mirror of
https://github.com/torvalds/linux.git
synced 2024-12-28 05:41:55 +00:00
e24a62cb68
In future ASICs, there is no kernel TDR for new workloads that are submitted directly from user-space to the device. Therefore, the driver can NEVER know that a workload has timed-out. So, when the user asks us to wait for interrupt on the workload's completion, and the wait has timed-out, it doesn't mean the workload has timed-out. It only means the wait has timed-out, which is NOT an error from driver's perspective. Signed-off-by: Oded Gabbay <ogabbay@kernel.org>
3163 lines
84 KiB
C
3163 lines
84 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
|
|
/*
|
|
* Copyright 2016-2021 HabanaLabs, Ltd.
|
|
* All Rights Reserved.
|
|
*/
|
|
|
|
#include <uapi/misc/habanalabs.h>
|
|
#include "habanalabs.h"
|
|
|
|
#include <linux/uaccess.h>
|
|
#include <linux/slab.h>
|
|
|
|
#define HL_CS_FLAGS_TYPE_MASK (HL_CS_FLAGS_SIGNAL | HL_CS_FLAGS_WAIT | \
|
|
HL_CS_FLAGS_COLLECTIVE_WAIT)
|
|
|
|
/**
|
|
* enum hl_cs_wait_status - cs wait status
|
|
* @CS_WAIT_STATUS_BUSY: cs was not completed yet
|
|
* @CS_WAIT_STATUS_COMPLETED: cs completed
|
|
* @CS_WAIT_STATUS_GONE: cs completed but fence is already gone
|
|
*/
|
|
enum hl_cs_wait_status {
|
|
CS_WAIT_STATUS_BUSY,
|
|
CS_WAIT_STATUS_COMPLETED,
|
|
CS_WAIT_STATUS_GONE
|
|
};
|
|
|
|
static void job_wq_completion(struct work_struct *work);
|
|
static int _hl_cs_wait_ioctl(struct hl_device *hdev, struct hl_ctx *ctx,
|
|
u64 timeout_us, u64 seq,
|
|
enum hl_cs_wait_status *status, s64 *timestamp);
|
|
static void cs_do_release(struct kref *ref);
|
|
|
|
static void hl_sob_reset(struct kref *ref)
|
|
{
|
|
struct hl_hw_sob *hw_sob = container_of(ref, struct hl_hw_sob,
|
|
kref);
|
|
struct hl_device *hdev = hw_sob->hdev;
|
|
|
|
dev_dbg(hdev->dev, "reset sob id %u\n", hw_sob->sob_id);
|
|
|
|
hdev->asic_funcs->reset_sob(hdev, hw_sob);
|
|
|
|
hw_sob->need_reset = false;
|
|
}
|
|
|
|
void hl_sob_reset_error(struct kref *ref)
|
|
{
|
|
struct hl_hw_sob *hw_sob = container_of(ref, struct hl_hw_sob,
|
|
kref);
|
|
struct hl_device *hdev = hw_sob->hdev;
|
|
|
|
dev_crit(hdev->dev,
|
|
"SOB release shouldn't be called here, q_idx: %d, sob_id: %d\n",
|
|
hw_sob->q_idx, hw_sob->sob_id);
|
|
}
|
|
|
|
void hw_sob_put(struct hl_hw_sob *hw_sob)
|
|
{
|
|
if (hw_sob)
|
|
kref_put(&hw_sob->kref, hl_sob_reset);
|
|
}
|
|
|
|
static void hw_sob_put_err(struct hl_hw_sob *hw_sob)
|
|
{
|
|
if (hw_sob)
|
|
kref_put(&hw_sob->kref, hl_sob_reset_error);
|
|
}
|
|
|
|
void hw_sob_get(struct hl_hw_sob *hw_sob)
|
|
{
|
|
if (hw_sob)
|
|
kref_get(&hw_sob->kref);
|
|
}
|
|
|
|
/**
|
|
* hl_gen_sob_mask() - Generates a sob mask to be used in a monitor arm packet
|
|
* @sob_base: sob base id
|
|
* @sob_mask: sob user mask, each bit represents a sob offset from sob base
|
|
* @mask: generated mask
|
|
*
|
|
* Return: 0 if given parameters are valid
|
|
*/
|
|
int hl_gen_sob_mask(u16 sob_base, u8 sob_mask, u8 *mask)
|
|
{
|
|
int i;
|
|
|
|
if (sob_mask == 0)
|
|
return -EINVAL;
|
|
|
|
if (sob_mask == 0x1) {
|
|
*mask = ~(1 << (sob_base & 0x7));
|
|
} else {
|
|
/* find msb in order to verify sob range is valid */
|
|
for (i = BITS_PER_BYTE - 1 ; i >= 0 ; i--)
|
|
if (BIT(i) & sob_mask)
|
|
break;
|
|
|
|
if (i > (HL_MAX_SOBS_PER_MONITOR - (sob_base & 0x7) - 1))
|
|
return -EINVAL;
|
|
|
|
*mask = ~sob_mask;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void hl_fence_release(struct kref *kref)
|
|
{
|
|
struct hl_fence *fence =
|
|
container_of(kref, struct hl_fence, refcount);
|
|
struct hl_cs_compl *hl_cs_cmpl =
|
|
container_of(fence, struct hl_cs_compl, base_fence);
|
|
|
|
kfree(hl_cs_cmpl);
|
|
}
|
|
|
|
void hl_fence_put(struct hl_fence *fence)
|
|
{
|
|
if (IS_ERR_OR_NULL(fence))
|
|
return;
|
|
kref_put(&fence->refcount, hl_fence_release);
|
|
}
|
|
|
|
void hl_fences_put(struct hl_fence **fence, int len)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < len; i++, fence++)
|
|
hl_fence_put(*fence);
|
|
}
|
|
|
|
void hl_fence_get(struct hl_fence *fence)
|
|
{
|
|
if (fence)
|
|
kref_get(&fence->refcount);
|
|
}
|
|
|
|
static void hl_fence_init(struct hl_fence *fence, u64 sequence)
|
|
{
|
|
kref_init(&fence->refcount);
|
|
fence->cs_sequence = sequence;
|
|
fence->error = 0;
|
|
fence->timestamp = ktime_set(0, 0);
|
|
fence->mcs_handling_done = false;
|
|
init_completion(&fence->completion);
|
|
}
|
|
|
|
void cs_get(struct hl_cs *cs)
|
|
{
|
|
kref_get(&cs->refcount);
|
|
}
|
|
|
|
static int cs_get_unless_zero(struct hl_cs *cs)
|
|
{
|
|
return kref_get_unless_zero(&cs->refcount);
|
|
}
|
|
|
|
static void cs_put(struct hl_cs *cs)
|
|
{
|
|
kref_put(&cs->refcount, cs_do_release);
|
|
}
|
|
|
|
static void cs_job_do_release(struct kref *ref)
|
|
{
|
|
struct hl_cs_job *job = container_of(ref, struct hl_cs_job, refcount);
|
|
|
|
kfree(job);
|
|
}
|
|
|
|
static void cs_job_put(struct hl_cs_job *job)
|
|
{
|
|
kref_put(&job->refcount, cs_job_do_release);
|
|
}
|
|
|
|
bool cs_needs_completion(struct hl_cs *cs)
|
|
{
|
|
/* In case this is a staged CS, only the last CS in sequence should
|
|
* get a completion, any non staged CS will always get a completion
|
|
*/
|
|
if (cs->staged_cs && !cs->staged_last)
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
bool cs_needs_timeout(struct hl_cs *cs)
|
|
{
|
|
/* In case this is a staged CS, only the first CS in sequence should
|
|
* get a timeout, any non staged CS will always get a timeout
|
|
*/
|
|
if (cs->staged_cs && !cs->staged_first)
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool is_cb_patched(struct hl_device *hdev, struct hl_cs_job *job)
|
|
{
|
|
/*
|
|
* Patched CB is created for external queues jobs, and for H/W queues
|
|
* jobs if the user CB was allocated by driver and MMU is disabled.
|
|
*/
|
|
return (job->queue_type == QUEUE_TYPE_EXT ||
|
|
(job->queue_type == QUEUE_TYPE_HW &&
|
|
job->is_kernel_allocated_cb &&
|
|
!hdev->mmu_enable));
|
|
}
|
|
|
|
/*
|
|
* cs_parser - parse the user command submission
|
|
*
|
|
* @hpriv : pointer to the private data of the fd
|
|
* @job : pointer to the job that holds the command submission info
|
|
*
|
|
* The function parses the command submission of the user. It calls the
|
|
* ASIC specific parser, which returns a list of memory blocks to send
|
|
* to the device as different command buffers
|
|
*
|
|
*/
|
|
static int cs_parser(struct hl_fpriv *hpriv, struct hl_cs_job *job)
|
|
{
|
|
struct hl_device *hdev = hpriv->hdev;
|
|
struct hl_cs_parser parser;
|
|
int rc;
|
|
|
|
parser.ctx_id = job->cs->ctx->asid;
|
|
parser.cs_sequence = job->cs->sequence;
|
|
parser.job_id = job->id;
|
|
|
|
parser.hw_queue_id = job->hw_queue_id;
|
|
parser.job_userptr_list = &job->userptr_list;
|
|
parser.patched_cb = NULL;
|
|
parser.user_cb = job->user_cb;
|
|
parser.user_cb_size = job->user_cb_size;
|
|
parser.queue_type = job->queue_type;
|
|
parser.is_kernel_allocated_cb = job->is_kernel_allocated_cb;
|
|
job->patched_cb = NULL;
|
|
parser.completion = cs_needs_completion(job->cs);
|
|
|
|
rc = hdev->asic_funcs->cs_parser(hdev, &parser);
|
|
|
|
if (is_cb_patched(hdev, job)) {
|
|
if (!rc) {
|
|
job->patched_cb = parser.patched_cb;
|
|
job->job_cb_size = parser.patched_cb_size;
|
|
job->contains_dma_pkt = parser.contains_dma_pkt;
|
|
atomic_inc(&job->patched_cb->cs_cnt);
|
|
}
|
|
|
|
/*
|
|
* Whether the parsing worked or not, we don't need the
|
|
* original CB anymore because it was already parsed and
|
|
* won't be accessed again for this CS
|
|
*/
|
|
atomic_dec(&job->user_cb->cs_cnt);
|
|
hl_cb_put(job->user_cb);
|
|
job->user_cb = NULL;
|
|
} else if (!rc) {
|
|
job->job_cb_size = job->user_cb_size;
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
static void complete_job(struct hl_device *hdev, struct hl_cs_job *job)
|
|
{
|
|
struct hl_cs *cs = job->cs;
|
|
|
|
if (is_cb_patched(hdev, job)) {
|
|
hl_userptr_delete_list(hdev, &job->userptr_list);
|
|
|
|
/*
|
|
* We might arrive here from rollback and patched CB wasn't
|
|
* created, so we need to check it's not NULL
|
|
*/
|
|
if (job->patched_cb) {
|
|
atomic_dec(&job->patched_cb->cs_cnt);
|
|
hl_cb_put(job->patched_cb);
|
|
}
|
|
}
|
|
|
|
/* For H/W queue jobs, if a user CB was allocated by driver and MMU is
|
|
* enabled, the user CB isn't released in cs_parser() and thus should be
|
|
* released here.
|
|
* This is also true for INT queues jobs which were allocated by driver
|
|
*/
|
|
if (job->is_kernel_allocated_cb &&
|
|
((job->queue_type == QUEUE_TYPE_HW && hdev->mmu_enable) ||
|
|
job->queue_type == QUEUE_TYPE_INT)) {
|
|
atomic_dec(&job->user_cb->cs_cnt);
|
|
hl_cb_put(job->user_cb);
|
|
}
|
|
|
|
/*
|
|
* This is the only place where there can be multiple threads
|
|
* modifying the list at the same time
|
|
*/
|
|
spin_lock(&cs->job_lock);
|
|
list_del(&job->cs_node);
|
|
spin_unlock(&cs->job_lock);
|
|
|
|
hl_debugfs_remove_job(hdev, job);
|
|
|
|
/* We decrement reference only for a CS that gets completion
|
|
* because the reference was incremented only for this kind of CS
|
|
* right before it was scheduled.
|
|
*
|
|
* In staged submission, only the last CS marked as 'staged_last'
|
|
* gets completion, hence its release function will be called from here.
|
|
* As for all the rest CS's in the staged submission which do not get
|
|
* completion, their CS reference will be decremented by the
|
|
* 'staged_last' CS during the CS release flow.
|
|
* All relevant PQ CI counters will be incremented during the CS release
|
|
* flow by calling 'hl_hw_queue_update_ci'.
|
|
*/
|
|
if (cs_needs_completion(cs) &&
|
|
(job->queue_type == QUEUE_TYPE_EXT ||
|
|
job->queue_type == QUEUE_TYPE_HW))
|
|
cs_put(cs);
|
|
|
|
cs_job_put(job);
|
|
}
|
|
|
|
/*
|
|
* hl_staged_cs_find_first - locate the first CS in this staged submission
|
|
*
|
|
* @hdev: pointer to device structure
|
|
* @cs_seq: staged submission sequence number
|
|
*
|
|
* @note: This function must be called under 'hdev->cs_mirror_lock'
|
|
*
|
|
* Find and return a CS pointer with the given sequence
|
|
*/
|
|
struct hl_cs *hl_staged_cs_find_first(struct hl_device *hdev, u64 cs_seq)
|
|
{
|
|
struct hl_cs *cs;
|
|
|
|
list_for_each_entry_reverse(cs, &hdev->cs_mirror_list, mirror_node)
|
|
if (cs->staged_cs && cs->staged_first &&
|
|
cs->sequence == cs_seq)
|
|
return cs;
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* is_staged_cs_last_exists - returns true if the last CS in sequence exists
|
|
*
|
|
* @hdev: pointer to device structure
|
|
* @cs: staged submission member
|
|
*
|
|
*/
|
|
bool is_staged_cs_last_exists(struct hl_device *hdev, struct hl_cs *cs)
|
|
{
|
|
struct hl_cs *last_entry;
|
|
|
|
last_entry = list_last_entry(&cs->staged_cs_node, struct hl_cs,
|
|
staged_cs_node);
|
|
|
|
if (last_entry->staged_last)
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* staged_cs_get - get CS reference if this CS is a part of a staged CS
|
|
*
|
|
* @hdev: pointer to device structure
|
|
* @cs: current CS
|
|
* @cs_seq: staged submission sequence number
|
|
*
|
|
* Increment CS reference for every CS in this staged submission except for
|
|
* the CS which get completion.
|
|
*/
|
|
static void staged_cs_get(struct hl_device *hdev, struct hl_cs *cs)
|
|
{
|
|
/* Only the last CS in this staged submission will get a completion.
|
|
* We must increment the reference for all other CS's in this
|
|
* staged submission.
|
|
* Once we get a completion we will release the whole staged submission.
|
|
*/
|
|
if (!cs->staged_last)
|
|
cs_get(cs);
|
|
}
|
|
|
|
/*
|
|
* staged_cs_put - put a CS in case it is part of staged submission
|
|
*
|
|
* @hdev: pointer to device structure
|
|
* @cs: CS to put
|
|
*
|
|
* This function decrements a CS reference (for a non completion CS)
|
|
*/
|
|
static void staged_cs_put(struct hl_device *hdev, struct hl_cs *cs)
|
|
{
|
|
/* We release all CS's in a staged submission except the last
|
|
* CS which we have never incremented its reference.
|
|
*/
|
|
if (!cs_needs_completion(cs))
|
|
cs_put(cs);
|
|
}
|
|
|
|
static void cs_handle_tdr(struct hl_device *hdev, struct hl_cs *cs)
|
|
{
|
|
bool next_entry_found = false;
|
|
struct hl_cs *next, *first_cs;
|
|
|
|
if (!cs_needs_timeout(cs))
|
|
return;
|
|
|
|
spin_lock(&hdev->cs_mirror_lock);
|
|
|
|
/* We need to handle tdr only once for the complete staged submission.
|
|
* Hence, we choose the CS that reaches this function first which is
|
|
* the CS marked as 'staged_last'.
|
|
* In case single staged cs was submitted which has both first and last
|
|
* indications, then "cs_find_first" below will return NULL, since we
|
|
* removed the cs node from the list before getting here,
|
|
* in such cases just continue with the cs to cancel it's TDR work.
