + Sync + Sized {
/// fn foo(&self) -> Result<()> {
/// Err(EINVAL)
/// }
///
/// fn bar(&self) -> Result<()> {
/// Err(EINVAL)
/// }
/// }
///
/// struct Foo;
///
/// // Implements the `#[vtable]` trait
/// #[vtable]
/// impl Operations for Foo {
/// fn foo(&self) -> Result<()> {
/// # Err(EINVAL)
/// // ...
/// }
/// }
///
/// assert_eq!(<Foo as Operations>::HAS_FOO, true);
/// assert_eq!(<Foo as Operations>::HAS_BAR, false);
/// ```
#[proc_macro_attribute]
pub fn vtable(attr: TokenStream, ts: TokenStream) -> TokenStream {
vtable::vtable(attr, ts)
}
/// Concatenate two identifiers.
///
/// This is useful in macros that need to declare or reference items with names
/// starting with a fixed prefix and ending in a user specified name. The resulting
/// identifier has the span of the second argument.
///
/// # Examples
///
/// ```ignore
/// use kernel::macro::concat_idents;
///
/// macro_rules! pub_no_prefix {
/// ($prefix:ident, $($newname:ident),+) => {
/// $(pub(crate) const $newname: u32 = kernel::macros::concat_idents!($prefix, $newname);)+
/// };
/// }
///
/// pub_no_prefix!(
/// binder_driver_return_protocol_,
/// BR_OK,
/// BR_ERROR,
/// BR_TRANSACTION,
/// BR_REPLY,
/// BR_DEAD_REPLY,
/// BR_TRANSACTION_COMPLETE,
/// BR_INCREFS,
/// BR_ACQUIRE,
/// BR_RELEASE,
/// BR_DECREFS,
/// BR_NOOP,
/// BR_SPAWN_LOOPER,
/// BR_DEAD_BINDER,
/// BR_CLEAR_DEATH_NOTIFICATION_DONE,
/// BR_FAILED_REPLY
/// );
///
/// assert_eq!(BR_OK, binder_driver_return_protocol_BR_OK);
/// ```
#[proc_macro]
pub fn concat_idents(ts: TokenStream) -> TokenStream {
concat_idents::concat_idents(ts)
}
/// Used to specify the pinning information of the fields of a struct.
///
/// This is somewhat similar in purpose as
/// [pin-project-lite](https://crates.io/crates/pin-project-lite).
/// Place this macro on a struct definition and then `#[pin]` in front of the attributes of each
/// field you want to structurally pin.
///
/// This macro enables the use of the [`pin_init!`] macro. When pin-initializing a `struct`,
/// then `#[pin]` directs the type of initializer that is required.
///
/// If your `struct` implements `Drop`, then you need to add `PinnedDrop` as arguments to this
/// macro, and change your `Drop` implementation to `PinnedDrop` annotated with
/// `#[`[`macro@pinned_drop`]`]`, since dropping pinned values requires extra care.
///
/// # Examples
///
/// ```rust,ignore
/// #[pin_data]
/// struct DriverData {
/// #[pin]
/// queue: Mutex<Vec<Command>>,
/// buf: Box<[u8; 1024 * 1024]>,
/// }
/// ```
///
/// ```rust,ignore
/// #[pin_data(PinnedDrop)]
/// struct DriverData {
/// #[pin]
/// queue: Mutex<Vec<Command>>,
/// buf: Box<[u8; 1024 * 1024]>,
/// raw_info: *mut Info,
/// }
///
/// #[pinned_drop]
/// impl PinnedDrop for DriverData {
/// fn drop(self: Pin<&mut Self>) {
/// unsafe { bindings::destroy_info(self.raw_info) };
/// }
/// }
/// ```
///
/// [`pin_init!`]: ../kernel/macro.pin_init.html
// ^ cannot use direct link, since `kernel` is not a dependency of `macros`.
#[proc_macro_attribute]
pub fn pin_data(inner: TokenStream, item: TokenStream) -> TokenStream {
pin_data::pin_data(inner, item)
}
/// Used to implement `PinnedDrop` safely.
///
/// Only works on structs that are annotated via `#[`[`macro@pin_data`]`]`.
