mirror of
https://github.com/torvalds/linux.git
synced 2024-11-10 14:11:52 +00:00
9d85731110
Fix invalid access to pgdat during hot-remove operation:
ndctl users reported a GPF when trying to destroy a namespace:
$ ndctl destroy-namespace all -r all -f
Segmentation fault
dmesg:
Oops: general protection fault, probably for
non-canonical address 0xdffffc0000005650: 0000 [#1] PREEMPT SMP KASAN
PTI
KASAN: probably user-memory-access in range
[0x000000000002b280-0x000000000002b287]
CPU: 26 UID: 0 PID: 1868 Comm: ndctl Not tainted 6.11.0-rc1 #1
Hardware name: Dell Inc. PowerEdge R640/08HT8T, BIOS
2.20.1 09/13/2023
RIP: 0010:mod_node_page_state+0x2a/0x110
cxl-test users report a GPF when trying to unload the test module:
$ modrpobe -r cxl-test
dmesg
BUG: unable to handle page fault for address: 0000000000004200
#PF: supervisor read access in kernel mode
#PF: error_code(0x0000) - not-present page
PGD 0 P4D 0
Oops: Oops: 0000 [#1] PREEMPT SMP PTI
CPU: 0 UID: 0 PID: 1076 Comm: modprobe Tainted: G O N 6.11.0-rc1 #197
Tainted: [O]=OOT_MODULE, [N]=TEST
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 0.0.0 02/06/15
RIP: 0010:mod_node_page_state+0x6/0x90
Currently, when memory is hot-plugged or hot-removed the accounting is
done based on the assumption that memmap is allocated from the same node
as the hot-plugged/hot-removed memory, which is not always the case.
In addition, there are challenges with keeping the node id of the memory
that is being remove to the time when memmap accounting is actually
performed: since this is done after remove_pfn_range_from_zone(), and
also after remove_memory_block_devices(). Meaning that we cannot use
pgdat nor walking though memblocks to get the nid.
Given all of that, account the memmap overhead system wide instead.
For this we are going to be using global atomic counters, but given that
memmap size is rarely modified, and normally is only modified either
during early boot when there is only one CPU, or under a hotplug global
mutex lock, therefore there is no need for per-cpu optimizations.
Also, while we are here rename nr_memmap to nr_memmap_pages, and
nr_memmap_boot to nr_memmap_boot_pages to be self explanatory that the
units are in page count.
[pasha.tatashin@soleen.com: address a few nits from David Hildenbrand]
Link: https://lkml.kernel.org/r/20240809191020.1142142-4-pasha.tatashin@soleen.com
Link: https://lkml.kernel.org/r/20240809191020.1142142-4-pasha.tatashin@soleen.com
Link: https://lkml.kernel.org/r/20240808213437.682006-4-pasha.tatashin@soleen.com
Fixes: 15995a3524
("mm: report per-page metadata information")
Signed-off-by: Pasha Tatashin <pasha.tatashin@soleen.com>
Reported-by: Yi Zhang <yi.zhang@redhat.com>
Closes: https://lore.kernel.org/linux-cxl/CAHj4cs9Ax1=CoJkgBGP_+sNu6-6=6v=_L-ZBZY0bVLD3wUWZQg@mail.gmail.com
Reported-by: Alison Schofield <alison.schofield@intel.com>
Closes: https://lore.kernel.org/linux-mm/Zq0tPd2h6alFz8XF@aschofie-mobl2/#t
Tested-by: Dan Williams <dan.j.williams@intel.com>
Tested-by: Alison Schofield <alison.schofield@intel.com>
Acked-by: David Hildenbrand <david@redhat.com>
Acked-by: David Rientjes <rientjes@google.com>
Tested-by: Yi Zhang <yi.zhang@redhat.com>
Cc: Domenico Cerasuolo <cerasuolodomenico@gmail.com>
Cc: Fan Ni <fan.ni@samsung.com>
Cc: Joel Granados <j.granados@samsung.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Li Zhijian <lizhijian@fujitsu.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Mike Rapoport <rppt@kernel.org>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Nhat Pham <nphamcs@gmail.com>
Cc: Sourav Panda <souravpanda@google.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Yosry Ahmed <yosryahmed@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
479 lines
12 KiB
C
479 lines
12 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Virtual Memory Map support
|
|
*
|
|
* (C) 2007 sgi. Christoph Lameter.
|
|
*
|
|
* Virtual memory maps allow VM primitives pfn_to_page, page_to_pfn,
|
|
* virt_to_page, page_address() to be implemented as a base offset
|
|
* calculation without memory access.