|
|
*/
|
|
if (cs->staged_cs && cs->staged_last) {
|
|
first_cs = hl_staged_cs_find_first(hdev, cs->staged_sequence);
|
|
if (first_cs)
|
|
cs = first_cs;
|
|
}
|
|
|
|
spin_unlock(&hdev->cs_mirror_lock);
|
|
|
|
/* Don't cancel TDR in case this CS was timedout because we might be
|
|
* running from the TDR context
|
|
*/
|
|
if (cs->timedout || hdev->timeout_jiffies == MAX_SCHEDULE_TIMEOUT)
|
|
return;
|
|
|
|
if (cs->tdr_active)
|
|
cancel_delayed_work_sync(&cs->work_tdr);
|
|
|
|
spin_lock(&hdev->cs_mirror_lock);
|
|
|
|
/* queue TDR for next CS */
|
|
list_for_each_entry(next, &hdev->cs_mirror_list, mirror_node)
|
|
if (cs_needs_timeout(next)) {
|
|
next_entry_found = true;
|
|
break;
|
|
}
|
|
|
|
if (next_entry_found && !next->tdr_active) {
|
|
next->tdr_active = true;
|
|
schedule_delayed_work(&next->work_tdr, next->timeout_jiffies);
|
|
}
|
|
|
|
spin_unlock(&hdev->cs_mirror_lock);
|
|
}
|
|
|
|
/*
|
|
* force_complete_multi_cs - complete all contexts that wait on multi-CS
|
|
*
|
|
* @hdev: pointer to habanalabs device structure
|
|
*/
|
|
static void force_complete_multi_cs(struct hl_device *hdev)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < MULTI_CS_MAX_USER_CTX; i++) {
|
|
struct multi_cs_completion *mcs_compl;
|
|
|
|
mcs_compl = &hdev->multi_cs_completion[i];
|
|
|
|
spin_lock(&mcs_compl->lock);
|
|
|
|
if (!mcs_compl->used) {
|
|
spin_unlock(&mcs_compl->lock);
|
|
continue;
|
|
}
|
|
|
|
/* when calling force complete no context should be waiting on
|
|
* multi-cS.
|
|
* We are calling the function as a protection for such case
|
|
* to free any pending context and print error message
|
|
*/
|
|
dev_err(hdev->dev,
|
|
"multi-CS completion context %d still waiting when calling force completion\n",
|
|
i);
|
|
complete_all(&mcs_compl->completion);
|
|
spin_unlock(&mcs_compl->lock);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* complete_multi_cs - complete all waiting entities on multi-CS
|
|
*
|
|
* @hdev: pointer to habanalabs device structure
|
|
* @cs: CS structure
|
|
* The function signals a waiting entity that has an overlapping stream masters
|
|
* with the completed CS.
|
|
* For example:
|
|
* - a completed CS worked on stream master QID 4, multi CS completion
|
|
* is actively waiting on stream master QIDs 3, 5. don't send signal as no
|
|
* common stream master QID
|
|
* - a completed CS worked on stream master QID 4, multi CS completion
|
|
* is actively waiting on stream master QIDs 3, 4. send signal as stream
|
|
* master QID 4 is common
|
|
*/
|
|
static void complete_multi_cs(struct hl_device *hdev, struct hl_cs *cs)
|
|
{
|
|
struct hl_fence *fence = cs->fence;
|
|
int i;
|
|
|
|
/* in case of multi CS check for completion only for the first CS */
|
|
if (cs->staged_cs && !cs->staged_first)
|
|
return;
|
|
|
|
for (i = 0; i < MULTI_CS_MAX_USER_CTX; i++) {
|
|
struct multi_cs_completion *mcs_compl;
|
|
|
|
mcs_compl = &hdev->multi_cs_completion[i];
|
|
if (!mcs_compl->used)
|
|
continue;
|
|
|
|
spin_lock(&mcs_compl->lock);
|
|
|
|
/*
|
|
* complete if:
|
|
* 1. still waiting for completion
|
|
* 2. the completed CS has at least one overlapping stream
|
|
* master with the stream masters in the completion
|
|
*/
|
|
if (mcs_compl->used &&
|
|
(fence->stream_master_qid_map &
|
|
mcs_compl->stream_master_qid_map)) {
|
|
/* extract the timestamp only of first completed CS */
|
|
if (!mcs_compl->timestamp)
|
|
mcs_compl->timestamp = ktime_to_ns(fence->timestamp);
|
|
|
|
complete_all(&mcs_compl->completion);
|
|
|
|
/*
|
|
* Setting mcs_handling_done inside the lock ensures
|
|
* at least one fence have mcs_handling_done set to
|
|
* true before wait for mcs finish. This ensures at
|
|
* least one CS will be set as completed when polling
|
|
* mcs fences.
|
|
*/
|
|
fence->mcs_handling_done = true;
|
|
}
|
|
|
|
spin_unlock(&mcs_compl->lock);
|
|
}
|
|
/* In case CS completed without mcs completion initialized */
|
|
fence->mcs_handling_done = true;
|
|
}
|
|
|
|
static inline void cs_release_sob_reset_handler(struct hl_device *hdev,
|
|
struct hl_cs *cs,
|
|
struct hl_cs_compl *hl_cs_cmpl)
|
|
{
|
|
/* Skip this handler if the cs wasn't submitted, to avoid putting
|
|
* the hw_sob twice, since this case already handled at this point,
|
|
* also skip if the hw_sob pointer wasn't set.
|
|
*/
|
|
if (!hl_cs_cmpl->hw_sob || !cs->submitted)
|
|
return;
|
|
|
|
spin_lock(&hl_cs_cmpl->lock);
|
|
|
|
/*
|
|
* we get refcount upon reservation of signals or signal/wait cs for the
|
|
* hw_sob object, and need to put it when the first staged cs
|
|
* (which cotains the encaps signals) or cs signal/wait is completed.
|
|
*/
|
|
if ((hl_cs_cmpl->type == CS_TYPE_SIGNAL) ||
|
|
(hl_cs_cmpl->type == CS_TYPE_WAIT) ||
|
|
(hl_cs_cmpl->type == CS_TYPE_COLLECTIVE_WAIT) ||
|
|
(!!hl_cs_cmpl->encaps_signals)) {
|
|
dev_dbg(hdev->dev,
|
|
"CS 0x%llx type %d finished, sob_id: %d, sob_val: %u\n",
|
|
hl_cs_cmpl->cs_seq,
|
|
hl_cs_cmpl->type,
|
|
hl_cs_cmpl->hw_sob->sob_id,
|
|
hl_cs_cmpl->sob_val);
|
|
|
|
hw_sob_put(hl_cs_cmpl->hw_sob);
|
|
|
|
if (hl_cs_cmpl->type == CS_TYPE_COLLECTIVE_WAIT)
|
|
hdev->asic_funcs->reset_sob_group(hdev,
|
|
hl_cs_cmpl->sob_group);
|
|
}
|
|
|
|
spin_unlock(&hl_cs_cmpl->lock);
|
|
}
|
|
|
|
static void cs_do_release(struct kref *ref)
|
|
{
|
|
struct hl_cs *cs = container_of(ref, struct hl_cs, refcount);
|
|
struct hl_device *hdev = cs->ctx->hdev;
|
|
struct hl_cs_job *job, *tmp;
|
|
struct hl_cs_compl *hl_cs_cmpl =
|
|
container_of(cs->fence, struct hl_cs_compl, base_fence);
|
|
|
|
cs->completed = true;
|
|
|
|
/*
|
|
* Although if we reached here it means that all external jobs have
|
|
* finished, because each one of them took refcnt to CS, we still
|
|
* need to go over the internal jobs and complete them. Otherwise, we
|
|
* will have leaked memory and what's worse, the CS object (and
|
|
* potentially the CTX object) could be released, while the JOB
|
|
* still holds a pointer to them (but no reference).
|
|
*/
|
|
list_for_each_entry_safe(job, tmp, &cs->job_list, cs_node)
|
|
complete_job(hdev, job);
|
|
|
|
if (!cs->submitted) {
|
|
/*
|
|
* In case the wait for signal CS was submitted, the fence put
|
|
* occurs in init_signal_wait_cs() or collective_wait_init_cs()
|
|
* right before hanging on the PQ.
|
|
*/
|
|
if (cs->type == CS_TYPE_WAIT ||
|
|
cs->type == CS_TYPE_COLLECTIVE_WAIT)
|
|
hl_fence_put(cs->signal_fence);
|
|
|
|
goto out;
|
|
}
|
|
|
|
/* Need to update CI for all queue jobs that does not get completion */
|
|
hl_hw_queue_update_ci(cs);
|
|
|
|
/* remove CS from CS mirror list */
|
|
spin_lock(&hdev->cs_mirror_lock);
|
|
list_del_init(&cs->mirror_node);
|
|
spin_unlock(&hdev->cs_mirror_lock);
|
|
|
|
cs_handle_tdr(hdev, cs);
|
|
|
|
if (cs->staged_cs) {
|
|
/* the completion CS decrements reference for the entire
|
|
* staged submission
|
|
*/
|
|
if (cs->staged_last) {
|
|
struct hl_cs *staged_cs, *tmp;
|
|
|
|
list_for_each_entry_safe(staged_cs, tmp,
|
|
&cs->staged_cs_node, staged_cs_node)
|
|
staged_cs_put(hdev, staged_cs);
|
|
}
|
|
|
|
/* A staged CS will be a member in the list only after it
|
|
* was submitted. We used 'cs_mirror_lock' when inserting
|
|
* it to list so we will use it again when removing it
|
|
*/
|
|
if (cs->submitted) {
|
|
spin_lock(&hdev->cs_mirror_lock);
|
|
list_del(&cs->staged_cs_node);
|
|
spin_unlock(&hdev->cs_mirror_lock);
|
|
}
|
|
|
|
/* decrement refcount to handle when first staged cs
|
|
* with encaps signals is completed.
|
|
*/
|
|
if (hl_cs_cmpl->encaps_signals)
|
|
kref_put(&hl_cs_cmpl->encaps_sig_hdl->refcount,
|
|
hl_encaps_handle_do_release);
|
|
}
|
|
|
|
if ((cs->type == CS_TYPE_WAIT || cs->type == CS_TYPE_COLLECTIVE_WAIT)
|
|
&& cs->encaps_signals)
|
|
kref_put(&cs->encaps_sig_hdl->refcount,
|
|
hl_encaps_handle_do_release);
|
|
|
|
out:
|
|
/* Must be called before hl_ctx_put because inside we use ctx to get
|
|
* the device
|
|
*/
|
|
hl_debugfs_remove_cs(cs);
|
|
|
|
hl_ctx_put(cs->ctx);
|
|
|
|
/* We need to mark an error for not submitted because in that case
|
|
* the hl fence release flow is different. Mainly, we don't need
|
|
* to handle hw_sob for signal/wait
|
|
*/
|
|
if (cs->timedout)
|
|
cs->fence->error = -ETIMEDOUT;
|
|
else if (cs->aborted)
|
|
cs->fence->error = -EIO;
|
|
else if (!cs->submitted)
|
|
cs->fence->error = -EBUSY;
|
|
|
|
if (unlikely(cs->skip_reset_on_timeout)) {
|
|
dev_err(hdev->dev,
|
|
"Command submission %llu completed after %llu (s)\n",
|
|
cs->sequence,
|
|
div_u64(jiffies - cs->submission_time_jiffies, HZ));
|
|
}
|
|
|
|
if (cs->timestamp)
|
|
cs->fence->timestamp = ktime_get();
|
|
complete_all(&cs->fence->completion);
|
|
complete_multi_cs(hdev, cs);
|
|
|
|
cs_release_sob_reset_handler(hdev, cs, hl_cs_cmpl);
|
|
|
|
hl_fence_put(cs->fence);
|
|
|
|
kfree(cs->jobs_in_queue_cnt);
|
|
kfree(cs);
|
|
}
|
|
|
|
static void cs_timedout(struct work_struct *work)
|
|
{
|
|
struct hl_device *hdev;
|
|
int rc;
|
|
struct hl_cs *cs = container_of(work, struct hl_cs,
|
|
work_tdr.work);
|
|
bool skip_reset_on_timeout = cs->skip_reset_on_timeout;
|
|
|
|
rc = cs_get_unless_zero(cs);
|
|
if (!rc)
|
|
return;
|
|
|
|
if ((!cs->submitted) || (cs->completed)) {
|
|
cs_put(cs);
|
|
return;
|
|
}
|
|
|
|
/* Mark the CS is timed out so we won't try to cancel its TDR */
|
|
if (likely(!skip_reset_on_timeout))
|
|
cs->timedout = true;
|
|
|
|
hdev = cs->ctx->hdev;
|
|
|
|
/* Save only the first CS timeout parameters */
|
|
rc = atomic_cmpxchg(&hdev->last_error.cs_write_disable, 0, 1);
|
|
if (!rc) {
|
|
hdev->last_error.open_dev_timestamp = hdev->last_successful_open_ktime;
|
|
hdev->last_error.cs_timeout_timestamp = ktime_get();
|
|
hdev->last_error.cs_timeout_seq = cs->sequence;
|
|
}
|
|
|
|
switch (cs->type) {
|
|
case CS_TYPE_SIGNAL:
|
|
dev_err(hdev->dev,
|
|
"Signal command submission %llu has not finished in time!\n",
|
|
cs->sequence);
|
|
break;
|
|
|
|
case CS_TYPE_WAIT:
|
|
dev_err(hdev->dev,
|
|
"Wait command submission %llu has not finished in time!\n",
|
|
cs->sequence);
|
|
break;
|
|
|
|
case CS_TYPE_COLLECTIVE_WAIT:
|
|
dev_err(hdev->dev,
|
|
"Collective Wait command submission %llu has not finished in time!\n",
|
|
cs->sequence);
|
|
break;
|
|
|
|
default:
|
|
dev_err(hdev->dev,
|
|
"Command submission %llu has not finished in time!\n",
|
|
cs->sequence);
|
|
break;
|
|
}
|
|
|
|
rc = hl_state_dump(hdev);
|
|
if (rc)
|
|
dev_err(hdev->dev, "Error during system state dump %d\n", rc);
|
|
|
|
cs_put(cs);
|
|
|
|
if (likely(!skip_reset_on_timeout)) {
|
|
if (hdev->reset_on_lockup)
|
|
hl_device_reset(hdev, HL_DRV_RESET_TDR);
|
|
else
|
|
hdev->reset_info.needs_reset = true;
|
|
}
|
|
}
|
|
|
|
static int allocate_cs(struct hl_device *hdev, struct hl_ctx *ctx,
|
|
enum hl_cs_type cs_type, u64 user_sequence,
|
|
struct hl_cs **cs_new, u32 flags, u32 timeout)
|
|
{
|
|
struct hl_cs_counters_atomic *cntr;
|
|
struct hl_fence *other = NULL;
|
|
struct hl_cs_compl *cs_cmpl;
|
|
struct hl_cs *cs;
|
|
int rc;
|
|
|
|
cntr = &hdev->aggregated_cs_counters;
|
|
|
|
cs = kzalloc(sizeof(*cs), GFP_ATOMIC);
|
|
if (!cs)
|
|
cs = kzalloc(sizeof(*cs), GFP_KERNEL);
|
|
|
|
if (!cs) {
|
|
atomic64_inc(&ctx->cs_counters.out_of_mem_drop_cnt);
|
|
atomic64_inc(&cntr->out_of_mem_drop_cnt);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
/* increment refcnt for context */
|
|
hl_ctx_get(hdev, ctx);
|
|
|
|
cs->ctx = ctx;
|
|
cs->submitted = false;
|
|
cs->completed = false;
|
|
cs->type = cs_type;
|
|
cs->timestamp = !!(flags & HL_CS_FLAGS_TIMESTAMP);
|
|
cs->encaps_signals = !!(flags & HL_CS_FLAGS_ENCAP_SIGNALS);
|
|
cs->timeout_jiffies = timeout;
|
|
cs->skip_reset_on_timeout =
|
|
hdev->reset_info.skip_reset_on_timeout ||
|
|
!!(flags & HL_CS_FLAGS_SKIP_RESET_ON_TIMEOUT);
|
|
cs->submission_time_jiffies = jiffies;
|
|
INIT_LIST_HEAD(&cs->job_list);
|
|
INIT_DELAYED_WORK(&cs->work_tdr, cs_timedout);
|
|
kref_init(&cs->refcount);
|
|
spin_lock_init(&cs->job_lock);
|
|
|
|
cs_cmpl = kzalloc(sizeof(*cs_cmpl), GFP_ATOMIC);
|
|
if (!cs_cmpl)
|
|
cs_cmpl = kzalloc(sizeof(*cs_cmpl), GFP_KERNEL);
|
|
|
|
if (!cs_cmpl) {
|
|
atomic64_inc(&ctx->cs_counters.out_of_mem_drop_cnt);
|
|
atomic64_inc(&cntr->out_of_mem_drop_cnt);
|
|
rc = -ENOMEM;
|
|
goto free_cs;
|
|
}
|
|
|
|
cs->jobs_in_queue_cnt = kcalloc(hdev->asic_prop.max_queues,
|
|
sizeof(*cs->jobs_in_queue_cnt), GFP_ATOMIC);
|
|
if (!cs->jobs_in_queue_cnt)
|
|
cs->jobs_in_queue_cnt = kcalloc(hdev->asic_prop.max_queues,
|
|
sizeof(*cs->jobs_in_queue_cnt), GFP_KERNEL);
|
|
|
|
if (!cs->jobs_in_queue_cnt) {
|
|
atomic64_inc(&ctx->cs_counters.out_of_mem_drop_cnt);
|
|
atomic64_inc(&cntr->out_of_mem_drop_cnt);
|
|
rc = -ENOMEM;
|
|
goto free_cs_cmpl;
|
|
}
|
|
|
|
cs_cmpl->hdev = hdev;
|
|
cs_cmpl->type = cs->type;
|
|
spin_lock_init(&cs_cmpl->lock);
|
|
cs->fence = &cs_cmpl->base_fence;
|
|
|
|
spin_lock(&ctx->cs_lock);
|
|
|
|
cs_cmpl->cs_seq = ctx->cs_sequence;
|
|
other = ctx->cs_pending[cs_cmpl->cs_seq &
|
|
(hdev->asic_prop.max_pending_cs - 1)];
|
|
|
|
if (other && !completion_done(&other->completion)) {
|
|
/* If the following statement is true, it means we have reached
|
|
* a point in which only part of the staged submission was
|
|
* submitted and we don't have enough room in the 'cs_pending'
|
|
* array for the rest of the submission.