///
/// # Examples
///
/// ```rust,ignore
/// #[pin_data(PinnedDrop)]
/// struct DriverData {
/// #[pin]
/// queue: Mutex<Vec<Command>>,
/// buf: Box<[u8; 1024 * 1024]>,
/// raw_info: *mut Info,
/// }
///
/// #[pinned_drop]
/// impl PinnedDrop for DriverData {
/// fn drop(self: Pin<&mut Self>) {
/// unsafe { bindings::destroy_info(self.raw_info) };
/// }
/// }
/// ```
#[proc_macro_attribute]
pub fn pinned_drop(args: TokenStream, input: TokenStream) -> TokenStream {
pinned_drop::pinned_drop(args, input)
}
/// Paste identifiers together.
///
/// Within the `paste!` macro, identifiers inside `[<` and `>]` are concatenated together to form a
/// single identifier.
///
/// This is similar to the [`paste`] crate, but with pasting feature limited to identifiers
/// (literals, lifetimes and documentation strings are not supported). There is a difference in
/// supported modifiers as well.
///
/// # Example
///
/// ```ignore
/// use kernel::macro::paste;
///
/// macro_rules! pub_no_prefix {
/// ($prefix:ident, $($newname:ident),+) => {
/// paste! {
/// $(pub(crate) const $newname: u32 = [<$prefix $newname>];)+
/// }
/// };
/// }
///
/// pub_no_prefix!(
/// binder_driver_return_protocol_,
/// BR_OK,
/// BR_ERROR,
/// BR_TRANSACTION,
/// BR_REPLY,
/// BR_DEAD_REPLY,
/// BR_TRANSACTION_COMPLETE,
/// BR_INCREFS,
/// BR_ACQUIRE,
/// BR_RELEASE,
/// BR_DECREFS,
/// BR_NOOP,
/// BR_SPAWN_LOOPER,
/// BR_DEAD_BINDER,
/// BR_CLEAR_DEATH_NOTIFICATION_DONE,
/// BR_FAILED_REPLY
/// );
///
/// assert_eq!(BR_OK, binder_driver_return_protocol_BR_OK);
/// ```
///
/// # Modifiers
///
/// For each identifier, it is possible to attach one or multiple modifiers to
/// it.
///
/// Currently supported modifiers are:
/// * `span`: change the span of concatenated identifier to the span of the specified token. By
/// default the span of the `[< >]` group is used.
/// * `lower`: change the identifier to lower case.
/// * `upper`: change the identifier to upper case.
///
/// ```ignore
/// use kernel::macro::paste;
///
/// macro_rules! pub_no_prefix {
/// ($prefix:ident, $($newname:ident),+) => {
/// kernel::macros::paste! {
/// $(pub(crate) const fn [<$newname:lower:span>]: u32 = [<$prefix $newname:span>];)+
/// }
/// };
/// }
///
/// pub_no_prefix!(
/// binder_driver_return_protocol_,
/// BR_OK,
/// BR_ERROR,
/// BR_TRANSACTION,
/// BR_REPLY,
/// BR_DEAD_REPLY,
/// BR_TRANSACTION_COMPLETE,
/// BR_INCREFS,
/// BR_ACQUIRE,
/// BR_RELEASE,
/// BR_DECREFS,
/// BR_NOOP,
/// BR_SPAWN_LOOPER,
/// BR_DEAD_BINDER,
/// BR_CLEAR_DEATH_NOTIFICATION_DONE,
/// BR_FAILED_REPLY
/// );
///
/// assert_eq!(br_ok(), binder_driver_return_protocol_BR_OK);
/// ```
///
/// [`paste`]: https://docs.rs/paste/
#[proc_macro]
pub fn paste(input: TokenStream) -> TokenStream {
let mut tokens = input.into_iter().collect();
paste::expand(&mut tokens);
tokens.into_iter().collect()
}
/// Derives the [`Zeroable`] trait for the given struct.
///
/// This can only be used for structs where every field implements the [`Zeroable`] trait.
///
/// # Examples
///
/// ```rust,ignore
/// #[derive(Zeroable)]
/// pub struct DriverData {
/// id: i64,
/// buf_ptr: *mut u8,
/// len: usize,
/// }
/// ```
#[proc_macro_derive(Zeroable)]
pub fn derive_zeroable(input: TokenStream) -> TokenStream {
zeroable::derive(input)
}