|
|
*
|
|
* However, virtual mappings need a page table and TLBs. Many Linux
|
|
* architectures already map their physical space using 1-1 mappings
|
|
* via TLBs. For those arches the virtual memory map is essentially
|
|
* for free if we use the same page size as the 1-1 mappings. In that
|
|
* case the overhead consists of a few additional pages that are
|
|
* allocated to create a view of memory for vmemmap.
|
|
*
|
|
* The architecture is expected to provide a vmemmap_populate() function
|
|
* to instantiate the mapping.
|
|
*/
|
|
#include <linux/mm.h>
|
|
#include <linux/mmzone.h>
|
|
#include <linux/memblock.h>
|
|
#include <linux/memremap.h>
|
|
#include <linux/highmem.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/vmalloc.h>
|
|
#include <linux/sched.h>
|
|
|
|
#include <asm/dma.h>
|
|
#include <asm/pgalloc.h>
|
|
|
|
/*
|
|
* Allocate a block of memory to be used to back the virtual memory map
|
|
* or to back the page tables that are used to create the mapping.
|
|
* Uses the main allocators if they are available, else bootmem.
|
|
*/
|
|
|
|
static void * __ref __earlyonly_bootmem_alloc(int node,
|
|
unsigned long size,
|
|
unsigned long align,
|
|
unsigned long goal)
|
|
{
|
|
return memblock_alloc_try_nid_raw(size, align, goal,
|
|
MEMBLOCK_ALLOC_ACCESSIBLE, node);
|
|
}
|
|
|
|
void * __meminit vmemmap_alloc_block(unsigned long size, int node)
|
|
{
|
|
/* If the main allocator is up use that, fallback to bootmem. */
|
|
if (slab_is_available()) {
|
|
gfp_t gfp_mask = GFP_KERNEL|__GFP_RETRY_MAYFAIL|__GFP_NOWARN;
|
|
int order = get_order(size);
|
|
static bool warned;
|
|
struct page *page;
|
|
|
|
page = alloc_pages_node(node, gfp_mask, order);
|
|
if (page)
|
|
return page_address(page);
|
|
|
|
if (!warned) {
|
|
warn_alloc(gfp_mask & ~__GFP_NOWARN, NULL,
|
|
"vmemmap alloc failure: order:%u", order);
|
|
warned = true;
|
|
}
|
|
return NULL;
|
|
} else
|
|
return __earlyonly_bootmem_alloc(node, size, size,
|
|
__pa(MAX_DMA_ADDRESS));
|
|
}
|
|
|
|
static void * __meminit altmap_alloc_block_buf(unsigned long size,
|
|
struct vmem_altmap *altmap);
|
|
|
|
/* need to make sure size is all the same during early stage */
|
|
void * __meminit vmemmap_alloc_block_buf(unsigned long size, int node,
|
|
struct vmem_altmap *altmap)
|
|
{
|
|
void *ptr;
|
|
|
|
if (altmap)
|
|
return altmap_alloc_block_buf(size, altmap);
|
|
|
|
ptr = sparse_buffer_alloc(size);
|
|
if (!ptr)
|
|
ptr = vmemmap_alloc_block(size, node);
|
|
return ptr;
|
|
}
|
|
|
|
static unsigned long __meminit vmem_altmap_next_pfn(struct vmem_altmap *altmap)
|
|
{
|
|
return altmap->base_pfn + altmap->reserve + altmap->alloc
|
|
+ altmap->align;
|
|
}
|
|
|
|
static unsigned long __meminit vmem_altmap_nr_free(struct vmem_altmap *altmap)
|
|
{
|
|
unsigned long allocated = altmap->alloc + altmap->align;
|
|
|
|
if (altmap->free > allocated)
|
|
return altmap->free - allocated;
|
|
return 0;
|
|
}
|
|
|
|
static void * __meminit altmap_alloc_block_buf(unsigned long size,
|
|
struct vmem_altmap *altmap)
|
|
{
|
|
unsigned long pfn, nr_pfns, nr_align;
|
|
|
|
if (size & ~PAGE_MASK) {
|
|
pr_warn_once("%s: allocations must be multiple of PAGE_SIZE (%ld)\n",
|
|
__func__, size);
|
|
return NULL;
|
|
}
|
|
|
|
pfn = vmem_altmap_next_pfn(altmap);
|
|