|
|
* This causes a deadlock because this CS will never be
|
|
* completed as it depends on future CS's for completion.
|
|
*/
|
|
if (other->cs_sequence == user_sequence)
|
|
dev_crit_ratelimited(hdev->dev,
|
|
"Staged CS %llu deadlock due to lack of resources",
|
|
user_sequence);
|
|
|
|
dev_dbg_ratelimited(hdev->dev,
|
|
"Rejecting CS because of too many in-flights CS\n");
|
|
atomic64_inc(&ctx->cs_counters.max_cs_in_flight_drop_cnt);
|
|
atomic64_inc(&cntr->max_cs_in_flight_drop_cnt);
|
|
rc = -EAGAIN;
|
|
goto free_fence;
|
|
}
|
|
|
|
/* init hl_fence */
|
|
hl_fence_init(&cs_cmpl->base_fence, cs_cmpl->cs_seq);
|
|
|
|
cs->sequence = cs_cmpl->cs_seq;
|
|
|
|
ctx->cs_pending[cs_cmpl->cs_seq &
|
|
(hdev->asic_prop.max_pending_cs - 1)] =
|
|
&cs_cmpl->base_fence;
|
|
ctx->cs_sequence++;
|
|
|
|
hl_fence_get(&cs_cmpl->base_fence);
|
|
|
|
hl_fence_put(other);
|
|
|
|
spin_unlock(&ctx->cs_lock);
|
|
|
|
*cs_new = cs;
|
|
|
|
return 0;
|
|
|
|
free_fence:
|
|
spin_unlock(&ctx->cs_lock);
|
|
kfree(cs->jobs_in_queue_cnt);
|
|
free_cs_cmpl:
|
|
kfree(cs_cmpl);
|
|
free_cs:
|
|
kfree(cs);
|
|
hl_ctx_put(ctx);
|
|
return rc;
|
|
}
|
|
|
|
static void cs_rollback(struct hl_device *hdev, struct hl_cs *cs)
|
|
{
|
|
struct hl_cs_job *job, *tmp;
|
|
|
|
staged_cs_put(hdev, cs);
|
|
|
|
list_for_each_entry_safe(job, tmp, &cs->job_list, cs_node)
|
|
complete_job(hdev, job);
|
|
}
|
|
|
|
void hl_cs_rollback_all(struct hl_device *hdev)
|
|
{
|
|
int i;
|
|
struct hl_cs *cs, *tmp;
|
|
|
|
flush_workqueue(hdev->sob_reset_wq);
|
|
|
|
/* flush all completions before iterating over the CS mirror list in
|
|
* order to avoid a race with the release functions
|
|
*/
|
|
for (i = 0 ; i < hdev->asic_prop.completion_queues_count ; i++)
|
|
flush_workqueue(hdev->cq_wq[i]);
|
|
|
|
/* Make sure we don't have leftovers in the CS mirror list */
|
|
list_for_each_entry_safe(cs, tmp, &hdev->cs_mirror_list, mirror_node) {
|
|
cs_get(cs);
|
|
cs->aborted = true;
|
|
dev_warn_ratelimited(hdev->dev, "Killing CS %d.%llu\n",
|
|
cs->ctx->asid, cs->sequence);
|
|
cs_rollback(hdev, cs);
|
|
cs_put(cs);
|
|
}
|
|
|
|
force_complete_multi_cs(hdev);
|
|
}
|
|
|
|
static void
|
|
wake_pending_user_interrupt_threads(struct hl_user_interrupt *interrupt)
|
|
{
|
|
struct hl_user_pending_interrupt *pend;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&interrupt->wait_list_lock, flags);
|
|
list_for_each_entry(pend, &interrupt->wait_list_head, wait_list_node) {
|
|
pend->fence.error = -EIO;
|
|
complete_all(&pend->fence.completion);
|
|
}
|
|
spin_unlock_irqrestore(&interrupt->wait_list_lock, flags);
|
|
}
|
|
|
|
void hl_release_pending_user_interrupts(struct hl_device *hdev)
|
|
{
|
|
struct asic_fixed_properties *prop = &hdev->asic_prop;
|
|
struct hl_user_interrupt *interrupt;
|
|
int i;
|
|
|
|
if (!prop->user_interrupt_count)
|
|
return;
|
|
|
|
/* We iterate through the user interrupt requests and waking up all
|
|
* user threads waiting for interrupt completion. We iterate the
|
|
* list under a lock, this is why all user threads, once awake,
|
|
* will wait on the same lock and will release the waiting object upon
|
|
* unlock.
|
|
*/
|
|
|
|
for (i = 0 ; i < prop->user_interrupt_count ; i++) {
|
|
interrupt = &hdev->user_interrupt[i];
|
|
wake_pending_user_interrupt_threads(interrupt);
|
|
}
|
|
|
|
interrupt = &hdev->common_user_interrupt;
|
|
wake_pending_user_interrupt_threads(interrupt);
|
|
}
|
|
|
|
static void job_wq_completion(struct work_struct *work)
|
|
{
|
|
struct hl_cs_job *job = container_of(work, struct hl_cs_job,
|
|
finish_work);
|
|
struct hl_cs *cs = job->cs;
|
|
struct hl_device *hdev = cs->ctx->hdev;
|
|
|
|
/* job is no longer needed */
|
|
complete_job(hdev, job);
|
|
}
|
|
|
|
static int validate_queue_index(struct hl_device *hdev,
|
|
struct hl_cs_chunk *chunk,
|
|
enum hl_queue_type *queue_type,
|
|
bool *is_kernel_allocated_cb)
|
|
{
|
|
struct asic_fixed_properties *asic = &hdev->asic_prop;
|
|
struct hw_queue_properties *hw_queue_prop;
|
|
|
|
/* This must be checked here to prevent out-of-bounds access to
|
|
* hw_queues_props array
|
|
*/
|
|
if (chunk->queue_index >= asic->max_queues) {
|
|
dev_err(hdev->dev, "Queue index %d is invalid\n",
|
|
chunk->queue_index);
|
|
return -EINVAL;
|
|
}
|
|
|
|
hw_queue_prop = &asic->hw_queues_props[chunk->queue_index];
|
|
|
|
if (hw_queue_prop->type == QUEUE_TYPE_NA) {
|
|
dev_err(hdev->dev, "Queue index %d is invalid\n",
|
|
chunk->queue_index);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (hw_queue_prop->driver_only) {
|
|
dev_err(hdev->dev,
|
|
"Queue index %d is restricted for the kernel driver\n",
|
|
chunk->queue_index);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* When hw queue type isn't QUEUE_TYPE_HW,
|
|
* USER_ALLOC_CB flag shall be referred as "don't care".
|
|
*/
|
|
if (hw_queue_prop->type == QUEUE_TYPE_HW) {
|
|
if (chunk->cs_chunk_flags & HL_CS_CHUNK_FLAGS_USER_ALLOC_CB) {
|
|
if (!(hw_queue_prop->cb_alloc_flags & CB_ALLOC_USER)) {
|
|
dev_err(hdev->dev,
|
|
"Queue index %d doesn't support user CB\n",
|
|
chunk->queue_index);
|
|
return -EINVAL;
|
|
}
|
|
|
|
*is_kernel_allocated_cb = false;
|
|
} else {
|
|
if (!(hw_queue_prop->cb_alloc_flags &
|
|
CB_ALLOC_KERNEL)) {
|
|
dev_err(hdev->dev,
|
|
"Queue index %d doesn't support kernel CB\n",
|
|
chunk->queue_index);
|
|
return -EINVAL;
|
|
}
|
|
|
|
*is_kernel_allocated_cb = true;
|
|
}
|
|
} else {
|
|
*is_kernel_allocated_cb = !!(hw_queue_prop->cb_alloc_flags
|
|
& CB_ALLOC_KERNEL);
|
|
}
|
|
|
|
*queue_type = hw_queue_prop->type;
|
|
return 0;
|
|
}
|
|
|
|
static struct hl_cb *get_cb_from_cs_chunk(struct hl_device *hdev,
|
|
struct hl_cb_mgr *cb_mgr,
|
|
struct hl_cs_chunk *chunk)
|
|
{
|
|
struct hl_cb *cb;
|
|
u32 cb_handle;
|
|
|
|
cb_handle = (u32) (chunk->cb_handle >> PAGE_SHIFT);
|
|
|
|
cb = hl_cb_get(hdev, cb_mgr, cb_handle);
|
|
if (!cb) {
|
|
dev_err(hdev->dev, "CB handle 0x%x invalid\n", cb_handle);
|
|
return NULL;
|
|
}
|
|
|
|
if ((chunk->cb_size < 8) || (chunk->cb_size > cb->size)) {
|
|
dev_err(hdev->dev, "CB size %u invalid\n", chunk->cb_size);
|
|
goto release_cb;
|
|
}
|
|
|
|
atomic_inc(&cb->cs_cnt);
|
|
|
|
return cb;
|
|
|
|
release_cb:
|
|
hl_cb_put(cb);
|
|
return NULL;
|
|
}
|
|
|
|
struct hl_cs_job *hl_cs_allocate_job(struct hl_device *hdev,
|
|
enum hl_queue_type queue_type, bool is_kernel_allocated_cb)
|
|
{
|
|
struct hl_cs_job *job;
|
|
|
|
job = kzalloc(sizeof(*job), GFP_ATOMIC);
|
|
if (!job)
|
|
job = kzalloc(sizeof(*job), GFP_KERNEL);
|
|
|
|
if (!job)
|
|
return NULL;
|
|
|
|
kref_init(&job->refcount);
|
|
job->queue_type = queue_type;
|
|
job->is_kernel_allocated_cb = is_kernel_allocated_cb;
|
|
|
|
if (is_cb_patched(hdev, job))
|
|
INIT_LIST_HEAD(&job->userptr_list);
|
|
|
|
if (job->queue_type == QUEUE_TYPE_EXT)
|
|
INIT_WORK(&job->finish_work, job_wq_completion);
|
|
|
|
return job;
|
|
}
|
|
|
|
static enum hl_cs_type hl_cs_get_cs_type(u32 cs_type_flags)
|
|
{
|
|
if (cs_type_flags & HL_CS_FLAGS_SIGNAL)
|
|
return CS_TYPE_SIGNAL;
|
|
else if (cs_type_flags & HL_CS_FLAGS_WAIT)
|
|
return CS_TYPE_WAIT;
|
|
else if (cs_type_flags & HL_CS_FLAGS_COLLECTIVE_WAIT)
|
|
return CS_TYPE_COLLECTIVE_WAIT;
|
|
else if (cs_type_flags & HL_CS_FLAGS_RESERVE_SIGNALS_ONLY)
|
|
return CS_RESERVE_SIGNALS;
|
|
else if (cs_type_flags & HL_CS_FLAGS_UNRESERVE_SIGNALS_ONLY)
|
|
return CS_UNRESERVE_SIGNALS;
|
|
else
|
|
return CS_TYPE_DEFAULT;
|
|
}
|
|
|
|
static int hl_cs_sanity_checks(struct hl_fpriv *hpriv, union hl_cs_args *args)
|
|
{
|
|
struct hl_device *hdev = hpriv->hdev;
|
|
struct hl_ctx *ctx = hpriv->ctx;
|
|
u32 cs_type_flags, num_chunks;
|
|
enum hl_device_status status;
|
|
enum hl_cs_type cs_type;
|
|
|
|
if (!hl_device_operational(hdev, &status)) {
|
|
return -EBUSY;
|
|
}
|
|
|
|
if ((args->in.cs_flags & HL_CS_FLAGS_STAGED_SUBMISSION) &&
|
|
!hdev->supports_staged_submission) {
|
|
dev_err(hdev->dev, "staged submission not supported");
|
|
return -EPERM;
|
|
}
|
|
|
|
cs_type_flags = args->in.cs_flags & HL_CS_FLAGS_TYPE_MASK;
|
|
|
|
if (unlikely(cs_type_flags && !is_power_of_2(cs_type_flags))) {
|
|
dev_err(hdev->dev,
|
|
"CS type flags are mutually exclusive, context %d\n",
|
|
ctx->asid);
|
|
return -EINVAL;
|
|
}
|
|
|
|
cs_type = hl_cs_get_cs_type(cs_type_flags);
|
|
num_chunks = args->in.num_chunks_execute;
|
|
|
|
if (unlikely((cs_type != CS_TYPE_DEFAULT) &&
|
|
!hdev->supports_sync_stream)) {
|
|
dev_err(hdev->dev, "Sync stream CS is not supported\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (cs_type == CS_TYPE_DEFAULT) {
|
|
if (!num_chunks) {
|
|
dev_err(hdev->dev,
|
|
"Got execute CS with 0 chunks, context %d\n",
|
|
ctx->asid);
|
|
return -EINVAL;
|
|
}
|
|
} else if (num_chunks != 1) {
|
|
dev_err(hdev->dev,
|
|
"Sync stream CS mandates one chunk only, context %d\n",
|
|
ctx->asid);
|
|
return -EINVAL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int hl_cs_copy_chunk_array(struct hl_device *hdev,
|
|
struct hl_cs_chunk **cs_chunk_array,
|
|
void __user *chunks, u32 num_chunks,
|
|
struct hl_ctx *ctx)
|
|
{
|
|
u32 size_to_copy;
|
|
|
|
if (num_chunks > HL_MAX_JOBS_PER_CS) {
|
|
atomic64_inc(&ctx->cs_counters.validation_drop_cnt);
|
|
atomic64_inc(&hdev->aggregated_cs_counters.validation_drop_cnt);
|
|
dev_err(hdev->dev,
|
|
"Number of chunks can NOT be larger than %d\n",
|
|
HL_MAX_JOBS_PER_CS);
|
|
return -EINVAL;
|
|
}
|
|
|
|
*cs_chunk_array = kmalloc_array(num_chunks, sizeof(**cs_chunk_array),
|
|
GFP_ATOMIC);
|
|
if (!*cs_chunk_array)
|
|
*cs_chunk_array = kmalloc_array(num_chunks,
|
|
sizeof(**cs_chunk_array), GFP_KERNEL);
|
|
if (!*cs_chunk_array) {
|
|
atomic64_inc(&ctx->cs_counters.out_of_mem_drop_cnt);
|
|
atomic64_inc(&hdev->aggregated_cs_counters.out_of_mem_drop_cnt);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
size_to_copy = num_chunks * sizeof(struct hl_cs_chunk);
|
|
if (copy_from_user(*cs_chunk_array, chunks, size_to_copy)) {
|
|
atomic64_inc(&ctx->cs_counters.validation_drop_cnt);
|
|
atomic64_inc(&hdev->aggregated_cs_counters.validation_drop_cnt);
|
|
dev_err(hdev->dev, "Failed to copy cs chunk array from user\n");
|
|
kfree(*cs_chunk_array);
|
|
return -EFAULT;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int cs_staged_submission(struct hl_device *hdev, struct hl_cs *cs,
|
|
u64 sequence, u32 flags,
|
|
u32 encaps_signal_handle)
|
|
{
|
|
if (!(flags & HL_CS_FLAGS_STAGED_SUBMISSION))
|
|
return 0;
|
|
|
|
cs->staged_last = !!(flags & HL_CS_FLAGS_STAGED_SUBMISSION_LAST);
|
|
cs->staged_first = !!(flags & HL_CS_FLAGS_STAGED_SUBMISSION_FIRST);
|
|
|
|
if (cs->staged_first) {
|
|
/* Staged CS sequence is the first CS sequence */
|
|
INIT_LIST_HEAD(&cs->staged_cs_node);
|
|
cs->staged_sequence = cs->sequence;
|
|
|
|
