linux/drivers/thunderbolt/tb.h
Linus Torvalds a93e884edf Driver core changes for 6.3-rc1
Here is the large set of driver core changes for 6.3-rc1.
 
 There's a lot of changes this development cycle, most of the work falls
 into two different categories:
   - fw_devlink fixes and updates.  This has gone through numerous review
     cycles and lots of review and testing by lots of different devices.
     Hopefully all should be good now, and Saravana will be keeping a
     watch for any potential regression on odd embedded systems.
   - driver core changes to work to make struct bus_type able to be moved
     into read-only memory (i.e. const)  The recent work with Rust has
     pointed out a number of areas in the driver core where we are
     passing around and working with structures that really do not have
     to be dynamic at all, and they should be able to be read-only making
     things safer overall.  This is the contuation of that work (started
     last release with kobject changes) in moving struct bus_type to be
     constant.  We didn't quite make it for this release, but the
     remaining patches will be finished up for the release after this
     one, but the groundwork has been laid for this effort.
 
 Other than that we have in here:
   - debugfs memory leak fixes in some subsystems
   - error path cleanups and fixes for some never-able-to-be-hit
     codepaths.
   - cacheinfo rework and fixes
   - Other tiny fixes, full details are in the shortlog
 
 All of these have been in linux-next for a while with no reported
 problems.
 
 Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
 -----BEGIN PGP SIGNATURE-----
 
 iG0EABECAC0WIQT0tgzFv3jCIUoxPcsxR9QN2y37KQUCY/ipdg8cZ3JlZ0Brcm9h
 aC5jb20ACgkQMUfUDdst+ynL3gCgwzbcWu0So3piZyLiJKxsVo9C2EsAn3sZ9gN6
 6oeFOjD3JDju3cQsfGgd
 =Su6W
 -----END PGP SIGNATURE-----

Merge tag 'driver-core-6.3-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/driver-core

Pull driver core updates from Greg KH:
 "Here is the large set of driver core changes for 6.3-rc1.

  There's a lot of changes this development cycle, most of the work
  falls into two different categories:

   - fw_devlink fixes and updates. This has gone through numerous review
     cycles and lots of review and testing by lots of different devices.
     Hopefully all should be good now, and Saravana will be keeping a
     watch for any potential regression on odd embedded systems.

   - driver core changes to work to make struct bus_type able to be
     moved into read-only memory (i.e. const) The recent work with Rust
     has pointed out a number of areas in the driver core where we are
     passing around and working with structures that really do not have
     to be dynamic at all, and they should be able to be read-only
     making things safer overall. This is the contuation of that work
     (started last release with kobject changes) in moving struct
     bus_type to be constant. We didn't quite make it for this release,
     but the remaining patches will be finished up for the release after
     this one, but the groundwork has been laid for this effort.

  Other than that we have in here:

   - debugfs memory leak fixes in some subsystems

   - error path cleanups and fixes for some never-able-to-be-hit
     codepaths.

   - cacheinfo rework and fixes

   - Other tiny fixes, full details are in the shortlog

  All of these have been in linux-next for a while with no reported
  problems"

[ Geert Uytterhoeven points out that that last sentence isn't true, and
  that there's a pending report that has a fix that is queued up - Linus ]

* tag 'driver-core-6.3-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/driver-core: (124 commits)
  debugfs: drop inline constant formatting for ERR_PTR(-ERROR)
  OPP: fix error checking in opp_migrate_dentry()
  debugfs: update comment of debugfs_rename()
  i3c: fix device.h kernel-doc warnings
  dma-mapping: no need to pass a bus_type into get_arch_dma_ops()
  driver core: class: move EXPORT_SYMBOL_GPL() lines to the correct place
  Revert "driver core: add error handling for devtmpfs_create_node()"
  Revert "devtmpfs: add debug info to handle()"
  Revert "devtmpfs: remove return value of devtmpfs_delete_node()"
  driver core: cpu: don't hand-override the uevent bus_type callback.
  devtmpfs: remove return value of devtmpfs_delete_node()
  devtmpfs: add debug info to handle()
  driver core: add error handling for devtmpfs_create_node()
  driver core: bus: update my copyright notice
  driver core: bus: add bus_get_dev_root() function
  driver core: bus: constify bus_unregister()
  driver core: bus: constify some internal functions
  driver core: bus: constify bus_get_kset()
  driver core: bus: constify bus_register/unregister_notifier()
  driver core: remove private pointer from struct bus_type
  ...
2023-02-24 12:58:55 -08:00