nr_pfns = size >> PAGE_SHIFT;
|
|
nr_align = 1UL << find_first_bit(&nr_pfns, BITS_PER_LONG);
|
|
nr_align = ALIGN(pfn, nr_align) - pfn;
|
|
if (nr_pfns + nr_align > vmem_altmap_nr_free(altmap))
|
|
return NULL;
|
|
|
|
altmap->alloc += nr_pfns;
|
|
altmap->align += nr_align;
|
|
pfn += nr_align;
|
|
|
|
pr_debug("%s: pfn: %#lx alloc: %ld align: %ld nr: %#lx\n",
|
|
__func__, pfn, altmap->alloc, altmap->align, nr_pfns);
|
|
return __va(__pfn_to_phys(pfn));
|
|
}
|
|
|
|
void __meminit vmemmap_verify(pte_t *pte, int node,
|
|
unsigned long start, unsigned long end)
|
|
{
|
|
unsigned long pfn = pte_pfn(ptep_get(pte));
|
|
int actual_node = early_pfn_to_nid(pfn);
|
|
|
|
if (node_distance(actual_node, node) > LOCAL_DISTANCE)
|
|
pr_warn_once("[%lx-%lx] potential offnode page_structs\n",
|
|
start, end - 1);
|
|
}
|
|
|
|
pte_t * __meminit vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node,
|
|
struct vmem_altmap *altmap,
|
|
struct page *reuse)
|
|
{
|
|
pte_t *pte = pte_offset_kernel(pmd, addr);
|
|
if (pte_none(ptep_get(pte))) {
|
|
pte_t entry;
|
|
void *p;
|
|
|
|
if (!reuse) {
|
|
p = vmemmap_alloc_block_buf(PAGE_SIZE, node, altmap);
|
|
if (!p)
|
|
return NULL;
|
|
} else {
|
|
/*
|
|
* When a PTE/PMD entry is freed from the init_mm
|
|
* there's a free_pages() call to this page allocated
|
|
* above. Thus this get_page() is paired with the
|
|
* put_page_testzero() on the freeing path.
|
|
* This can only called by certain ZONE_DEVICE path,
|
|
* and through vmemmap_populate_compound_pages() when
|
|
* slab is available.
|
|
*/
|
|
get_page(reuse);
|
|
p = page_to_virt(reuse);
|
|
}
|
|
entry = pfn_pte(__pa(p) >> PAGE_SHIFT, PAGE_KERNEL);
|
|
set_pte_at(&init_mm, addr, pte, entry);
|
|
}
|
|
return pte;
|
|
}
|
|
|
|
static void * __meminit vmemmap_alloc_block_zero(unsigned long size, int node)
|
|
{
|
|
void *p = vmemmap_alloc_block(size, node);
|
|
|
|
if (!p)
|
|
return NULL;
|
|
memset(p, 0, size);
|
|
|
|
return p;
|
|
}
|
|
|
|
pmd_t * __meminit vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node)
|
|
{
|
|
pmd_t *pmd = pmd_offset(pud, addr);
|
|
if (pmd_none(*pmd)) {
|
|
void *p = vmemmap_alloc_block_zero(PAGE_SIZE, node);
|
|
if (!p)
|
|
return NULL;
|
|
pmd_populate_kernel(&init_mm, pmd, p);
|
|
}
|
|
return pmd;
|
|
}
|
|
|
|
void __weak __meminit pmd_init(void *addr)
|
|
{
|
|
}
|
|
|
|
pud_t * __meminit vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node)
|
|
{
|
|
pud_t *pud = pud_offset(p4d, addr);
|
|
if (pud_none(*pud)) {
|
|
void *p = vmemmap_alloc_block_zero(PAGE_SIZE, node);
|
|
if (!p)
|
|
return NULL;
|
|
pmd_init(p);
|
|
pud_populate(&init_mm, pud, p);
|
|
}
|
|
return pud;
|
|
}
|
|
|
|
void __weak __meminit pud_init(void *addr)
|
|
{
|
|
}
|
|
|
|
p4d_t * __meminit vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node)
|
|
{
|
|
p4d_t *p4d = p4d_offset(pgd, addr);
|
|
if (p4d_none(*p4d)) {
|
|
void *p = vmemmap_alloc_block_zero(PAGE_SIZE, node);
|
|
if (!p)
|
|
return NULL;
|
|
pud_init(p);
|
|
p4d_populate(&init_mm, p4d, p);
|
|
}
|
|
return p4d;
|
|
}
|
|
|
|
pgd_t * __meminit vmemmap_pgd_populate(unsigned long addr, int node)
|
|
{
|
|
pgd_t *pgd = pgd_offset_k(addr);
|
|
if (pgd_none(*pgd)) {
|
|
void *p = vmemmap_alloc_block_zero(PAGE_SIZE, node);
|
|
if (!p)
|
|
return NULL;
|
|