if (cs->encaps_signals)
|
|
cs->encaps_sig_hdl_id = encaps_signal_handle;
|
|
} else {
|
|
/* User sequence will be validated in 'hl_hw_queue_schedule_cs'
|
|
* under the cs_mirror_lock
|
|
*/
|
|
cs->staged_sequence = sequence;
|
|
}
|
|
|
|
/* Increment CS reference if needed */
|
|
staged_cs_get(hdev, cs);
|
|
|
|
cs->staged_cs = true;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static u32 get_stream_master_qid_mask(struct hl_device *hdev, u32 qid)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < hdev->stream_master_qid_arr_size; i++)
|
|
if (qid == hdev->stream_master_qid_arr[i])
|
|
return BIT(i);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int cs_ioctl_default(struct hl_fpriv *hpriv, void __user *chunks,
|
|
u32 num_chunks, u64 *cs_seq, u32 flags,
|
|
u32 encaps_signals_handle, u32 timeout,
|
|
u16 *signal_initial_sob_count)
|
|
{
|
|
bool staged_mid, int_queues_only = true;
|
|
struct hl_device *hdev = hpriv->hdev;
|
|
struct hl_cs_chunk *cs_chunk_array;
|
|
struct hl_cs_counters_atomic *cntr;
|
|
struct hl_ctx *ctx = hpriv->ctx;
|
|
struct hl_cs_job *job;
|
|
struct hl_cs *cs;
|
|
struct hl_cb *cb;
|
|
u64 user_sequence;
|
|
u8 stream_master_qid_map = 0;
|
|
int rc, i;
|
|
|
|
cntr = &hdev->aggregated_cs_counters;
|
|
user_sequence = *cs_seq;
|
|
*cs_seq = ULLONG_MAX;
|
|
|
|
rc = hl_cs_copy_chunk_array(hdev, &cs_chunk_array, chunks, num_chunks,
|
|
hpriv->ctx);
|
|
if (rc)
|
|
goto out;
|
|
|
|
if ((flags & HL_CS_FLAGS_STAGED_SUBMISSION) &&
|
|
!(flags & HL_CS_FLAGS_STAGED_SUBMISSION_FIRST))
|
|
staged_mid = true;
|
|
else
|
|
staged_mid = false;
|
|
|
|
rc = allocate_cs(hdev, hpriv->ctx, CS_TYPE_DEFAULT,
|
|
staged_mid ? user_sequence : ULLONG_MAX, &cs, flags,
|
|
timeout);
|
|
if (rc)
|
|
goto free_cs_chunk_array;
|
|
|
|
*cs_seq = cs->sequence;
|
|
|
|
hl_debugfs_add_cs(cs);
|
|
|
|
rc = cs_staged_submission(hdev, cs, user_sequence, flags,
|
|
encaps_signals_handle);
|
|
if (rc)
|
|
goto free_cs_object;
|
|
|
|
/* If this is a staged submission we must return the staged sequence
|
|
* rather than the internal CS sequence
|
|
*/
|
|
if (cs->staged_cs)
|
|
*cs_seq = cs->staged_sequence;
|
|
|
|
/* Validate ALL the CS chunks before submitting the CS */
|
|
for (i = 0 ; i < num_chunks ; i++) {
|
|
struct hl_cs_chunk *chunk = &cs_chunk_array[i];
|
|
enum hl_queue_type queue_type;
|
|
bool is_kernel_allocated_cb;
|
|
|
|
rc = validate_queue_index(hdev, chunk, &queue_type,
|
|
&is_kernel_allocated_cb);
|
|
if (rc) {
|
|
atomic64_inc(&ctx->cs_counters.validation_drop_cnt);
|
|
atomic64_inc(&cntr->validation_drop_cnt);
|
|
goto free_cs_object;
|
|
}
|
|
|
|
if (is_kernel_allocated_cb) {
|
|
cb = get_cb_from_cs_chunk(hdev, &hpriv->cb_mgr, chunk);
|
|
if (!cb) {
|
|
atomic64_inc(
|
|
&ctx->cs_counters.validation_drop_cnt);
|
|
atomic64_inc(&cntr->validation_drop_cnt);
|
|
rc = -EINVAL;
|
|
goto free_cs_object;
|
|
}
|
|
} else {
|
|
cb = (struct hl_cb *) (uintptr_t) chunk->cb_handle;
|
|
}
|
|
|
|
if (queue_type == QUEUE_TYPE_EXT ||
|
|
queue_type == QUEUE_TYPE_HW) {
|
|
int_queues_only = false;
|
|
|
|
/*
|
|
* store which stream are being used for external/HW
|
|
* queues of this CS
|
|
*/
|
|
if (hdev->supports_wait_for_multi_cs)
|
|
stream_master_qid_map |=
|
|
get_stream_master_qid_mask(hdev,
|
|
chunk->queue_index);
|
|
}
|
|
|
|
job = hl_cs_allocate_job(hdev, queue_type,
|
|
is_kernel_allocated_cb);
|
|
if (!job) {
|
|
atomic64_inc(&ctx->cs_counters.out_of_mem_drop_cnt);
|
|
atomic64_inc(&cntr->out_of_mem_drop_cnt);
|
|
dev_err(hdev->dev, "Failed to allocate a new job\n");
|
|
rc = -ENOMEM;
|
|
if (is_kernel_allocated_cb)
|
|
goto release_cb;
|
|
|
|
goto free_cs_object;
|
|
}
|
|
|
|
job->id = i + 1;
|
|
job->cs = cs;
|
|
job->user_cb = cb;
|
|
job->user_cb_size = chunk->cb_size;
|
|
job->hw_queue_id = chunk->queue_index;
|
|
|
|
cs->jobs_in_queue_cnt[job->hw_queue_id]++;
|
|
|
|
list_add_tail(&job->cs_node, &cs->job_list);
|
|
|
|
/*
|
|
* Increment CS reference. When CS reference is 0, CS is
|
|
* done and can be signaled to user and free all its resources
|
|
* Only increment for JOB on external or H/W queues, because
|
|
* only for those JOBs we get completion
|
|
*/
|
|
if (cs_needs_completion(cs) &&
|
|
(job->queue_type == QUEUE_TYPE_EXT ||
|
|
job->queue_type == QUEUE_TYPE_HW))
|
|
cs_get(cs);
|
|
|
|
hl_debugfs_add_job(hdev, job);
|
|
|
|
rc = cs_parser(hpriv, job);
|
|
if (rc) {
|
|
atomic64_inc(&ctx->cs_counters.parsing_drop_cnt);
|
|
atomic64_inc(&cntr->parsing_drop_cnt);
|
|
dev_err(hdev->dev,
|
|
"Failed to parse JOB %d.%llu.%d, err %d, rejecting the CS\n",
|
|
cs->ctx->asid, cs->sequence, job->id, rc);
|
|
goto free_cs_object;
|
|
}
|
|
}
|
|
|
|
/* We allow a CS with any queue type combination as long as it does
|
|
* not get a completion
|
|
*/
|
|
if (int_queues_only && cs_needs_completion(cs)) {
|
|
atomic64_inc(&ctx->cs_counters.validation_drop_cnt);
|
|
atomic64_inc(&cntr->validation_drop_cnt);
|
|
dev_err(hdev->dev,
|
|
"Reject CS %d.%llu since it contains only internal queues jobs and needs completion\n",
|
|
cs->ctx->asid, cs->sequence);
|
|
rc = -EINVAL;
|
|
goto free_cs_object;
|
|
}
|
|
|
|
/*
|
|
* store the (external/HW queues) streams used by the CS in the
|
|
* fence object for multi-CS completion
|
|
*/
|
|
if (hdev->supports_wait_for_multi_cs)
|
|
cs->fence->stream_master_qid_map = stream_master_qid_map;
|
|
|
|
rc = hl_hw_queue_schedule_cs(cs);
|
|
if (rc) {
|
|
if (rc != -EAGAIN)
|
|
dev_err(hdev->dev,
|
|
"Failed to submit CS %d.%llu to H/W queues, error %d\n",
|
|
cs->ctx->asid, cs->sequence, rc);
|
|
goto free_cs_object;
|
|
}
|
|
|
|
*signal_initial_sob_count = cs->initial_sob_count;
|
|
|
|
rc = HL_CS_STATUS_SUCCESS;
|
|
goto put_cs;
|
|
|
|
release_cb:
|
|
atomic_dec(&cb->cs_cnt);
|
|
hl_cb_put(cb);
|
|
free_cs_object:
|
|
cs_rollback(hdev, cs);
|
|
*cs_seq = ULLONG_MAX;
|
|
/* The path below is both for good and erroneous exits */
|
|
put_cs:
|
|
/* We finished with the CS in this function, so put the ref */
|
|
cs_put(cs);
|
|
free_cs_chunk_array:
|
|
kfree(cs_chunk_array);
|
|
out:
|
|
return rc;
|
|
}
|
|
|
|
static int hl_cs_ctx_switch(struct hl_fpriv *hpriv, union hl_cs_args *args,
|
|
u64 *cs_seq)
|
|
{
|
|
struct hl_device *hdev = hpriv->hdev;
|
|
struct hl_ctx *ctx = hpriv->ctx;
|
|
bool need_soft_reset = false;
|
|
int rc = 0, do_ctx_switch;
|
|
void __user *chunks;
|
|
u32 num_chunks, tmp;
|
|
u16 sob_count;
|
|
int ret;
|
|
|
|
do_ctx_switch = atomic_cmpxchg(&ctx->thread_ctx_switch_token, 1, 0);
|
|
|
|
if (do_ctx_switch || (args->in.cs_flags & HL_CS_FLAGS_FORCE_RESTORE)) {
|
|
mutex_lock(&hpriv->restore_phase_mutex);
|
|
|
|
if (do_ctx_switch) {
|
|
rc = hdev->asic_funcs->context_switch(hdev, ctx->asid);
|
|
if (rc) {
|
|
dev_err_ratelimited(hdev->dev,
|
|
"Failed to switch to context %d, rejecting CS! %d\n",
|
|
ctx->asid, rc);
|
|
/*
|
|
* If we timedout, or if the device is not IDLE
|
|
* while we want to do context-switch (-EBUSY),
|
|
* we need to soft-reset because QMAN is
|
|
* probably stuck. However, we can't call to
|
|
* reset here directly because of deadlock, so
|
|
* need to do it at the very end of this
|
|
* function
|
|
*/
|
|
if ((rc == -ETIMEDOUT) || (rc == -EBUSY))
|
|
need_soft_reset = true;
|
|
mutex_unlock(&hpriv->restore_phase_mutex);
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
hdev->asic_funcs->restore_phase_topology(hdev);
|
|
|
|
chunks = (void __user *) (uintptr_t) args->in.chunks_restore;
|
|
num_chunks = args->in.num_chunks_restore;
|
|
|
|
if (!num_chunks) {
|
|
dev_dbg(hdev->dev,
|
|
"Need to run restore phase but restore CS is empty\n");
|
|
rc = 0;
|
|
} else {
|
|
rc = cs_ioctl_default(hpriv, chunks, num_chunks,
|
|
cs_seq, 0, 0, hdev->timeout_jiffies, &sob_count);
|
|
}
|
|
|
|
mutex_unlock(&hpriv->restore_phase_mutex);
|
|
|
|
if (rc) {
|
|
dev_err(hdev->dev,
|
|
"Failed to submit restore CS for context %d (%d)\n",
|
|
ctx->asid, rc);
|
|
goto out;
|
|
}
|
|
|
|
/* Need to wait for restore completion before execution phase */
|
|
if (num_chunks) {
|
|
enum hl_cs_wait_status status;
|
|
wait_again:
|
|
ret = _hl_cs_wait_ioctl(hdev, ctx,
|
|
jiffies_to_usecs(hdev->timeout_jiffies),
|
|
*cs_seq, &status, NULL);
|
|
if (ret) {
|
|
if (ret == -ERESTARTSYS) {
|
|
usleep_range(100, 200);
|
|
goto wait_again;
|
|
}
|
|
|
|
dev_err(hdev->dev,
|
|
"Restore CS for context %d failed to complete %d\n",
|
|
ctx->asid, ret);
|
|
rc = -ENOEXEC;
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
ctx->thread_ctx_switch_wait_token = 1;
|
|
|
|
} else if (!ctx->thread_ctx_switch_wait_token) {
|
|
rc = hl_poll_timeout_memory(hdev,
|
|
&ctx->thread_ctx_switch_wait_token, tmp, (tmp == 1),
|
|
100, jiffies_to_usecs(hdev->timeout_jiffies), false);
|
|
|
|
if (rc == -ETIMEDOUT) {
|
|
dev_err(hdev->dev,
|
|
"context switch phase timeout (%d)\n", tmp);
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
out:
|
|
if ((rc == -ETIMEDOUT || rc == -EBUSY) && (need_soft_reset))
|
|
hl_device_reset(hdev, 0);
|
|
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
* hl_cs_signal_sob_wraparound_handler: handle SOB value wrapaound case.
|
|
* if the SOB value reaches the max value move to the other SOB reserved
|
|
* to the queue.
|
|
* @hdev: pointer to device structure
|
|
* @q_idx: stream queue index
|
|
* @hw_sob: the H/W SOB used in this signal CS.
|
|
* @count: signals count
|
|
* @encaps_sig: tells whether it's reservation for encaps signals or not.
|
|
*
|
|
* Note that this function must be called while hw_queues_lock is taken.
|
|
*/
|
|
int hl_cs_signal_sob_wraparound_handler(struct hl_device *hdev, u32 q_idx,
|
|
struct hl_hw_sob **hw_sob, u32 count, bool encaps_sig)
|
|
|
|
{
|
|
struct hl_sync_stream_properties *prop;
|
|
struct hl_hw_sob *sob = *hw_sob, *other_sob;
|
|
u8 other_sob_offset;
|
|
|
|
prop = &hdev->kernel_queues[q_idx].sync_stream_prop;
|
|
|
|
hw_sob_get(sob);
|
|
|
|
/* check for wraparound */
|
|
if (prop->next_sob_val + count >= HL_MAX_SOB_VAL) {
|
|
/*
|
|
* Decrement as we reached the max value.
|
|
* The release function won't be called here as we've
|
|
* just incremented the refcount right before calling this
|
|
* function.
|
|
*/
|
|
hw_sob_put_err(sob);
|
|
|
|
/*
|
|
* check the other sob value, if it still in use then fail
|
|
* otherwise make the switch
|
|
*/
|
|
other_sob_offset = (prop->curr_sob_offset + 1) % HL_RSVD_SOBS;
|
|
other_sob = &prop->hw_sob[other_sob_offset];
|
|
|
|
if (kref_read(&other_sob->kref) != 1) {
|
|
dev_err(hdev->dev, "error: Cannot switch SOBs q_idx: %d\n",
|
|
q_idx);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/*
|
|
* next_sob_val always points to the next available signal
|
|
* in the sob, so in encaps signals it will be the next one
|
|
* after reserving the required amount.