1348 lines
47 KiB
C

/* SPDX-License-Identifier: GPL-2.0 */
/*
* Thunderbolt driver - bus logic (NHI independent)
*
* Copyright (c) 2014 Andreas Noever <andreas.noever@gmail.com>
* Copyright (C) 2018, Intel Corporation
*/
#ifndef TB_H_
#define TB_H_
#include <linux/nvmem-provider.h>
#include <linux/pci.h>
#include <linux/thunderbolt.h>
#include <linux/uuid.h>
#include <linux/bitfield.h>
#include "tb_regs.h"
#include "ctl.h"
#include "dma_port.h"
#define NVM_MIN_SIZE SZ_32K
#define NVM_MAX_SIZE SZ_512K
#define NVM_DATA_DWORDS 16
/**
* struct tb_nvm - Structure holding NVM information
* @dev: Owner of the NVM
* @major: Major version number of the active NVM portion
* @minor: Minor version number of the active NVM portion
* @id: Identifier used with both NVM portions
* @active: Active portion NVMem device
* @active_size: Size in bytes of the active NVM
* @non_active: Non-active portion NVMem device
* @buf: Buffer where the NVM image is stored before it is written to
* the actual NVM flash device
* @buf_data_start: Where the actual image starts after skipping
* possible headers
* @buf_data_size: Number of bytes actually consumed by the new NVM
* image
* @authenticating: The device is authenticating the new NVM
* @flushed: The image has been flushed to the storage area
* @vops: Router vendor specific NVM operations (optional)
*
* The user of this structure needs to handle serialization of possible
* concurrent access.
*/
struct tb_nvm {
struct device *dev;
u32 major;
u32 minor;
int id;
struct nvmem_device *active;
size_t active_size;
struct nvmem_device *non_active;
void *buf;
void *buf_data_start;
size_t buf_data_size;
bool authenticating;
bool flushed;
const struct tb_nvm_vendor_ops *vops;
};
enum tb_nvm_write_ops {
WRITE_AND_AUTHENTICATE = 1,
WRITE_ONLY = 2,
AUTHENTICATE_ONLY = 3,
};
#define TB_SWITCH_KEY_SIZE 32
#define TB_SWITCH_MAX_DEPTH 6
#define USB4_SWITCH_MAX_DEPTH 5
/**
* enum tb_switch_tmu_rate - TMU refresh rate
* @TB_SWITCH_TMU_RATE_OFF: %0 (Disable Time Sync handshake)
* @TB_SWITCH_TMU_RATE_HIFI: %16 us time interval between successive
* transmission of the Delay Request TSNOS
* (Time Sync Notification Ordered Set) on a Link
* @TB_SWITCH_TMU_RATE_NORMAL: %1 ms time interval between successive
* transmission of the Delay Request TSNOS on
* a Link
*/
enum tb_switch_tmu_rate {
TB_SWITCH_TMU_RATE_OFF = 0,
TB_SWITCH_TMU_RATE_HIFI = 16,
TB_SWITCH_TMU_RATE_NORMAL = 1000,
};
/**
* struct tb_switch_tmu - Structure holding switch TMU configuration
* @cap: Offset to the TMU capability (%0 if not found)
* @has_ucap: Does the switch support uni-directional mode
* @rate: TMU refresh rate related to upstream switch. In case of root
* switch this holds the domain rate. Reflects the HW setting.
* @unidirectional: Is the TMU in uni-directional or bi-directional mode
* related to upstream switch. Don't care for root switch.
* Reflects the HW setting.
* @unidirectional_request: Is the new TMU mode: uni-directional or bi-directional
* that is requested to be set. Related to upstream switch.
* Don't care for root switch.
* @rate_request: TMU new refresh rate related to upstream switch that is
* requested to be set. In case of root switch, this holds
* the new domain rate that is requested to be set.
*/
struct tb_switch_tmu {
int cap;
bool has_ucap;
enum tb_switch_tmu_rate rate;
bool unidirectional;
bool unidirectional_request;
enum tb_switch_tmu_rate rate_request;
};
enum tb_clx {
TB_CLX_DISABLE,
/* CL0s and CL1 are enabled and supported together */
TB_CL1 = BIT(0),
TB_CL2 = BIT(1),
};
/**
* struct tb_switch - a thunderbolt switch
* @dev: Device for the switch
* @config: Switch configuration
* @ports: Ports in this switch
* @dma_port: If the switch has port supporting DMA configuration based
* mailbox this will hold the pointer to that (%NULL
* otherwise). If set it also means the switch has
* upgradeable NVM.
* @tmu: The switch TMU configuration
* @tb: Pointer to the domain the switch belongs to