pgd_populate(&init_mm, pgd, p);
|
|
}
|
|
return pgd;
|
|
}
|
|
|
|
static pte_t * __meminit vmemmap_populate_address(unsigned long addr, int node,
|
|
struct vmem_altmap *altmap,
|
|
struct page *reuse)
|
|
{
|
|
pgd_t *pgd;
|
|
p4d_t *p4d;
|
|
pud_t *pud;
|
|
pmd_t *pmd;
|
|
pte_t *pte;
|
|
|
|
pgd = vmemmap_pgd_populate(addr, node);
|
|
if (!pgd)
|
|
return NULL;
|
|
p4d = vmemmap_p4d_populate(pgd, addr, node);
|
|
if (!p4d)
|
|
return NULL;
|
|
pud = vmemmap_pud_populate(p4d, addr, node);
|
|
if (!pud)
|
|
return NULL;
|
|
pmd = vmemmap_pmd_populate(pud, addr, node);
|
|
if (!pmd)
|
|
return NULL;
|
|
pte = vmemmap_pte_populate(pmd, addr, node, altmap, reuse);
|
|
if (!pte)
|
|
return NULL;
|
|
vmemmap_verify(pte, node, addr, addr + PAGE_SIZE);
|
|
|
|
return pte;
|
|
}
|
|
|
|
static int __meminit vmemmap_populate_range(unsigned long start,
|
|
unsigned long end, int node,
|
|
struct vmem_altmap *altmap,
|
|
struct page *reuse)
|
|
{
|
|
unsigned long addr = start;
|
|
pte_t *pte;
|
|
|
|
for (; addr < end; addr += PAGE_SIZE) {
|
|
pte = vmemmap_populate_address(addr, node, altmap, reuse);
|
|
if (!pte)
|
|
return -ENOMEM;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int __meminit vmemmap_populate_basepages(unsigned long start, unsigned long end,
|
|
int node, struct vmem_altmap *altmap)
|
|
{
|
|
return vmemmap_populate_range(start, end, node, altmap, NULL);
|
|
}
|
|
|
|
void __weak __meminit vmemmap_set_pmd(pmd_t *pmd, void *p, int node,
|
|
unsigned long addr, unsigned long next)
|
|
{
|
|
}
|
|
|
|
int __weak __meminit vmemmap_check_pmd(pmd_t *pmd, int node,
|
|
unsigned long addr, unsigned long next)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
int __meminit vmemmap_populate_hugepages(unsigned long start, unsigned long end,
|
|
int node, struct vmem_altmap *altmap)
|
|
{
|
|
unsigned long addr;
|
|
unsigned long next;
|
|
pgd_t *pgd;
|
|
p4d_t *p4d;
|
|
pud_t *pud;
|
|
pmd_t *pmd;
|
|
|
|
for (addr = start; addr < end; addr = next) {
|
|
next = pmd_addr_end(addr, end);
|
|
|
|
pgd = vmemmap_pgd_populate(addr, node);
|
|
if (!pgd)
|
|
return -ENOMEM;
|
|
|
|
p4d = vmemmap_p4d_populate(pgd, addr, node);
|
|
if (!p4d)
|
|
return -ENOMEM;
|
|
|
|
pud = vmemmap_pud_populate(p4d, addr, node);
|
|
if (!pud)
|
|
return -ENOMEM;
|
|
|
|
pmd = pmd_offset(pud, addr);
|
|
if (pmd_none(READ_ONCE(*pmd))) {
|
|
void *p;
|
|
|
|
p = vmemmap_alloc_block_buf(PMD_SIZE, node, altmap);
|
|
if (p) {
|
|
vmemmap_set_pmd(pmd, p, node, addr, next);
|
|
continue;
|
|
} else if (altmap) {
|
|
/*
|
|
* No fallback: In any case we care about, the
|
|
* altmap should be reasonably sized and aligned
|
|
* such that vmemmap_alloc_block_buf() will always
|
|
* succeed. For consistency with the PTE case,
|
|
* return an error here as failure could indicate
|
|
* a configuration issue with the size of the altmap.
|
|
*/
|
|
return -ENOMEM;
|
|
}
|
|
} else if (vmemmap_check_pmd(pmd, node, addr, next))
|
|
continue;
|
|
if (vmemmap_populate_basepages(addr, next, node, altmap))
|
|
return -ENOMEM;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
#ifndef vmemmap_populate_compound_pages
|
|
/*
|
|
* For compound pages bigger than section size (e.g. x86 1G compound
|
|
* pages with 2M subsection size) fill the rest of sections as tail
|
|
* pages.