|
|
*/
|
|
if (encaps_sig)
|
|
prop->next_sob_val = count + 1;
|
|
else
|
|
prop->next_sob_val = count;
|
|
|
|
/* only two SOBs are currently in use */
|
|
prop->curr_sob_offset = other_sob_offset;
|
|
*hw_sob = other_sob;
|
|
|
|
/*
|
|
* check if other_sob needs reset, then do it before using it
|
|
* for the reservation or the next signal cs.
|
|
* we do it here, and for both encaps and regular signal cs
|
|
* cases in order to avoid possible races of two kref_put
|
|
* of the sob which can occur at the same time if we move the
|
|
* sob reset(kref_put) to cs_do_release function.
|
|
* in addition, if we have combination of cs signal and
|
|
* encaps, and at the point we need to reset the sob there was
|
|
* no more reservations and only signal cs keep coming,
|
|
* in such case we need signal_cs to put the refcount and
|
|
* reset the sob.
|
|
*/
|
|
if (other_sob->need_reset)
|
|
hw_sob_put(other_sob);
|
|
|
|
if (encaps_sig) {
|
|
/* set reset indication for the sob */
|
|
sob->need_reset = true;
|
|
hw_sob_get(other_sob);
|
|
}
|
|
|
|
dev_dbg(hdev->dev, "switched to SOB %d, q_idx: %d\n",
|
|
prop->curr_sob_offset, q_idx);
|
|
} else {
|
|
prop->next_sob_val += count;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int cs_ioctl_extract_signal_seq(struct hl_device *hdev,
|
|
struct hl_cs_chunk *chunk, u64 *signal_seq, struct hl_ctx *ctx,
|
|
bool encaps_signals)
|
|
{
|
|
u64 *signal_seq_arr = NULL;
|
|
u32 size_to_copy, signal_seq_arr_len;
|
|
int rc = 0;
|
|
|
|
if (encaps_signals) {
|
|
*signal_seq = chunk->encaps_signal_seq;
|
|
return 0;
|
|
}
|
|
|
|
signal_seq_arr_len = chunk->num_signal_seq_arr;
|
|
|
|
/* currently only one signal seq is supported */
|
|
if (signal_seq_arr_len != 1) {
|
|
atomic64_inc(&ctx->cs_counters.validation_drop_cnt);
|
|
atomic64_inc(&hdev->aggregated_cs_counters.validation_drop_cnt);
|
|
dev_err(hdev->dev,
|
|
"Wait for signal CS supports only one signal CS seq\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
signal_seq_arr = kmalloc_array(signal_seq_arr_len,
|
|
sizeof(*signal_seq_arr),
|
|
GFP_ATOMIC);
|
|
if (!signal_seq_arr)
|
|
signal_seq_arr = kmalloc_array(signal_seq_arr_len,
|
|
sizeof(*signal_seq_arr),
|
|
GFP_KERNEL);
|
|
if (!signal_seq_arr) {
|
|
atomic64_inc(&ctx->cs_counters.out_of_mem_drop_cnt);
|
|
atomic64_inc(&hdev->aggregated_cs_counters.out_of_mem_drop_cnt);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
size_to_copy = signal_seq_arr_len * sizeof(*signal_seq_arr);
|
|
if (copy_from_user(signal_seq_arr,
|
|
u64_to_user_ptr(chunk->signal_seq_arr),
|
|
size_to_copy)) {
|
|
atomic64_inc(&ctx->cs_counters.validation_drop_cnt);
|
|
atomic64_inc(&hdev->aggregated_cs_counters.validation_drop_cnt);
|
|
dev_err(hdev->dev,
|
|
"Failed to copy signal seq array from user\n");
|
|
rc = -EFAULT;
|
|
goto out;
|
|
}
|
|
|
|
/* currently it is guaranteed to have only one signal seq */
|
|
*signal_seq = signal_seq_arr[0];
|
|
|
|
out:
|
|
kfree(signal_seq_arr);
|
|
|
|
return rc;
|
|
}
|
|
|
|
static int cs_ioctl_signal_wait_create_jobs(struct hl_device *hdev,
|
|
struct hl_ctx *ctx, struct hl_cs *cs,
|
|
enum hl_queue_type q_type, u32 q_idx, u32 encaps_signal_offset)
|
|
{
|
|
struct hl_cs_counters_atomic *cntr;
|
|
struct hl_cs_job *job;
|
|
struct hl_cb *cb;
|
|
u32 cb_size;
|
|
|
|
cntr = &hdev->aggregated_cs_counters;
|
|
|
|
job = hl_cs_allocate_job(hdev, q_type, true);
|
|
if (!job) {
|
|
atomic64_inc(&ctx->cs_counters.out_of_mem_drop_cnt);
|
|
atomic64_inc(&cntr->out_of_mem_drop_cnt);
|
|
dev_err(hdev->dev, "Failed to allocate a new job\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
if (cs->type == CS_TYPE_WAIT)
|
|
cb_size = hdev->asic_funcs->get_wait_cb_size(hdev);
|
|
else
|
|
cb_size = hdev->asic_funcs->get_signal_cb_size(hdev);
|
|
|
|
cb = hl_cb_kernel_create(hdev, cb_size,
|
|
q_type == QUEUE_TYPE_HW && hdev->mmu_enable);
|
|
if (!cb) {
|
|
atomic64_inc(&ctx->cs_counters.out_of_mem_drop_cnt);
|
|
atomic64_inc(&cntr->out_of_mem_drop_cnt);
|
|
kfree(job);
|
|
return -EFAULT;
|
|
}
|
|
|
|
job->id = 0;
|
|
job->cs = cs;
|
|
job->user_cb = cb;
|
|
atomic_inc(&job->user_cb->cs_cnt);
|
|
job->user_cb_size = cb_size;
|
|
job->hw_queue_id = q_idx;
|
|
|
|
if ((cs->type == CS_TYPE_WAIT || cs->type == CS_TYPE_COLLECTIVE_WAIT)
|
|
&& cs->encaps_signals)
|
|
job->encaps_sig_wait_offset = encaps_signal_offset;
|
|
/*
|
|
* No need in parsing, user CB is the patched CB.
|
|
* We call hl_cb_destroy() out of two reasons - we don't need the CB in
|
|
* the CB idr anymore and to decrement its refcount as it was
|
|
* incremented inside hl_cb_kernel_create().
|
|
*/
|
|
job->patched_cb = job->user_cb;
|
|
job->job_cb_size = job->user_cb_size;
|
|
hl_cb_destroy(hdev, &hdev->kernel_cb_mgr, cb->id << PAGE_SHIFT);
|
|
|
|
/* increment refcount as for external queues we get completion */
|
|
cs_get(cs);
|
|
|
|
cs->jobs_in_queue_cnt[job->hw_queue_id]++;
|
|
|
|
list_add_tail(&job->cs_node, &cs->job_list);
|
|
|
|
hl_debugfs_add_job(hdev, job);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int cs_ioctl_reserve_signals(struct hl_fpriv *hpriv,
|
|
u32 q_idx, u32 count,
|
|
u32 *handle_id, u32 *sob_addr,
|
|
u32 *signals_count)
|
|
{
|
|
struct hw_queue_properties *hw_queue_prop;
|
|
struct hl_sync_stream_properties *prop;
|
|
struct hl_device *hdev = hpriv->hdev;
|
|
struct hl_cs_encaps_sig_handle *handle;
|
|
struct hl_encaps_signals_mgr *mgr;
|
|
struct hl_hw_sob *hw_sob;
|
|
int hdl_id;
|
|
int rc = 0;
|
|
|
|
if (count >= HL_MAX_SOB_VAL) {
|
|
dev_err(hdev->dev, "signals count(%u) exceeds the max SOB value\n",
|
|
count);
|
|
rc = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
if (q_idx >= hdev->asic_prop.max_queues) {
|
|
dev_err(hdev->dev, "Queue index %d is invalid\n",
|
|
q_idx);
|
|
rc = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
hw_queue_prop = &hdev->asic_prop.hw_queues_props[q_idx];
|
|
|
|
if (!hw_queue_prop->supports_sync_stream) {
|
|
dev_err(hdev->dev,
|
|
"Queue index %d does not support sync stream operations\n",
|
|
q_idx);
|
|
rc = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
prop = &hdev->kernel_queues[q_idx].sync_stream_prop;
|
|
|
|
handle = kzalloc(sizeof(*handle), GFP_KERNEL);
|
|
if (!handle) {
|
|
rc = -ENOMEM;
|
|
goto out;
|
|
}
|
|
|
|
handle->count = count;
|
|
|
|
hl_ctx_get(hdev, hpriv->ctx);
|
|
handle->ctx = hpriv->ctx;
|
|
mgr = &hpriv->ctx->sig_mgr;
|
|
|
|
spin_lock(&mgr->lock);
|
|
hdl_id = idr_alloc(&mgr->handles, handle, 1, 0, GFP_ATOMIC);
|
|
spin_unlock(&mgr->lock);
|
|
|
|
if (hdl_id < 0) {
|
|
dev_err(hdev->dev, "Failed to allocate IDR for a new signal reservation\n");
|
|
rc = -EINVAL;
|
|
goto put_ctx;
|
|
}
|
|
|
|
handle->id = hdl_id;
|
|
handle->q_idx = q_idx;
|
|
handle->hdev = hdev;
|
|
kref_init(&handle->refcount);
|
|
|
|
hdev->asic_funcs->hw_queues_lock(hdev);
|
|
|
|
hw_sob = &prop->hw_sob[prop->curr_sob_offset];
|
|
|
|
/*
|
|
* Increment the SOB value by count by user request
|
|
* to reserve those signals
|
|
* check if the signals amount to reserve is not exceeding the max sob
|
|
* value, if yes then switch sob.
|
|
*/
|
|
rc = hl_cs_signal_sob_wraparound_handler(hdev, q_idx, &hw_sob, count,
|
|
true);
|
|
if (rc) {
|
|
dev_err(hdev->dev, "Failed to switch SOB\n");
|
|
hdev->asic_funcs->hw_queues_unlock(hdev);
|
|
rc = -EINVAL;
|
|
goto remove_idr;
|
|
}
|
|
/* set the hw_sob to the handle after calling the sob wraparound handler
|
|
* since sob could have changed.
|
|
*/
|
|
handle->hw_sob = hw_sob;
|
|
|
|
/* store the current sob value for unreserve validity check, and
|
|
* signal offset support
|
|
*/
|
|
handle->pre_sob_val = prop->next_sob_val - handle->count;
|
|
|
|
*signals_count = prop->next_sob_val;
|
|
hdev->asic_funcs->hw_queues_unlock(hdev);
|
|
|
|
*sob_addr = handle->hw_sob->sob_addr;
|
|
*handle_id = hdl_id;
|
|
|
|
dev_dbg(hdev->dev,
|
|
"Signals reserved, sob_id: %d, sob addr: 0x%x, last sob_val: %u, q_idx: %d, hdl_id: %d\n",
|
|
hw_sob->sob_id, handle->hw_sob->sob_addr,
|
|
prop->next_sob_val - 1, q_idx, hdl_id);
|
|
goto out;
|
|
|
|
remove_idr:
|
|
spin_lock(&mgr->lock);
|
|
idr_remove(&mgr->handles, hdl_id);
|
|
spin_unlock(&mgr->lock);
|
|
|
|
put_ctx:
|
|
hl_ctx_put(handle->ctx);
|
|
kfree(handle);
|
|
|
|
out:
|
|
return rc;
|
|
}
|
|
|
|
static int cs_ioctl_unreserve_signals(struct hl_fpriv *hpriv, u32 handle_id)
|
|
{
|
|
struct hl_cs_encaps_sig_handle *encaps_sig_hdl;
|
|
struct hl_sync_stream_properties *prop;
|
|
struct hl_device *hdev = hpriv->hdev;
|
|
struct hl_encaps_signals_mgr *mgr;
|
|
struct hl_hw_sob *hw_sob;
|
|
u32 q_idx, sob_addr;
|
|
int rc = 0;
|
|
|
|
mgr = &hpriv->ctx->sig_mgr;
|
|
|
|
spin_lock(&mgr->lock);
|
|
encaps_sig_hdl = idr_find(&mgr->handles, handle_id);
|
|
if (encaps_sig_hdl) {
|
|
dev_dbg(hdev->dev, "unreserve signals, handle: %u, SOB:0x%x, count: %u\n",
|
|
handle_id, encaps_sig_hdl->hw_sob->sob_addr,
|
|
encaps_sig_hdl->count);
|
|
|
|
hdev->asic_funcs->hw_queues_lock(hdev);
|
|
|
|
q_idx = encaps_sig_hdl->q_idx;
|
|
prop = &hdev->kernel_queues[q_idx].sync_stream_prop;
|
|
hw_sob = &prop->hw_sob[prop->curr_sob_offset];
|
|
sob_addr = hdev->asic_funcs->get_sob_addr(hdev, hw_sob->sob_id);
|
|
|
|
/* Check if sob_val got out of sync due to other
|
|
* signal submission requests which were handled
|
|
* between the reserve-unreserve calls or SOB switch
|
|
* upon reaching SOB max value.