* @uid: Unique ID of the switch
* @uuid: UUID of the switch (or %NULL if not supported)
* @vendor: Vendor ID of the switch
* @device: Device ID of the switch
* @vendor_name: Name of the vendor (or %NULL if not known)
* @device_name: Name of the device (or %NULL if not known)
* @link_speed: Speed of the link in Gb/s
* @link_width: Width of the link (1 or 2)
* @link_usb4: Upstream link is USB4
* @generation: Switch Thunderbolt generation
* @cap_plug_events: Offset to the plug events capability (%0 if not found)
* @cap_vsec_tmu: Offset to the TMU vendor specific capability (%0 if not found)
* @cap_lc: Offset to the link controller capability (%0 if not found)
* @cap_lp: Offset to the low power (CLx for TBT) capability (%0 if not found)
* @is_unplugged: The switch is going away
* @drom: DROM of the switch (%NULL if not found)
* @nvm: Pointer to the NVM if the switch has one (%NULL otherwise)
* @no_nvm_upgrade: Prevent NVM upgrade of this switch
* @safe_mode: The switch is in safe-mode
* @boot: Whether the switch was already authorized on boot or not
* @rpm: The switch supports runtime PM
* @authorized: Whether the switch is authorized by user or policy
* @security_level: Switch supported security level
* @debugfs_dir: Pointer to the debugfs structure
* @key: Contains the key used to challenge the device or %NULL if not
* supported. Size of the key is %TB_SWITCH_KEY_SIZE.
* @connection_id: Connection ID used with ICM messaging
* @connection_key: Connection key used with ICM messaging
* @link: Root switch link this switch is connected (ICM only)
* @depth: Depth in the chain this switch is connected (ICM only)
* @rpm_complete: Completion used to wait for runtime resume to
* complete (ICM only)
* @quirks: Quirks used for this Thunderbolt switch
* @credit_allocation: Are the below buffer allocation parameters valid
* @max_usb3_credits: Router preferred number of buffers for USB 3.x
* @min_dp_aux_credits: Router preferred minimum number of buffers for DP AUX
* @min_dp_main_credits: Router preferred minimum number of buffers for DP MAIN
* @max_pcie_credits: Router preferred number of buffers for PCIe
* @max_dma_credits: Router preferred number of buffers for DMA/P2P
* @clx: CLx state on the upstream link of the router
*
* When the switch is being added or removed to the domain (other
* switches) you need to have domain lock held.
*
* In USB4 terminology this structure represents a router.
*/
struct tb_switch {
struct device dev;
struct tb_regs_switch_header config;
struct tb_port *ports;
struct tb_dma_port *dma_port;
struct tb_switch_tmu tmu;
struct tb *tb;
u64 uid;
uuid_t *uuid;
u16 vendor;
u16 device;
const char *vendor_name;
const char *device_name;
unsigned int link_speed;
unsigned int link_width;
bool link_usb4;
unsigned int generation;
int cap_plug_events;
int cap_vsec_tmu;
int cap_lc;
int cap_lp;
bool is_unplugged;
u8 *drom;
struct tb_nvm *nvm;
bool no_nvm_upgrade;
bool safe_mode;
bool boot;
bool rpm;
unsigned int authorized;
enum tb_security_level security_level;
struct dentry *debugfs_dir;
u8 *key;
u8 connection_id;
u8 connection_key;
u8 link;
u8 depth;
struct completion rpm_complete;
unsigned long quirks;
bool credit_allocation;
unsigned int max_usb3_credits;
unsigned int min_dp_aux_credits;
unsigned int min_dp_main_credits;
unsigned int max_pcie_credits;
unsigned int max_dma_credits;
enum tb_clx clx;
};
/**
* struct tb_bandwidth_group - Bandwidth management group
* @tb: Pointer to the domain the group belongs to
* @index: Index of the group (aka Group_ID). Valid values %1-%7
* @ports: DP IN adapters belonging to this group are linked here
*
* Any tunnel that requires isochronous bandwidth (that's DP for now) is
* attached to a bandwidth group. All tunnels going through the same
* USB4 links share the same group and can dynamically distribute the
* bandwidth within the group.
*/
struct tb_bandwidth_group {
struct tb *tb;
int index;
struct list_head ports;
};
/**
* struct tb_port - a thunderbolt port, part of a tb_switch