|
|
*
|
|
* Note that memremap_pages() resets @nr_range value and will increment
|
|
* it after each range successful onlining. Thus the value or @nr_range
|
|
* at section memmap populate corresponds to the in-progress range
|
|
* being onlined here.
|
|
*/
|
|
static bool __meminit reuse_compound_section(unsigned long start_pfn,
|
|
struct dev_pagemap *pgmap)
|
|
{
|
|
unsigned long nr_pages = pgmap_vmemmap_nr(pgmap);
|
|
unsigned long offset = start_pfn -
|
|
PHYS_PFN(pgmap->ranges[pgmap->nr_range].start);
|
|
|
|
return !IS_ALIGNED(offset, nr_pages) && nr_pages > PAGES_PER_SUBSECTION;
|
|
}
|
|
|
|
static pte_t * __meminit compound_section_tail_page(unsigned long addr)
|
|
{
|
|
pte_t *pte;
|
|
|
|
addr -= PAGE_SIZE;
|
|
|
|
/*
|
|
* Assuming sections are populated sequentially, the previous section's
|
|
* page data can be reused.
|
|
*/
|
|
pte = pte_offset_kernel(pmd_off_k(addr), addr);
|
|
if (!pte)
|
|
return NULL;
|
|
|
|
return pte;
|
|
}
|
|
|
|
static int __meminit vmemmap_populate_compound_pages(unsigned long start_pfn,
|
|
unsigned long start,
|
|
unsigned long end, int node,
|
|
struct dev_pagemap *pgmap)
|
|
{
|
|
unsigned long size, addr;
|
|
pte_t *pte;
|
|
int rc;
|
|
|
|
if (reuse_compound_section(start_pfn, pgmap)) {
|
|
pte = compound_section_tail_page(start);
|
|
if (!pte)
|
|
return -ENOMEM;
|
|
|
|
/*
|
|
* Reuse the page that was populated in the prior iteration
|
|
* with just tail struct pages.
|
|
*/
|
|
return vmemmap_populate_range(start, end, node, NULL,
|
|
pte_page(ptep_get(pte)));
|
|
}
|
|
|
|
size = min(end - start, pgmap_vmemmap_nr(pgmap) * sizeof(struct page));
|
|
for (addr = start; addr < end; addr += size) {
|
|
unsigned long next, last = addr + size;
|
|
|
|
/* Populate the head page vmemmap page */
|
|
pte = vmemmap_populate_address(addr, node, NULL, NULL);
|
|
if (!pte)
|
|
return -ENOMEM;
|
|
|
|
/* Populate the tail pages vmemmap page */
|
|
next = addr + PAGE_SIZE;
|
|
pte = vmemmap_populate_address(next, node, NULL, NULL);
|
|
if (!pte)
|
|
return -ENOMEM;
|
|
|
|
/*
|
|
* Reuse the previous page for the rest of tail pages
|
|
* See layout diagram in Documentation/mm/vmemmap_dedup.rst
|
|
*/
|
|
next += PAGE_SIZE;
|
|
rc = vmemmap_populate_range(next, last, node, NULL,
|
|
pte_page(ptep_get(pte)));
|
|
if (rc)
|
|
return -ENOMEM;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
#endif
|
|
|
|
struct page * __meminit __populate_section_memmap(unsigned long pfn,
|
|
unsigned long nr_pages, int nid, struct vmem_altmap *altmap,
|
|
struct dev_pagemap *pgmap)
|
|
{
|
|
unsigned long start = (unsigned long) pfn_to_page(pfn);
|
|
unsigned long end = start + nr_pages * sizeof(struct page);
|
|
int r;
|
|
|
|
if (WARN_ON_ONCE(!IS_ALIGNED(pfn, PAGES_PER_SUBSECTION) ||
|
|
!IS_ALIGNED(nr_pages, PAGES_PER_SUBSECTION)))
|
|
return NULL;
|
|
|
|
if (vmemmap_can_optimize(altmap, pgmap))
|
|
r = vmemmap_populate_compound_pages(pfn, start, end, nid, pgmap);
|
|
else
|
|
r = vmemmap_populate(start, end, nid, altmap);
|
|
|
|
if (r < 0)
|
|
return NULL;
|
|
|
|
if (system_state == SYSTEM_BOOTING)
|
|
memmap_boot_pages_add(DIV_ROUND_UP(end - start, PAGE_SIZE));
|
|
else
|
|
memmap_pages_add(DIV_ROUND_UP(end - start, PAGE_SIZE));
|
|
|
|
return pfn_to_page(pfn);
|
|
}
|