|
|
*/
|
|
if (encaps_sig_hdl->pre_sob_val + encaps_sig_hdl->count
|
|
!= prop->next_sob_val ||
|
|
sob_addr != encaps_sig_hdl->hw_sob->sob_addr) {
|
|
dev_err(hdev->dev, "Cannot unreserve signals, SOB val ran out of sync, expected: %u, actual val: %u\n",
|
|
encaps_sig_hdl->pre_sob_val,
|
|
(prop->next_sob_val - encaps_sig_hdl->count));
|
|
|
|
hdev->asic_funcs->hw_queues_unlock(hdev);
|
|
rc = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* Decrement the SOB value by count by user request
|
|
* to unreserve those signals
|
|
*/
|
|
prop->next_sob_val -= encaps_sig_hdl->count;
|
|
|
|
hdev->asic_funcs->hw_queues_unlock(hdev);
|
|
|
|
hw_sob_put(hw_sob);
|
|
|
|
/* Release the id and free allocated memory of the handle */
|
|
idr_remove(&mgr->handles, handle_id);
|
|
hl_ctx_put(encaps_sig_hdl->ctx);
|
|
kfree(encaps_sig_hdl);
|
|
} else {
|
|
rc = -EINVAL;
|
|
dev_err(hdev->dev, "failed to unreserve signals, cannot find handler\n");
|
|
}
|
|
out:
|
|
spin_unlock(&mgr->lock);
|
|
|
|
return rc;
|
|
}
|
|
|
|
static int cs_ioctl_signal_wait(struct hl_fpriv *hpriv, enum hl_cs_type cs_type,
|
|
void __user *chunks, u32 num_chunks,
|
|
u64 *cs_seq, u32 flags, u32 timeout,
|
|
u32 *signal_sob_addr_offset, u16 *signal_initial_sob_count)
|
|
{
|
|
struct hl_cs_encaps_sig_handle *encaps_sig_hdl = NULL;
|
|
bool handle_found = false, is_wait_cs = false,
|
|
wait_cs_submitted = false,
|
|
cs_encaps_signals = false;
|
|
struct hl_cs_chunk *cs_chunk_array, *chunk;
|
|
bool staged_cs_with_encaps_signals = false;
|
|
struct hw_queue_properties *hw_queue_prop;
|
|
struct hl_device *hdev = hpriv->hdev;
|
|
struct hl_cs_compl *sig_waitcs_cmpl;
|
|
u32 q_idx, collective_engine_id = 0;
|
|
struct hl_cs_counters_atomic *cntr;
|
|
struct hl_fence *sig_fence = NULL;
|
|
struct hl_ctx *ctx = hpriv->ctx;
|
|
enum hl_queue_type q_type;
|
|
struct hl_cs *cs;
|
|
u64 signal_seq;
|
|
int rc;
|
|
|
|
cntr = &hdev->aggregated_cs_counters;
|
|
*cs_seq = ULLONG_MAX;
|
|
|
|
rc = hl_cs_copy_chunk_array(hdev, &cs_chunk_array, chunks, num_chunks,
|
|
ctx);
|
|
if (rc)
|
|
goto out;
|
|
|
|
/* currently it is guaranteed to have only one chunk */
|
|
chunk = &cs_chunk_array[0];
|
|
|
|
if (chunk->queue_index >= hdev->asic_prop.max_queues) {
|
|
atomic64_inc(&ctx->cs_counters.validation_drop_cnt);
|
|
atomic64_inc(&cntr->validation_drop_cnt);
|
|
dev_err(hdev->dev, "Queue index %d is invalid\n",
|
|
chunk->queue_index);
|
|
rc = -EINVAL;
|
|
goto free_cs_chunk_array;
|
|
}
|
|
|
|
q_idx = chunk->queue_index;
|
|
hw_queue_prop = &hdev->asic_prop.hw_queues_props[q_idx];
|
|
q_type = hw_queue_prop->type;
|
|
|
|
if (!hw_queue_prop->supports_sync_stream) {
|
|
atomic64_inc(&ctx->cs_counters.validation_drop_cnt);
|
|
atomic64_inc(&cntr->validation_drop_cnt);
|
|
dev_err(hdev->dev,
|
|
"Queue index %d does not support sync stream operations\n",
|
|
q_idx);
|
|
rc = -EINVAL;
|
|
goto free_cs_chunk_array;
|
|
}
|
|
|
|
if (cs_type == CS_TYPE_COLLECTIVE_WAIT) {
|
|
if (!(hw_queue_prop->collective_mode == HL_COLLECTIVE_MASTER)) {
|
|
atomic64_inc(&ctx->cs_counters.validation_drop_cnt);
|
|
atomic64_inc(&cntr->validation_drop_cnt);
|
|
dev_err(hdev->dev,
|
|
"Queue index %d is invalid\n", q_idx);
|
|
rc = -EINVAL;
|
|
goto free_cs_chunk_array;
|
|
}
|
|
|
|
if (!hdev->nic_ports_mask) {
|
|
atomic64_inc(&ctx->cs_counters.validation_drop_cnt);
|
|
atomic64_inc(&cntr->validation_drop_cnt);
|
|
dev_err(hdev->dev,
|
|
"Collective operations not supported when NIC ports are disabled");
|
|
rc = -EINVAL;
|
|
goto free_cs_chunk_array;
|
|
}
|
|
|
|
collective_engine_id = chunk->collective_engine_id;
|
|
}
|
|
|
|
is_wait_cs = !!(cs_type == CS_TYPE_WAIT ||
|
|
cs_type == CS_TYPE_COLLECTIVE_WAIT);
|
|
|
|
cs_encaps_signals = !!(flags & HL_CS_FLAGS_ENCAP_SIGNALS);
|
|
|
|
if (is_wait_cs) {
|
|
rc = cs_ioctl_extract_signal_seq(hdev, chunk, &signal_seq,
|
|
ctx, cs_encaps_signals);
|
|
if (rc)
|
|
goto free_cs_chunk_array;
|
|
|
|
if (cs_encaps_signals) {
|
|
/* check if cs sequence has encapsulated
|
|
* signals handle
|
|
*/
|
|
struct idr *idp;
|
|
u32 id;
|
|
|
|
spin_lock(&ctx->sig_mgr.lock);
|
|
idp = &ctx->sig_mgr.handles;
|
|
idr_for_each_entry(idp, encaps_sig_hdl, id) {
|
|
if (encaps_sig_hdl->cs_seq == signal_seq) {
|
|
handle_found = true;
|
|
/* get refcount to protect removing
|
|
* this handle from idr, needed when
|
|
* multiple wait cs are used with offset
|
|
* to wait on reserved encaps signals.
|
|
*/
|
|
kref_get(&encaps_sig_hdl->refcount);
|
|
break;
|
|
}
|
|
}
|
|
spin_unlock(&ctx->sig_mgr.lock);
|
|
|
|
if (!handle_found) {
|
|
/* treat as signal CS already finished */
|
|
dev_dbg(hdev->dev, "Cannot find encapsulated signals handle for seq 0x%llx\n",
|
|
signal_seq);
|
|
rc = 0;
|
|
goto free_cs_chunk_array;
|
|
}
|
|
|
|
/* validate also the signal offset value */
|
|
if (chunk->encaps_signal_offset >
|
|
encaps_sig_hdl->count) {
|
|
dev_err(hdev->dev, "offset(%u) value exceed max reserved signals count(%u)!\n",
|
|
chunk->encaps_signal_offset,
|
|
encaps_sig_hdl->count);
|
|
rc = -EINVAL;
|
|
goto free_cs_chunk_array;
|
|
}
|
|
}
|
|
|
|
sig_fence = hl_ctx_get_fence(ctx, signal_seq);
|
|
if (IS_ERR(sig_fence)) {
|
|
atomic64_inc(&ctx->cs_counters.validation_drop_cnt);
|
|
atomic64_inc(&cntr->validation_drop_cnt);
|
|
dev_err(hdev->dev,
|
|
"Failed to get signal CS with seq 0x%llx\n",
|
|
signal_seq);
|
|
rc = PTR_ERR(sig_fence);
|
|
goto free_cs_chunk_array;
|
|
}
|
|
|
|
if (!sig_fence) {
|
|
/* signal CS already finished */
|
|
rc = 0;
|
|
goto free_cs_chunk_array;
|
|
}
|
|
|
|
sig_waitcs_cmpl =
|
|
container_of(sig_fence, struct hl_cs_compl, base_fence);
|
|
|
|
staged_cs_with_encaps_signals = !!
|
|
(sig_waitcs_cmpl->type == CS_TYPE_DEFAULT &&
|
|
(flags & HL_CS_FLAGS_ENCAP_SIGNALS));
|
|
|
|
if (sig_waitcs_cmpl->type != CS_TYPE_SIGNAL &&
|
|
!staged_cs_with_encaps_signals) {
|
|
atomic64_inc(&ctx->cs_counters.validation_drop_cnt);
|
|
atomic64_inc(&cntr->validation_drop_cnt);
|
|
dev_err(hdev->dev,
|
|
"CS seq 0x%llx is not of a signal/encaps-signal CS\n",
|
|
signal_seq);
|
|
hl_fence_put(sig_fence);
|
|
rc = -EINVAL;
|
|
goto free_cs_chunk_array;
|
|
}
|
|
|
|
if (completion_done(&sig_fence->completion)) {
|
|
/* signal CS already finished */
|
|
hl_fence_put(sig_fence);
|
|
rc = 0;
|
|
goto free_cs_chunk_array;
|
|
}
|
|
}
|
|
|
|
rc = allocate_cs(hdev, ctx, cs_type, ULLONG_MAX, &cs, flags, timeout);
|
|
if (rc) {
|
|
if (is_wait_cs)
|
|
hl_fence_put(sig_fence);
|
|
|
|
goto free_cs_chunk_array;
|
|
}
|
|
|
|
/*
|
|
* Save the signal CS fence for later initialization right before
|
|
* hanging the wait CS on the queue.
|
|
* for encaps signals case, we save the cs sequence and handle pointer
|
|
* for later initialization.
|
|
*/
|
|
if (is_wait_cs) {
|
|
cs->signal_fence = sig_fence;
|
|
/* store the handle pointer, so we don't have to
|
|
* look for it again, later on the flow
|
|
* when we need to set SOB info in hw_queue.
|
|
*/
|
|
if (cs->encaps_signals)
|
|
cs->encaps_sig_hdl = encaps_sig_hdl;
|
|
}
|
|
|
|
hl_debugfs_add_cs(cs);
|
|
|
|
*cs_seq = cs->sequence;
|
|
|
|
if (cs_type == CS_TYPE_WAIT || cs_type == CS_TYPE_SIGNAL)
|
|
rc = cs_ioctl_signal_wait_create_jobs(hdev, ctx, cs, q_type,
|
|
q_idx, chunk->encaps_signal_offset);
|
|
else if (cs_type == CS_TYPE_COLLECTIVE_WAIT)
|
|
rc = hdev->asic_funcs->collective_wait_create_jobs(hdev, ctx,
|
|
cs, q_idx, collective_engine_id,
|
|
chunk->encaps_signal_offset);
|
|
else {
|
|
atomic64_inc(&ctx->cs_counters.validation_drop_cnt);
|
|
atomic64_inc(&cntr->validation_drop_cnt);
|
|
rc = -EINVAL;
|
|
}
|
|
|
|
if (rc)
|
|
goto free_cs_object;
|
|
|
|
rc = hl_hw_queue_schedule_cs(cs);
|
|
if (rc) {
|
|
/* In case wait cs failed here, it means the signal cs
|
|
* already completed. we want to free all it's related objects
|
|
* but we don't want to fail the ioctl.
|
|
*/
|
|
if (is_wait_cs)
|
|
rc = 0;
|
|
else if (rc != -EAGAIN)
|
|
dev_err(hdev->dev,
|
|
"Failed to submit CS %d.%llu to H/W queues, error %d\n",
|
|
ctx->asid, cs->sequence, rc);
|
|
goto free_cs_object;
|
|
}
|
|
|
|
*signal_sob_addr_offset = cs->sob_addr_offset;
|
|
*signal_initial_sob_count = cs->initial_sob_count;
|
|
|
|
rc = HL_CS_STATUS_SUCCESS;
|
|
if (is_wait_cs)
|
|
wait_cs_submitted = true;
|
|
goto put_cs;
|
|
|
|
free_cs_object:
|
|
cs_rollback(hdev, cs);
|
|
*cs_seq = ULLONG_MAX;
|
|
/* The path below is both for good and erroneous exits */
|
|
put_cs:
|
|
/* We finished with the CS in this function, so put the ref */
|
|
cs_put(cs);
|
|
free_cs_chunk_array:
|
|
if (!wait_cs_submitted && cs_encaps_signals && handle_found &&
|
|
is_wait_cs)
|
|
kref_put(&encaps_sig_hdl->refcount,
|
|
hl_encaps_handle_do_release);
|
|
kfree(cs_chunk_array);
|
|
out:
|
|
return rc;
|
|
}
|
|
|
|
int hl_cs_ioctl(struct hl_fpriv *hpriv, void *data)
|
|
{
|
|
union hl_cs_args *args = data;
|
|
enum hl_cs_type cs_type = 0;
|
|
u64 cs_seq = ULONG_MAX;
|
|
void __user *chunks;
|
|
u32 num_chunks, flags, timeout,
|
|
signals_count = 0, sob_addr = 0, handle_id = 0;
|
|
u16 sob_initial_count = 0;
|
|
int rc;
|
|
|
|
rc = hl_cs_sanity_checks(hpriv, args);
|
|
if (rc)
|
|
goto out;
|
|
|
|
rc = hl_cs_ctx_switch(hpriv, args, &cs_seq);
|
|
if (rc)
|
|
goto out;
|
|
|
|
cs_type = hl_cs_get_cs_type(args->in.cs_flags &
|
|
~HL_CS_FLAGS_FORCE_RESTORE);
|
|
chunks = (void __user *) (uintptr_t) args->in.chunks_execute;
|
|
num_chunks = args->in.num_chunks_execute;
|
|
flags = args->in.cs_flags;
|
|
|
|
/* In case this is a staged CS, user should supply the CS sequence */
|
|
if ((flags & HL_CS_FLAGS_STAGED_SUBMISSION) &&
|
|
!(flags & HL_CS_FLAGS_STAGED_SUBMISSION_FIRST))
|
|
cs_seq = args->in.seq;
|
|
|
|
timeout = flags & HL_CS_FLAGS_CUSTOM_TIMEOUT
|
|
? msecs_to_jiffies(args->in.timeout * 1000)
|
|
: hpriv->hdev->timeout_jiffies;
|
|
|
|
switch (cs_type) {
|
|
case CS_TYPE_SIGNAL:
|
|
case CS_TYPE_WAIT:
|
|
case CS_TYPE_COLLECTIVE_WAIT:
|
|
rc = cs_ioctl_signal_wait(hpriv, cs_type, chunks, num_chunks,
|
|
&cs_seq, args->in.cs_flags, timeout,
|
|
&sob_addr, &sob_initial_count);
|
|
break;
|
|
case CS_RESERVE_SIGNALS:
|
|
rc = cs_ioctl_reserve_signals(hpriv,
|
|
args->in.encaps_signals_q_idx,
|
|
args->in.encaps_signals_count,
|
|
&handle_id, &sob_addr, &signals_count);
|
|
break;
|
|
case CS_UNRESERVE_SIGNALS:
|
|
rc = cs_ioctl_unreserve_signals(hpriv,
|
|
args->in.encaps_sig_handle_id);
|
|
break;
|
|
default:
|
|
rc = cs_ioctl_default(hpriv, chunks, num_chunks, &cs_seq,
|
|
args->in.cs_flags,
|
|
args->in.encaps_sig_handle_id,
|
|
timeout, &sob_initial_count);
|
|
break;
|
|
}
|
|
out:
|
|
if (rc != -EAGAIN) {
|
|
memset(args, 0, sizeof(*args));
|
|
|
|
switch (cs_type) {
|
|
case CS_RESERVE_SIGNALS:
|
|
args->out.handle_id = handle_id;
|
|
args->out.sob_base_addr_offset = sob_addr;
|
|
args->out.count = signals_count;
|
|
break;
|
|
case CS_TYPE_SIGNAL:
|
|
args->out.sob_base_addr_offset = sob_addr;
|
|
args->out.sob_count_before_submission = sob_initial_count;
|
|
args->out.seq = cs_seq;
|
|
break;
|
|
case CS_TYPE_DEFAULT:
|
|
args->out.sob_count_before_submission = sob_initial_count;
|
|
args->out.seq = cs_seq;
|
|
break;
|
|
default:
|
|
args->out.seq = cs_seq;
|
|
break;
|
|
}
|
|
|
|
args->out.status = rc;
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
static int hl_wait_for_fence(struct hl_ctx *ctx, u64 seq, struct hl_fence *fence,
|
|
enum hl_cs_wait_status *status, u64 timeout_us,
|
|
s64 *timestamp)
|
|
{
|
|
struct hl_device *hdev = ctx->hdev;
|
|
long completion_rc;
|
|
int rc = 0;
|
|
|
|
if (IS_ERR(fence)) {
|
|
rc = PTR_ERR(fence);
|
|
if (rc == -EINVAL)
|
|
dev_notice_ratelimited(hdev->dev,
|
|
"Can't wait on CS %llu because current CS is at seq %llu\n",
|
|
seq, ctx->cs_sequence);
|
|
return rc;
|
|
}
|
|
|
|
if (!fence) {
|
|
dev_dbg(hdev->dev,
|
|
"Can't wait on seq %llu because current CS is at seq %llu (Fence is gone)\n",
|
|
seq, ctx->cs_sequence);
|
|
|
|
*status = CS_WAIT_STATUS_GONE;
|
|
return 0;
|
|
}
|
|
|
|
if (!timeout_us) {
|
|
completion_rc = completion_done(&fence->completion);
|
|
} else {
|
|
unsigned long timeout;
|
|
|
|
timeout = (timeout_us == MAX_SCHEDULE_TIMEOUT) ?
|
|
timeout_us : usecs_to_jiffies(timeout_us);
|
|
completion_rc =
|
|
wait_for_completion_interruptible_timeout(
|
|
&fence->completion, timeout);
|
|
}
|
|
|
|
if (completion_rc > 0) {
|
|
*status = CS_WAIT_STATUS_COMPLETED;
|
|
if (timestamp)
|
|
*timestamp = ktime_to_ns(fence->timestamp);
|
|
} else {
|
|
*status = CS_WAIT_STATUS_BUSY;
|
|
}
|
|
|
|
if (fence->error == -ETIMEDOUT)
|
|
rc = -ETIMEDOUT;
|
|
else if (fence->error == -EIO)
|
|
rc = -EIO;
|
|
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
* hl_cs_poll_fences - iterate CS fences to check for CS completion
|
|
*
|
|
* @mcs_data: multi-CS internal data
|
|
* @mcs_compl: multi-CS completion structure
|
|
*
|
|
* @return 0 on success, otherwise non 0 error code
|
|
*
|
|
* The function iterates on all CS sequence in the list and set bit in
|
|
* completion_bitmap for each completed CS.
|
|
* While iterating, the function sets the stream map of each fence in the fence
|
|
* array in the completion QID stream map to be used by CSs to perform
|
|
* completion to the multi-CS context.