* @config: Cached port configuration read from registers
* @sw: Switch the port belongs to
* @remote: Remote port (%NULL if not connected)
* @xdomain: Remote host (%NULL if not connected)
* @cap_phy: Offset, zero if not found
* @cap_tmu: Offset of the adapter specific TMU capability (%0 if not present)
* @cap_adap: Offset of the adapter specific capability (%0 if not present)
* @cap_usb4: Offset to the USB4 port capability (%0 if not present)
* @usb4: Pointer to the USB4 port structure (only if @cap_usb4 is != %0)
* @port: Port number on switch
* @disabled: Disabled by eeprom or enabled but not implemented
* @bonded: true if the port is bonded (two lanes combined as one)
* @dual_link_port: If the switch is connected using two ports, points
* to the other port.
* @link_nr: Is this primary or secondary port on the dual_link.
* @in_hopids: Currently allocated input HopIDs
* @out_hopids: Currently allocated output HopIDs
* @list: Used to link ports to DP resources list
* @total_credits: Total number of buffers available for this port
* @ctl_credits: Buffers reserved for control path
* @dma_credits: Number of credits allocated for DMA tunneling for all
* DMA paths through this port.
* @group: Bandwidth allocation group the adapter is assigned to. Only
* used for DP IN adapters for now.
* @group_list: The adapter is linked to the group's list of ports through this
*
* In USB4 terminology this structure represents an adapter (protocol or
* lane adapter).
*/
struct tb_port {
struct tb_regs_port_header config;
struct tb_switch *sw;
struct tb_port *remote;
struct tb_xdomain *xdomain;
int cap_phy;
int cap_tmu;
int cap_adap;
int cap_usb4;
struct usb4_port *usb4;
u8 port;
bool disabled;
bool bonded;
struct tb_port *dual_link_port;
u8 link_nr:1;
struct ida in_hopids;
struct ida out_hopids;
struct list_head list;
unsigned int total_credits;
unsigned int ctl_credits;
unsigned int dma_credits;
struct tb_bandwidth_group *group;
struct list_head group_list;
};
/**
* struct usb4_port - USB4 port device
* @dev: Device for the port
* @port: Pointer to the lane 0 adapter
* @can_offline: Does the port have necessary platform support to moved
* it into offline mode and back
* @offline: The port is currently in offline mode
* @margining: Pointer to margining structure if enabled
*/
struct usb4_port {
struct device dev;
struct tb_port *port;
bool can_offline;
bool offline;
#ifdef CONFIG_USB4_DEBUGFS_MARGINING
struct tb_margining *margining;
#endif
};
/**
* tb_retimer: Thunderbolt retimer
* @dev: Device for the retimer
* @tb: Pointer to the domain the retimer belongs to
* @index: Retimer index facing the router USB4 port
* @vendor: Vendor ID of the retimer
* @device: Device ID of the retimer
* @port: Pointer to the lane 0 adapter
* @nvm: Pointer to the NVM if the retimer has one (%NULL otherwise)
* @no_nvm_upgrade: Prevent NVM upgrade of this retimer
* @auth_status: Status of last NVM authentication
*/
struct tb_retimer {
struct device dev;
struct tb *tb;
u8 index;
u32 vendor;
u32 device;
struct tb_port *port;
struct tb_nvm *nvm;
bool no_nvm_upgrade;
u32 auth_status;
};
/**
* struct tb_path_hop - routing information for a tb_path
* @in_port: Ingress port of a switch
* @out_port: Egress port of a switch where the packet is routed out
* (must be on the same switch than @in_port)
* @in_hop_index: HopID where the path configuration entry is placed in
* the path config space of @in_port.
* @in_counter_index: Used counter index (not used in the driver
* currently, %-1 to disable)
* @next_hop_index: HopID of the packet when it is routed out from @out_port
* @initial_credits: Number of initial flow control credits allocated for
* the path
* @nfc_credits: Number of non-flow controlled buffers allocated for the
* @in_port.
*
* Hop configuration is always done on the IN port of a switch.
* in_port and out_port have to be on the same switch. Packets arriving on
* in_port with "hop" = in_hop_index will get routed to through out_port. The
* next hop to take (on out_port->remote) is determined by
* next_hop_index. When routing packet to another switch (out->remote is
* set) the @next_hop_index must match the @in_hop_index of that next
* hop to make routing possible.
*
* in_counter_index is the index of a counter (in TB_CFG_COUNTERS) on the in
* port.
*/
struct tb_path_hop {
struct tb_port *in_port;
struct tb_port *out_port;
int in_hop_index;
int in_counter_index;
int next_hop_index;
unsigned int initial_credits;
unsigned int nfc_credits;
};
/**
* enum tb_path_port - path options mask
* @TB_PATH_NONE: Do not activate on any hop on path
* @TB_PATH_SOURCE: Activate on the first hop (out of src)
* @TB_PATH_INTERNAL: Activate on the intermediate hops (not the first/last)
* @TB_PATH_DESTINATION: Activate on the last hop (into dst)
* @TB_PATH_ALL: Activate on all hops on the path
*/
enum tb_path_port {
TB_PATH_NONE = 0,
TB_PATH_SOURCE = 1,
TB_PATH_INTERNAL = 2,
TB_PATH_DESTINATION = 4,
TB_PATH_ALL = 7,
};
/**
* struct tb_path - a unidirectional path between two ports
* @tb: Pointer to the domain structure
* @name: Name of the path (used for debugging)
* @ingress_shared_buffer: Shared buffering used for ingress ports on the path
* @egress_shared_buffer: Shared buffering used for egress ports on the path
* @ingress_fc_enable: Flow control for ingress ports on the path
* @egress_fc_enable: Flow control for egress ports on the path
* @priority: Priority group if the path
* @weight: Weight of the path inside the priority group
* @drop_packages: Drop packages from queue tail or head
* @activated: Is the path active
* @clear_fc: Clear all flow control from the path config space entries
* when deactivating this path
* @hops: Path hops
* @path_length: How many hops the path uses
* @alloc_hopid: Does this path consume port HopID
*
* A path consists of a number of hops (see &struct tb_path_hop). To
* establish a PCIe tunnel two paths have to be created between the two
* PCIe ports.
*/
struct tb_path {
struct tb *tb;
const char *name;
enum tb_path_port ingress_shared_buffer;
enum tb_path_port egress_shared_buffer;
enum tb_path_port ingress_fc_enable;
enum tb_path_port egress_fc_enable;
unsigned int priority:3;
int weight:4;
bool drop_packages;
bool activated;
bool clear_fc;
struct tb_path_hop *hops;
int path_length;
bool alloc_hopid;
};
/* HopIDs 0-7 are reserved by the Thunderbolt protocol */
#define TB_PATH_MIN_HOPID 8
/*
* Support paths from the farthest (depth 6) router to the host and back
* to the same level (not necessarily to the same router).
*/
#define TB_PATH_MAX_HOPS (7 * 2)
/* Possible wake types */
#define TB_WAKE_ON_CONNECT BIT(0)
#define TB_WAKE_ON_DISCONNECT BIT(1)
#define TB_WAKE_ON_USB4 BIT(2)
#define TB_WAKE_ON_USB3 BIT(3)
#define TB_WAKE_ON_PCIE BIT(4)
#define TB_WAKE_ON_DP BIT(5)
/**
* struct tb_cm_ops - Connection manager specific operations vector
* @driver_ready: Called right after control channel is started. Used by
* ICM to send driver ready message to the firmware.
* @start: Starts the domain
* @stop: Stops the domain
* @suspend_noirq: Connection manager specific suspend_noirq
* @resume_noirq: Connection manager specific resume_noirq
* @suspend: Connection manager specific suspend
* @freeze_noirq: Connection manager specific freeze_noirq
* @thaw_noirq: Connection manager specific thaw_noirq
* @complete: Connection manager specific complete
* @runtime_suspend: Connection manager specific runtime_suspend
* @runtime_resume: Connection manager specific runtime_resume
* @runtime_suspend_switch: Runtime suspend a switch
* @runtime_resume_switch: Runtime resume a switch
* @handle_event: Handle thunderbolt event
* @get_boot_acl: Get boot ACL list
* @set_boot_acl: Set boot ACL list
* @disapprove_switch: Disapprove switch (disconnect PCIe tunnel)
* @approve_switch: Approve switch
* @add_switch_key: Add key to switch
* @challenge_switch_key: Challenge switch using key
* @disconnect_pcie_paths: Disconnects PCIe paths before NVM update