|
|
* This function shall be called after taking context ref
|
|
*/
|
|
static int hl_cs_poll_fences(struct multi_cs_data *mcs_data, struct multi_cs_completion *mcs_compl)
|
|
{
|
|
struct hl_fence **fence_ptr = mcs_data->fence_arr;
|
|
struct hl_device *hdev = mcs_data->ctx->hdev;
|
|
int i, rc, arr_len = mcs_data->arr_len;
|
|
u64 *seq_arr = mcs_data->seq_arr;
|
|
ktime_t max_ktime, first_cs_time;
|
|
enum hl_cs_wait_status status;
|
|
|
|
memset(fence_ptr, 0, arr_len * sizeof(*fence_ptr));
|
|
|
|
/* get all fences under the same lock */
|
|
rc = hl_ctx_get_fences(mcs_data->ctx, seq_arr, fence_ptr, arr_len);
|
|
if (rc)
|
|
return rc;
|
|
|
|
/*
|
|
* re-initialize the completion here to handle 2 possible cases:
|
|
* 1. CS will complete the multi-CS prior clearing the completion. in which
|
|
* case the fence iteration is guaranteed to catch the CS completion.
|
|
* 2. the completion will occur after re-init of the completion.
|
|
* in which case we will wake up immediately in wait_for_completion.
|
|
*/
|
|
reinit_completion(&mcs_compl->completion);
|
|
|
|
/*
|
|
* set to maximum time to verify timestamp is valid: if at the end
|
|
* this value is maintained- no timestamp was updated
|
|
*/
|
|
max_ktime = ktime_set(KTIME_SEC_MAX, 0);
|
|
first_cs_time = max_ktime;
|
|
|
|
for (i = 0; i < arr_len; i++, fence_ptr++) {
|
|
struct hl_fence *fence = *fence_ptr;
|
|
|
|
/*
|
|
* In order to prevent case where we wait until timeout even though a CS associated
|
|
* with the multi-CS actually completed we do things in the below order:
|
|
* 1. for each fence set it's QID map in the multi-CS completion QID map. This way
|
|
* any CS can, potentially, complete the multi CS for the specific QID (note
|
|
* that once completion is initialized, calling complete* and then wait on the
|
|
* completion will cause it to return at once)
|
|
* 2. only after allowing multi-CS completion for the specific QID we check whether
|
|
* the specific CS already completed (and thus the wait for completion part will
|
|
* be skipped). if the CS not completed it is guaranteed that completing CS will
|
|
* wake up the completion.
|
|
*/
|
|
if (fence)
|
|
mcs_compl->stream_master_qid_map |= fence->stream_master_qid_map;
|
|
|
|
/*
|
|
* function won't sleep as it is called with timeout 0 (i.e.
|
|
* poll the fence)
|
|
*/
|
|
rc = hl_wait_for_fence(mcs_data->ctx, seq_arr[i], fence,
|
|
&status, 0, NULL);
|
|
if (rc) {
|
|
dev_err(hdev->dev,
|
|
"wait_for_fence error :%d for CS seq %llu\n",
|
|
rc, seq_arr[i]);
|
|
break;
|
|
}
|
|
|
|
switch (status) {
|
|
case CS_WAIT_STATUS_BUSY:
|
|
/* CS did not finished, QID to wait on already stored */
|
|
break;
|
|
case CS_WAIT_STATUS_COMPLETED:
|
|
/*
|
|
* Using mcs_handling_done to avoid possibility of mcs_data
|
|
* returns to user indicating CS completed before it finished
|
|
* all of its mcs handling, to avoid race the next time the
|
|
* user waits for mcs.
|
|
* note: when reaching this case fence is definitely not NULL
|
|
* but NULL check was added to overcome static analysis
|
|
*/
|
|
if (fence && !fence->mcs_handling_done) {
|
|
/*
|
|
* in case multi CS is completed but MCS handling not done
|
|
* we "complete" the multi CS to prevent it from waiting
|
|
* until time-out and the "multi-CS handling done" will have
|
|
* another chance at the next iteration
|
|
*/
|
|
complete_all(&mcs_compl->completion);
|
|
break;
|
|
}
|
|
|
|
mcs_data->completion_bitmap |= BIT(i);
|
|
/*
|
|
* For all completed CSs we take the earliest timestamp.
|
|
* For this we have to validate that the timestamp is
|
|
* earliest of all timestamps so far.
|
|
*/
|
|
if (mcs_data->update_ts &&
|
|
(ktime_compare(fence->timestamp, first_cs_time) < 0))
|
|
first_cs_time = fence->timestamp;
|
|
break;
|
|
case CS_WAIT_STATUS_GONE:
|
|
mcs_data->update_ts = false;
|
|
mcs_data->gone_cs = true;
|
|
/*
|
|
* It is possible to get an old sequence numbers from user
|
|
* which related to already completed CSs and their fences
|
|
* already gone. In this case, CS set as completed but
|
|
* no need to consider its QID for mcs completion.
|
|
*/
|
|
mcs_data->completion_bitmap |= BIT(i);
|
|
break;
|
|
default:
|
|
dev_err(hdev->dev, "Invalid fence status\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
}
|
|
|
|
hl_fences_put(mcs_data->fence_arr, arr_len);
|
|
|
|
if (mcs_data->update_ts &&
|
|
(ktime_compare(first_cs_time, max_ktime) != 0))
|
|
mcs_data->timestamp = ktime_to_ns(first_cs_time);
|
|
|
|
return rc;
|
|
}
|
|
|
|
static int _hl_cs_wait_ioctl(struct hl_device *hdev, struct hl_ctx *ctx,
|
|
u64 timeout_us, u64 seq,
|
|
enum hl_cs_wait_status *status, s64 *timestamp)
|
|
{
|
|
struct hl_fence *fence;
|
|
int rc = 0;
|
|
|
|
if (timestamp)
|
|
*timestamp = 0;
|
|
|
|
hl_ctx_get(hdev, ctx);
|
|
|
|
fence = hl_ctx_get_fence(ctx, seq);
|
|
|
|
rc = hl_wait_for_fence(ctx, seq, fence, status, timeout_us, timestamp);
|
|
hl_fence_put(fence);
|
|
hl_ctx_put(ctx);
|
|
|
|
return rc;
|
|
}
|
|
|
|
static inline unsigned long hl_usecs64_to_jiffies(const u64 usecs)
|
|
{
|
|
if (usecs <= U32_MAX)
|
|
return usecs_to_jiffies(usecs);
|
|
|
|
/*
|
|
* If the value in nanoseconds is larger than 64 bit, use the largest
|
|
* 64 bit value.
|
|
*/
|
|
if (usecs >= ((u64)(U64_MAX / NSEC_PER_USEC)))
|
|
return nsecs_to_jiffies(U64_MAX);
|
|
|
|
return nsecs_to_jiffies(usecs * NSEC_PER_USEC);
|
|
}
|
|
|
|
/*
|
|
* hl_wait_multi_cs_completion_init - init completion structure
|
|
*
|
|
* @hdev: pointer to habanalabs device structure
|
|
* @stream_master_bitmap: stream master QIDs map, set bit indicates stream
|
|
* master QID to wait on
|
|
*
|
|
* @return valid completion struct pointer on success, otherwise error pointer
|
|
*
|
|
* up to MULTI_CS_MAX_USER_CTX calls can be done concurrently to the driver.
|
|
* the function gets the first available completion (by marking it "used")
|
|
* and initialize its values.
|
|
*/
|
|
static struct multi_cs_completion *hl_wait_multi_cs_completion_init(struct hl_device *hdev)
|
|
{
|
|
struct multi_cs_completion *mcs_compl;
|
|
int i;
|
|
|
|
/* find free multi_cs completion structure */
|
|
for (i = 0; i < MULTI_CS_MAX_USER_CTX; i++) {
|
|
mcs_compl = &hdev->multi_cs_completion[i];
|
|
spin_lock(&mcs_compl->lock);
|
|
if (!mcs_compl->used) {
|
|
mcs_compl->used = 1;
|
|
mcs_compl->timestamp = 0;
|
|
/*
|
|
* init QID map to 0 to avoid completion by CSs. the actual QID map
|
|
* to multi-CS CSs will be set incrementally at a later stage
|
|
*/
|
|
mcs_compl->stream_master_qid_map = 0;
|
|
spin_unlock(&mcs_compl->lock);
|
|
break;
|
|
}
|
|
spin_unlock(&mcs_compl->lock);
|
|
}
|
|
|
|
if (i == MULTI_CS_MAX_USER_CTX) {
|
|
dev_err(hdev->dev, "no available multi-CS completion structure\n");
|
|
return ERR_PTR(-ENOMEM);
|
|
}
|
|
return mcs_compl;
|
|
}
|
|
|
|
/*
|
|
* hl_wait_multi_cs_completion_fini - return completion structure and set as
|
|
* unused
|
|
*
|
|
* @mcs_compl: pointer to the completion structure
|
|
*/
|
|
static void hl_wait_multi_cs_completion_fini(
|
|
struct multi_cs_completion *mcs_compl)
|
|
{
|
|
/*
|
|
* free completion structure, do it under lock to be in-sync with the
|
|
* thread that signals completion
|
|
*/
|
|
spin_lock(&mcs_compl->lock);
|
|
mcs_compl->used = 0;
|
|
spin_unlock(&mcs_compl->lock);
|
|
}
|
|
|
|
/*
|
|
* hl_wait_multi_cs_completion - wait for first CS to complete
|
|
*
|
|
* @mcs_data: multi-CS internal data
|
|
*
|
|
* @return 0 on success, otherwise non 0 error code
|
|
*/
|
|
static int hl_wait_multi_cs_completion(struct multi_cs_data *mcs_data,
|
|
struct multi_cs_completion *mcs_compl)
|
|
{
|
|
long completion_rc;
|
|
|
|
completion_rc = wait_for_completion_interruptible_timeout(&mcs_compl->completion,
|
|
mcs_data->timeout_jiffies);
|
|
|
|
/* update timestamp */
|
|
if (completion_rc > 0)
|
|
mcs_data->timestamp = mcs_compl->timestamp;
|
|
|
|
mcs_data->wait_status = completion_rc;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* hl_multi_cs_completion_init - init array of multi-CS completion structures
|
|
*
|
|
* @hdev: pointer to habanalabs device structure
|
|
*/
|
|
void hl_multi_cs_completion_init(struct hl_device *hdev)
|
|
{
|
|
struct multi_cs_completion *mcs_cmpl;
|
|
int i;
|
|
|
|
for (i = 0; i < MULTI_CS_MAX_USER_CTX; i++) {
|
|
mcs_cmpl = &hdev->multi_cs_completion[i];
|
|
mcs_cmpl->used = 0;
|
|
spin_lock_init(&mcs_cmpl->lock);
|
|
init_completion(&mcs_cmpl->completion);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* hl_multi_cs_wait_ioctl - implementation of the multi-CS wait ioctl
|
|
*
|
|
* @hpriv: pointer to the private data of the fd
|
|
* @data: pointer to multi-CS wait ioctl in/out args
|
|
*
|
|
*/
|
|
static int hl_multi_cs_wait_ioctl(struct hl_fpriv *hpriv, void *data)
|
|
{
|
|
struct multi_cs_completion *mcs_compl;
|
|
struct hl_device *hdev = hpriv->hdev;
|
|
struct multi_cs_data mcs_data = {0};
|
|
union hl_wait_cs_args *args = data;
|
|
struct hl_ctx *ctx = hpriv->ctx;
|
|
struct hl_fence **fence_arr;
|
|
void __user *seq_arr;
|
|
u32 size_to_copy;
|
|
u64 *cs_seq_arr;
|
|
u8 seq_arr_len;
|
|
int rc;
|
|
|
|
if (!hdev->supports_wait_for_multi_cs) {
|
|
dev_err(hdev->dev, "Wait for multi CS is not supported\n");
|
|
return -EPERM;
|
|
}
|
|
|
|
seq_arr_len = args->in.seq_arr_len;
|
|
|
|
if (seq_arr_len > HL_WAIT_MULTI_CS_LIST_MAX_LEN) {
|
|
dev_err(hdev->dev, "Can wait only up to %d CSs, input sequence is of length %u\n",
|
|
HL_WAIT_MULTI_CS_LIST_MAX_LEN, seq_arr_len);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* allocate memory for sequence array */
|
|
cs_seq_arr =
|
|
kmalloc_array(seq_arr_len, sizeof(*cs_seq_arr), GFP_KERNEL);
|
|
if (!cs_seq_arr)
|
|
return -ENOMEM;
|
|
|
|
/* copy CS sequence array from user */
|
|
seq_arr = (void __user *) (uintptr_t) args->in.seq;
|
|
size_to_copy = seq_arr_len * sizeof(*cs_seq_arr);
|
|
if (copy_from_user(cs_seq_arr, seq_arr, size_to_copy)) {
|
|
dev_err(hdev->dev, "Failed to copy multi-cs sequence array from user\n");
|
|
rc = -EFAULT;
|
|
goto free_seq_arr;
|
|
}
|
|
|
|
/* allocate array for the fences */
|
|
fence_arr = kmalloc_array(seq_arr_len, sizeof(*fence_arr), GFP_KERNEL);
|
|
if (!fence_arr) {
|
|
rc = -ENOMEM;
|
|
goto free_seq_arr;
|
|
}
|
|
|
|
/* initialize the multi-CS internal data */
|
|
mcs_data.ctx = ctx;
|
|
mcs_data.seq_arr = cs_seq_arr;
|
|
mcs_data.fence_arr = fence_arr;
|
|
mcs_data.arr_len = seq_arr_len;
|
|
|
|
hl_ctx_get(hdev, ctx);
|
|
|
|
/* wait (with timeout) for the first CS to be completed */
|
|
mcs_data.timeout_jiffies = hl_usecs64_to_jiffies(args->in.timeout_us);
|
|
mcs_compl = hl_wait_multi_cs_completion_init(hdev);
|
|
if (IS_ERR(mcs_compl)) {
|
|
rc = PTR_ERR(mcs_compl);
|
|
goto put_ctx;
|
|
}
|
|
|
|
/* poll all CS fences, extract timestamp */
|
|
mcs_data.update_ts = true;
|
|
rc = hl_cs_poll_fences(&mcs_data, mcs_compl);
|
|
/*
|
|
* skip wait for CS completion when one of the below is true:
|
|
* - an error on the poll function
|
|
* - one or more CS in the list completed
|
|
* - the user called ioctl with timeout 0
|
|
*/
|
|
if (rc || mcs_data.completion_bitmap || !args->in.timeout_us)
|
|
goto completion_fini;
|
|
|
|
while (true) {
|
|
rc = hl_wait_multi_cs_completion(&mcs_data, mcs_compl);
|
|
if (rc || (mcs_data.wait_status == 0))
|
|
break;
|
|
|
|
/*
|
|
* poll fences once again to update the CS map.
|
|
* no timestamp should be updated this time.
|
|
*/
|
|
mcs_data.update_ts = false;
|
|
rc = hl_cs_poll_fences(&mcs_data, mcs_compl);
|
|
|
|
if (rc || mcs_data.completion_bitmap)
|
|
break;
|
|
|
|
/*
|
|
* if hl_wait_multi_cs_completion returned before timeout (i.e.