* @approve_xdomain_paths: Approve (establish) XDomain DMA paths
* @disconnect_xdomain_paths: Disconnect XDomain DMA paths
* @usb4_switch_op: Optional proxy for USB4 router operations. If set
* this will be called whenever USB4 router operation is
* performed. If this returns %-EOPNOTSUPP then the
* native USB4 router operation is called.
* @usb4_switch_nvm_authenticate_status: Optional callback that the CM
* implementation can be used to
* return status of USB4 NVM_AUTH
* router operation.
*/
struct tb_cm_ops {
int (*driver_ready)(struct tb *tb);
int (*start)(struct tb *tb);
void (*stop)(struct tb *tb);
int (*suspend_noirq)(struct tb *tb);
int (*resume_noirq)(struct tb *tb);
int (*suspend)(struct tb *tb);
int (*freeze_noirq)(struct tb *tb);
int (*thaw_noirq)(struct tb *tb);
void (*complete)(struct tb *tb);
int (*runtime_suspend)(struct tb *tb);
int (*runtime_resume)(struct tb *tb);
int (*runtime_suspend_switch)(struct tb_switch *sw);
int (*runtime_resume_switch)(struct tb_switch *sw);
void (*handle_event)(struct tb *tb, enum tb_cfg_pkg_type,
const void *buf, size_t size);
int (*get_boot_acl)(struct tb *tb, uuid_t *uuids, size_t nuuids);
int (*set_boot_acl)(struct tb *tb, const uuid_t *uuids, size_t nuuids);
int (*disapprove_switch)(struct tb *tb, struct tb_switch *sw);
int (*approve_switch)(struct tb *tb, struct tb_switch *sw);
int (*add_switch_key)(struct tb *tb, struct tb_switch *sw);
int (*challenge_switch_key)(struct tb *tb, struct tb_switch *sw,
const u8 *challenge, u8 *response);
int (*disconnect_pcie_paths)(struct tb *tb);
int (*approve_xdomain_paths)(struct tb *tb, struct tb_xdomain *xd,
int transmit_path, int transmit_ring,
int receive_path, int receive_ring);
int (*disconnect_xdomain_paths)(struct tb *tb, struct tb_xdomain *xd,
int transmit_path, int transmit_ring,
int receive_path, int receive_ring);
int (*usb4_switch_op)(struct tb_switch *sw, u16 opcode, u32 *metadata,
u8 *status, const void *tx_data, size_t tx_data_len,
void *rx_data, size_t rx_data_len);
int (*usb4_switch_nvm_authenticate_status)(struct tb_switch *sw,
u32 *status);
};
static inline void *tb_priv(struct tb *tb)
{
return (void *)tb->privdata;
}
#define TB_AUTOSUSPEND_DELAY 15000 /* ms */
/* helper functions & macros */
/**
* tb_upstream_port() - return the upstream port of a switch
*
* Every switch has an upstream port (for the root switch it is the NHI).
*
* During switch alloc/init tb_upstream_port()->remote may be NULL, even for
* non root switches (on the NHI port remote is always NULL).
*
* Return: Returns the upstream port of the switch.
*/
static inline struct tb_port *tb_upstream_port(struct tb_switch *sw)
{
return &sw->ports[sw->config.upstream_port_number];
}
/**
* tb_is_upstream_port() - Is the port upstream facing
* @port: Port to check
*
* Returns true if @port is upstream facing port. In case of dual link
* ports both return true.
*/
static inline bool tb_is_upstream_port(const struct tb_port *port)
{
const struct tb_port *upstream_port = tb_upstream_port(port->sw);
return port == upstream_port || port->dual_link_port == upstream_port;
}
static inline u64 tb_route(const struct tb_switch *sw)
{
return ((u64) sw->config.route_hi) << 32 | sw->config.route_lo;
}
static inline struct tb_port *tb_port_at(u64 route, struct tb_switch *sw)
{
u8 port;
port = route >> (sw->config.depth * 8);
if (WARN_ON(port > sw->config.max_port_number))
return NULL;
return &sw->ports[port];
}
/**
* tb_port_has_remote() - Does the port have switch connected downstream
* @port: Port to check
*
* Returns true only when the port is primary port and has remote set.
*/
static inline bool tb_port_has_remote(const struct tb_port *port)
{
if (tb_is_upstream_port(port))
return false;
if (!port->remote)
return false;
if (port->dual_link_port && port->link_nr)
return false;
return true;
}
static inline bool tb_port_is_null(const struct tb_port *port)
{
return port && port->port && port->config.type == TB_TYPE_PORT;
}
static inline bool tb_port_is_nhi(const struct tb_port *port)
{
return port && port->config.type == TB_TYPE_NHI;
}
static inline bool tb_port_is_pcie_down(const struct tb_port *port)
{
return port && port->config.type == TB_TYPE_PCIE_DOWN;
}
static inline bool tb_port_is_pcie_up(const struct tb_port *port)
{
return port && port->config.type == TB_TYPE_PCIE_UP;
}
static inline bool tb_port_is_dpin(const struct tb_port *port)
{
return port && port->config.type == TB_TYPE_DP_HDMI_IN;
}
static inline bool tb_port_is_dpout(const struct tb_port *port)
{
return port && port->config.type == TB_TYPE_DP_HDMI_OUT;
}
static inline bool tb_port_is_usb3_down(const struct tb_port *port)
{
return port && port->config.type == TB_TYPE_USB3_DOWN;
}
static inline bool tb_port_is_usb3_up(const struct tb_port *port)
{
return port && port->config.type == TB_TYPE_USB3_UP;
}
static inline int tb_sw_read(struct tb_switch *sw, void *buffer,
enum tb_cfg_space space, u32 offset, u32 length)
{
if (sw->is_unplugged)
return -ENODEV;
return tb_cfg_read(sw->tb->ctl,
buffer,
tb_route(sw),
0,
space,
offset,
length);
}
static inline int tb_sw_write(struct tb_switch *sw, const void *buffer,
enum tb_cfg_space space, u32 offset, u32 length)
{
if (sw->is_unplugged)
return -ENODEV;
return tb_cfg_write(sw->tb->ctl,
buffer,
tb_route(sw),
0,
space,
offset,
length);
}
static inline int tb_port_read(struct tb_port *port, void *buffer,
enum tb_cfg_space space, u32 offset, u32 length)
{
if (port->sw->is_unplugged)
return -ENODEV;
return tb_cfg_read(port->sw->tb->ctl,
buffer,
tb_route(port->sw),
port->port,
space,
offset,
length);
}
static inline int tb_port_write(struct tb_port *port, const void *buffer,
enum tb_cfg_space space, u32 offset, u32 length)
{
if (port->sw->is_unplugged)
return -ENODEV;
return tb_cfg_write(port->sw->tb->ctl,
buffer,
tb_route(port->sw),
port->port,
space,
offset,
length);
}
#define tb_err(tb, fmt, arg...) dev_err(&(tb)->nhi->pdev->dev, fmt, ## arg)
#define tb_WARN(tb, fmt, arg...) dev_WARN(&(tb)->nhi->pdev->dev, fmt, ## arg)
#define tb_warn(tb, fmt, arg...) dev_warn(&(tb)->nhi->pdev->dev, fmt, ## arg)
#define tb_info(tb, fmt, arg...) dev_info(&(tb)->nhi->pdev->dev, fmt, ## arg)
#define tb_dbg(tb, fmt, arg...) dev_dbg(&(tb)->nhi->pdev->dev, fmt, ## arg)
#define __TB_SW_PRINT(level, sw, fmt, arg...) \
do { \
const struct tb_switch *__sw = (sw); \
level(__sw->tb, "%llx: " fmt, \
tb_route(__sw), ## arg); \
} while (0)
#define tb_sw_WARN(sw, fmt, arg...) __TB_SW_PRINT(tb_WARN, sw, fmt, ##arg)
#define tb_sw_warn(sw, fmt, arg...) __TB_SW_PRINT(tb_warn, sw, fmt, ##arg)
#define tb_sw_info(sw, fmt, arg...) __TB_SW_PRINT(tb_info, sw, fmt, ##arg)
#define tb_sw_dbg(sw, fmt, arg...) __TB_SW_PRINT(tb_dbg, sw, fmt, ##arg)
#define __TB_PORT_PRINT(level, _port, fmt, arg...) \
do { \
const struct tb_port *__port = (_port); \
level(__port->sw->tb, "%llx:%u: " fmt, \
tb_route(__port->sw), __port->port, ## arg); \
} while (0)
#define tb_port_WARN(port, fmt, arg...) \
__TB_PORT_PRINT(tb_WARN, port, fmt, ##arg)
#define tb_port_warn(port, fmt, arg...) \
__TB_PORT_PRINT(tb_warn, port, fmt, ##arg)
#define tb_port_info(port, fmt, arg...) \
__TB_PORT_PRINT(tb_info, port, fmt, ##arg)
#define tb_port_dbg(port, fmt, arg...) \
__TB_PORT_PRINT(tb_dbg, port, fmt, ##arg)
struct tb *icm_probe(struct tb_nhi *nhi);
struct tb *tb_probe(struct tb_nhi *nhi);
extern struct device_type tb_domain_type;
extern struct device_type tb_retimer_type;
extern struct device_type tb_switch_type;
extern struct device_type usb4_port_device_type;
int tb_domain_init(void);
void tb_domain_exit(void);
int tb_xdomain_init(void);
void tb_xdomain_exit(void);
struct tb *tb_domain_alloc(struct tb_nhi *nhi, int timeout_msec, size_t privsize);
int tb_domain_add(struct tb *tb);
void tb_domain_remove(struct tb *tb);
int tb_domain_suspend_noirq(struct tb *tb);
int tb_domain_resume_noirq(struct tb *tb);
int tb_domain_suspend(struct tb *tb);
int tb_domain_freeze_noirq(struct tb *tb);
int tb_domain_thaw_noirq(struct tb *tb);