|
|
* it got a completion) it either got completed by CS in the multi CS list
|
|
* (in which case the indication will be non empty completion_bitmap) or it
|
|
* got completed by CS submitted to one of the shared stream master but
|
|
* not in the multi CS list (in which case we should wait again but modify
|
|
* the timeout and set timestamp as zero to let a CS related to the current
|
|
* multi-CS set a new, relevant, timestamp)
|
|
*/
|
|
mcs_data.timeout_jiffies = mcs_data.wait_status;
|
|
mcs_compl->timestamp = 0;
|
|
}
|
|
|
|
completion_fini:
|
|
hl_wait_multi_cs_completion_fini(mcs_compl);
|
|
|
|
put_ctx:
|
|
hl_ctx_put(ctx);
|
|
kfree(fence_arr);
|
|
|
|
free_seq_arr:
|
|
kfree(cs_seq_arr);
|
|
|
|
if (rc)
|
|
return rc;
|
|
|
|
if (mcs_data.wait_status == -ERESTARTSYS) {
|
|
dev_err_ratelimited(hdev->dev,
|
|
"user process got signal while waiting for Multi-CS\n");
|
|
return -EINTR;
|
|
}
|
|
|
|
/* update output args */
|
|
memset(args, 0, sizeof(*args));
|
|
|
|
if (mcs_data.completion_bitmap) {
|
|
args->out.status = HL_WAIT_CS_STATUS_COMPLETED;
|
|
args->out.cs_completion_map = mcs_data.completion_bitmap;
|
|
|
|
/* if timestamp not 0- it's valid */
|
|
if (mcs_data.timestamp) {
|
|
args->out.timestamp_nsec = mcs_data.timestamp;
|
|
args->out.flags |= HL_WAIT_CS_STATUS_FLAG_TIMESTAMP_VLD;
|
|
}
|
|
|
|
/* update if some CS was gone */
|
|
if (!mcs_data.timestamp)
|
|
args->out.flags |= HL_WAIT_CS_STATUS_FLAG_GONE;
|
|
} else {
|
|
args->out.status = HL_WAIT_CS_STATUS_BUSY;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int hl_cs_wait_ioctl(struct hl_fpriv *hpriv, void *data)
|
|
{
|
|
struct hl_device *hdev = hpriv->hdev;
|
|
union hl_wait_cs_args *args = data;
|
|
enum hl_cs_wait_status status;
|
|
u64 seq = args->in.seq;
|
|
s64 timestamp;
|
|
int rc;
|
|
|
|
rc = _hl_cs_wait_ioctl(hdev, hpriv->ctx, args->in.timeout_us, seq,
|
|
&status, ×tamp);
|
|
|
|
if (rc == -ERESTARTSYS) {
|
|
dev_err_ratelimited(hdev->dev,
|
|
"user process got signal while waiting for CS handle %llu\n",
|
|
seq);
|
|
return -EINTR;
|
|
}
|
|
|
|
memset(args, 0, sizeof(*args));
|
|
|
|
if (rc) {
|
|
if (rc == -ETIMEDOUT) {
|
|
dev_err_ratelimited(hdev->dev,
|
|
"CS %llu has timed-out while user process is waiting for it\n",
|
|
seq);
|
|
args->out.status = HL_WAIT_CS_STATUS_TIMEDOUT;
|
|
} else if (rc == -EIO) {
|
|
dev_err_ratelimited(hdev->dev,
|
|
"CS %llu has been aborted while user process is waiting for it\n",
|
|
seq);
|
|
args->out.status = HL_WAIT_CS_STATUS_ABORTED;
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
if (timestamp) {
|
|
args->out.flags |= HL_WAIT_CS_STATUS_FLAG_TIMESTAMP_VLD;
|
|
args->out.timestamp_nsec = timestamp;
|
|
}
|
|
|
|
switch (status) {
|
|
case CS_WAIT_STATUS_GONE:
|
|
args->out.flags |= HL_WAIT_CS_STATUS_FLAG_GONE;
|
|
fallthrough;
|
|
case CS_WAIT_STATUS_COMPLETED:
|
|
args->out.status = HL_WAIT_CS_STATUS_COMPLETED;
|
|
break;
|
|
case CS_WAIT_STATUS_BUSY:
|
|
default:
|
|
args->out.status = HL_WAIT_CS_STATUS_BUSY;
|
|
break;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int _hl_interrupt_wait_ioctl(struct hl_device *hdev, struct hl_ctx *ctx,
|
|
struct hl_cb_mgr *cb_mgr, u64 timeout_us,
|
|
u64 cq_counters_handle, u64 cq_counters_offset,
|
|
u64 target_value, struct hl_user_interrupt *interrupt,
|
|
u32 *status,
|
|
u64 *timestamp)
|
|
{
|
|
struct hl_user_pending_interrupt *pend;
|
|
unsigned long timeout, flags;
|
|
long completion_rc;
|
|
struct hl_cb *cb;
|
|
int rc = 0;
|
|
u32 handle;
|
|
|
|
timeout = hl_usecs64_to_jiffies(timeout_us);
|
|
|
|
hl_ctx_get(hdev, ctx);
|
|
|
|
cq_counters_handle >>= PAGE_SHIFT;
|
|
handle = (u32) cq_counters_handle;
|
|
|
|
cb = hl_cb_get(hdev, cb_mgr, handle);
|
|
if (!cb) {
|
|
hl_ctx_put(ctx);
|
|
return -EINVAL;
|
|
}
|
|
|
|
pend = kzalloc(sizeof(*pend), GFP_KERNEL);
|
|
if (!pend) {
|
|
hl_cb_put(cb);
|
|
hl_ctx_put(ctx);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
hl_fence_init(&pend->fence, ULONG_MAX);
|
|
|
|
pend->cq_kernel_addr = (u64 *) cb->kernel_address + cq_counters_offset;
|
|
pend->cq_target_value = target_value;
|
|
|
|
/* We check for completion value as interrupt could have been received
|
|
* before we added the node to the wait list
|
|
*/
|
|
if (*pend->cq_kernel_addr >= target_value) {
|
|
*status = HL_WAIT_CS_STATUS_COMPLETED;
|
|
/* There was no interrupt, we assume the completion is now. */
|
|
pend->fence.timestamp = ktime_get();
|
|
}
|
|
|
|
if (!timeout_us || (*status == HL_WAIT_CS_STATUS_COMPLETED))
|
|
goto set_timestamp;
|
|
|
|
/* Add pending user interrupt to relevant list for the interrupt
|
|
* handler to monitor
|
|
*/
|
|
spin_lock_irqsave(&interrupt->wait_list_lock, flags);
|
|
list_add_tail(&pend->wait_list_node, &interrupt->wait_list_head);
|
|
spin_unlock_irqrestore(&interrupt->wait_list_lock, flags);
|
|
|
|
/* Wait for interrupt handler to signal completion */
|
|
completion_rc = wait_for_completion_interruptible_timeout(&pend->fence.completion,
|
|
timeout);
|
|
if (completion_rc > 0) {
|
|
*status = HL_WAIT_CS_STATUS_COMPLETED;
|
|
} else {
|
|
if (completion_rc == -ERESTARTSYS) {
|
|
dev_err_ratelimited(hdev->dev,
|
|
"user process got signal while waiting for interrupt ID %d\n",
|
|
interrupt->interrupt_id);
|
|
rc = -EINTR;
|
|
*status = HL_WAIT_CS_STATUS_ABORTED;
|
|
} else {
|
|
if (pend->fence.error == -EIO) {
|
|
dev_err_ratelimited(hdev->dev,
|
|
"interrupt based wait ioctl aborted(error:%d) due to a reset cycle initiated\n",
|
|
pend->fence.error);
|
|
rc = -EIO;
|
|
*status = HL_WAIT_CS_STATUS_ABORTED;
|
|
} else {
|
|
/* The wait has timed-out. We don't know anything beyond that
|
|
* because the workload wasn't submitted through the driver.
|
|
* Therefore, from driver's perspective, the workload is still
|
|
* executing.
|
|
*/
|
|
rc = 0;
|
|
*status = HL_WAIT_CS_STATUS_BUSY;
|
|
}
|
|
}
|
|
}
|
|
|
|
spin_lock_irqsave(&interrupt->wait_list_lock, flags);
|
|
list_del(&pend->wait_list_node);
|
|
spin_unlock_irqrestore(&interrupt->wait_list_lock, flags);
|
|
|
|
set_timestamp:
|
|
*timestamp = ktime_to_ns(pend->fence.timestamp);
|
|
|
|
kfree(pend);
|
|
hl_cb_put(cb);
|
|
hl_ctx_put(ctx);
|
|
|
|
return rc;
|
|
}
|
|
|
|
static int _hl_interrupt_wait_ioctl_user_addr(struct hl_device *hdev, struct hl_ctx *ctx,
|
|
u64 timeout_us, u64 user_address,
|
|
u64 target_value, struct hl_user_interrupt *interrupt,
|
|
|
|
u32 *status,
|
|
u64 *timestamp)
|
|
{
|
|
struct hl_user_pending_interrupt *pend;
|
|
unsigned long timeout, flags;
|
|
u64 completion_value;
|
|
long completion_rc;
|
|
int rc = 0;
|
|
|
|
timeout = hl_usecs64_to_jiffies(timeout_us);
|
|
|
|
hl_ctx_get(hdev, ctx);
|
|
|
|
pend = kzalloc(sizeof(*pend), GFP_KERNEL);
|
|
if (!pend) {
|
|
hl_ctx_put(ctx);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
hl_fence_init(&pend->fence, ULONG_MAX);
|
|
|
|
/* Add pending user interrupt to relevant list for the interrupt
|
|
* handler to monitor
|
|
*/
|
|
spin_lock_irqsave(&interrupt->wait_list_lock, flags);
|
|
list_add_tail(&pend->wait_list_node, &interrupt->wait_list_head);
|
|
spin_unlock_irqrestore(&interrupt->wait_list_lock, flags);
|
|
|
|
/* We check for completion value as interrupt could have been received
|
|
* before we added the node to the wait list
|
|
*/
|
|
if (copy_from_user(&completion_value, u64_to_user_ptr(user_address), 8)) {
|
|
dev_err(hdev->dev, "Failed to copy completion value from user\n");
|
|
rc = -EFAULT;
|
|
goto remove_pending_user_interrupt;
|
|
}
|
|
|
|
if (completion_value >= target_value) {
|
|
*status = HL_WAIT_CS_STATUS_COMPLETED;
|
|
/* There was no interrupt, we assume the completion is now. */
|
|
pend->fence.timestamp = ktime_get();
|
|
} else {
|
|
*status = HL_WAIT_CS_STATUS_BUSY;
|
|
}
|
|
|
|
if (!timeout_us || (*status == HL_WAIT_CS_STATUS_COMPLETED))
|
|
goto remove_pending_user_interrupt;
|
|
|
|
wait_again:
|
|
/* Wait for interrupt handler to signal completion */
|
|
completion_rc = wait_for_completion_interruptible_timeout(&pend->fence.completion,
|
|
timeout);
|
|
|
|
/* If timeout did not expire we need to perform the comparison.
|
|
* If comparison fails, keep waiting until timeout expires
|
|
*/
|
|
if (completion_rc > 0) {
|
|
spin_lock_irqsave(&interrupt->wait_list_lock, flags);
|
|
/* reinit_completion must be called before we check for user
|
|
* completion value, otherwise, if interrupt is received after
|
|
* the comparison and before the next wait_for_completion,
|
|
* we will reach timeout and fail
|
|
*/
|
|
reinit_completion(&pend->fence.completion);
|
|
spin_unlock_irqrestore(&interrupt->wait_list_lock, flags);
|
|
|
|
if (copy_from_user(&completion_value, u64_to_user_ptr(user_address), 8)) {
|
|
dev_err(hdev->dev, "Failed to copy completion value from user\n");
|
|
rc = -EFAULT;
|
|
|
|
goto remove_pending_user_interrupt;
|
|
}
|
|
|
|
if (completion_value >= target_value) {
|
|
*status = HL_WAIT_CS_STATUS_COMPLETED;
|
|
} else if (pend->fence.error) {
|
|
dev_err_ratelimited(hdev->dev,
|
|
"interrupt based wait ioctl aborted(error:%d) due to a reset cycle initiated\n",
|
|
pend->fence.error);
|
|
/* set the command completion status as ABORTED */
|
|
*status = HL_WAIT_CS_STATUS_ABORTED;
|
|
} else {
|
|
timeout = completion_rc;
|
|
goto wait_again;
|
|
}
|
|
} else if (completion_rc == -ERESTARTSYS) {
|
|
dev_err_ratelimited(hdev->dev,
|
|
"user process got signal while waiting for interrupt ID %d\n",
|
|
interrupt->interrupt_id);
|
|
rc = -EINTR;
|
|
} else {
|
|
/* The wait has timed-out. We don't know anything beyond that
|
|
* because the workload wasn't submitted through the driver.
|
|
* Therefore, from driver's perspective, the workload is still
|
|
* executing.
|
|
*/
|
|
rc = 0;
|
|
*status = HL_WAIT_CS_STATUS_BUSY;
|
|
}
|
|
|
|
remove_pending_user_interrupt:
|
|
spin_lock_irqsave(&interrupt->wait_list_lock, flags);
|
|
list_del(&pend->wait_list_node);
|
|
spin_unlock_irqrestore(&interrupt->wait_list_lock, flags);
|
|
|
|
*timestamp = ktime_to_ns(pend->fence.timestamp);
|
|
|
|
kfree(pend);
|
|
hl_ctx_put(ctx);
|
|
|
|
return rc;
|
|
}
|
|
|
|
static int hl_interrupt_wait_ioctl(struct hl_fpriv *hpriv, void *data)
|
|
{
|
|
u16 interrupt_id, first_interrupt, last_interrupt;
|
|
struct hl_device *hdev = hpriv->hdev;
|
|
struct asic_fixed_properties *prop;
|
|
struct hl_user_interrupt *interrupt;
|
|
union hl_wait_cs_args *args = data;
|
|
u32 status = HL_WAIT_CS_STATUS_BUSY;
|
|
u64 timestamp;
|
|
int rc;
|
|
|
|
prop = &hdev->asic_prop;
|
|
|
|
if (!prop->user_interrupt_count) {
|
|
dev_err(hdev->dev, "no user interrupts allowed");
|
|
return -EPERM;
|
|
}
|
|
|
|
interrupt_id = FIELD_GET(HL_WAIT_CS_FLAGS_INTERRUPT_MASK, args->in.flags);
|
|
|
|
first_interrupt = prop->first_available_user_msix_interrupt;
|
|
last_interrupt = prop->first_available_user_msix_interrupt +
|
|
prop->user_interrupt_count - 1;
|
|
|
|
if ((interrupt_id < first_interrupt || interrupt_id > last_interrupt) &&
|
|
interrupt_id != HL_COMMON_USER_INTERRUPT_ID) {
|
|
dev_err(hdev->dev, "invalid user interrupt %u", interrupt_id);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (interrupt_id == HL_COMMON_USER_INTERRUPT_ID)
|
|
interrupt = &hdev->common_user_interrupt;
|
|
else
|
|
interrupt = &hdev->user_interrupt[interrupt_id - first_interrupt];
|
|
|
|
if (args->in.flags & HL_WAIT_CS_FLAGS_INTERRUPT_KERNEL_CQ)
|
|
rc = _hl_interrupt_wait_ioctl(hdev, hpriv->ctx, &hpriv->cb_mgr,
|
|
args->in.interrupt_timeout_us, args->in.cq_counters_handle,
|
|
args->in.cq_counters_offset,
|
|
args->in.target, interrupt, &status,
|
|
×tamp);
|
|
else
|
|
rc = _hl_interrupt_wait_ioctl_user_addr(hdev, hpriv->ctx,
|
|
args->in.interrupt_timeout_us, args->in.addr,
|
|
args->in.target, interrupt, &status,
|
|
×tamp);
|
|
if (rc) {
|
|
if (rc != -EINTR)
|
|
dev_err_ratelimited(hdev->dev,
|
|
"interrupt_wait_ioctl failed (%d)\n", rc);
|
|
|
|
return rc;
|
|
}
|
|
|
|
memset(args, 0, sizeof(*args));
|
|
args->out.status = status;
|
|
|
|
if (timestamp) {
|
|
args->out.timestamp_nsec = timestamp;
|
|
args->out.flags |= HL_WAIT_CS_STATUS_FLAG_TIMESTAMP_VLD;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int hl_wait_ioctl(struct hl_fpriv *hpriv, void *data)
|
|
{
|
|
union hl_wait_cs_args *args = data;
|
|
u32 flags = args->in.flags;
|
|
int rc;
|
|
|
|
/* If the device is not operational, no point in waiting for any command submission or
|
|
* user interrupt
|
|
*/
|
|
if (!hl_device_operational(hpriv->hdev, NULL))
|
|
return -EBUSY;
|
|
|
|
if (flags & HL_WAIT_CS_FLAGS_INTERRUPT)
|
|
rc = hl_interrupt_wait_ioctl(hpriv, data);
|
|
else if (flags & HL_WAIT_CS_FLAGS_MULTI_CS)
|
|
rc = hl_multi_cs_wait_ioctl(hpriv, data);
|
|
else
|
|
rc = hl_cs_wait_ioctl(hpriv, data);
|
|
|
|
return rc;
|
|
}
|