void tb_domain_complete(struct tb *tb);
int tb_domain_runtime_suspend(struct tb *tb);
int tb_domain_runtime_resume(struct tb *tb);
int tb_domain_disapprove_switch(struct tb *tb, struct tb_switch *sw);
int tb_domain_approve_switch(struct tb *tb, struct tb_switch *sw);
int tb_domain_approve_switch_key(struct tb *tb, struct tb_switch *sw);
int tb_domain_challenge_switch_key(struct tb *tb, struct tb_switch *sw);
int tb_domain_disconnect_pcie_paths(struct tb *tb);
int tb_domain_approve_xdomain_paths(struct tb *tb, struct tb_xdomain *xd,
int transmit_path, int transmit_ring,
int receive_path, int receive_ring);
int tb_domain_disconnect_xdomain_paths(struct tb *tb, struct tb_xdomain *xd,
int transmit_path, int transmit_ring,
int receive_path, int receive_ring);
int tb_domain_disconnect_all_paths(struct tb *tb);
static inline struct tb *tb_domain_get(struct tb *tb)
{
if (tb)
get_device(&tb->dev);
return tb;
}
static inline void tb_domain_put(struct tb *tb)
{
put_device(&tb->dev);
}
struct tb_nvm *tb_nvm_alloc(struct device *dev);
int tb_nvm_read_version(struct tb_nvm *nvm);
int tb_nvm_validate(struct tb_nvm *nvm);
int tb_nvm_write_headers(struct tb_nvm *nvm);
int tb_nvm_add_active(struct tb_nvm *nvm, nvmem_reg_read_t reg_read);
int tb_nvm_write_buf(struct tb_nvm *nvm, unsigned int offset, void *val,
size_t bytes);
int tb_nvm_add_non_active(struct tb_nvm *nvm, nvmem_reg_write_t reg_write);
void tb_nvm_free(struct tb_nvm *nvm);
void tb_nvm_exit(void);
typedef int (*read_block_fn)(void *, unsigned int, void *, size_t);
typedef int (*write_block_fn)(void *, unsigned int, const void *, size_t);
int tb_nvm_read_data(unsigned int address, void *buf, size_t size,
unsigned int retries, read_block_fn read_block,
void *read_block_data);
int tb_nvm_write_data(unsigned int address, const void *buf, size_t size,
unsigned int retries, write_block_fn write_next_block,
void *write_block_data);
int tb_switch_nvm_read(struct tb_switch *sw, unsigned int address, void *buf,
size_t size);
struct tb_switch *tb_switch_alloc(struct tb *tb, struct device *parent,
u64 route);
struct tb_switch *tb_switch_alloc_safe_mode(struct tb *tb,
struct device *parent, u64 route);
int tb_switch_configure(struct tb_switch *sw);
int tb_switch_add(struct tb_switch *sw);
void tb_switch_remove(struct tb_switch *sw);
void tb_switch_suspend(struct tb_switch *sw, bool runtime);
int tb_switch_resume(struct tb_switch *sw);
int tb_switch_reset(struct tb_switch *sw);
int tb_switch_wait_for_bit(struct tb_switch *sw, u32 offset, u32 bit,
u32 value, int timeout_msec);
void tb_sw_set_unplugged(struct tb_switch *sw);
struct tb_port *tb_switch_find_port(struct tb_switch *sw,
enum tb_port_type type);
struct tb_switch *tb_switch_find_by_link_depth(struct tb *tb, u8 link,
u8 depth);
struct tb_switch *tb_switch_find_by_uuid(struct tb *tb, const uuid_t *uuid);
struct tb_switch *tb_switch_find_by_route(struct tb *tb, u64 route);
/**
* tb_switch_for_each_port() - Iterate over each switch port
* @sw: Switch whose ports to iterate
* @p: Port used as iterator
*
* Iterates over each switch port skipping the control port (port %0).
*/
#define tb_switch_for_each_port(sw, p) \
for ((p) = &(sw)->ports[1]; \
(p) <= &(sw)->ports[(sw)->config.max_port_number]; (p)++)
static inline struct tb_switch *tb_switch_get(struct tb_switch *sw)
{
if (sw)
get_device(&sw->dev);
return sw;
}
static inline void tb_switch_put(struct tb_switch *sw)
{
put_device(&sw->dev);
}
static inline bool tb_is_switch(const struct device *dev)
{
return dev->type == &tb_switch_type;
}
static inline struct tb_switch *tb_to_switch(const struct device *dev)
{
if (tb_is_switch(dev))
return container_of(dev, struct tb_switch, dev);
return NULL;
}
static inline struct tb_switch *tb_switch_parent(struct tb_switch *sw)
{
return tb_to_switch(sw->dev.parent);
}
static inline bool tb_switch_is_light_ridge(const struct tb_switch *sw)
{
return sw->config.vendor_id == PCI_VENDOR_ID_INTEL &&
sw->config.device_id == PCI_DEVICE_ID_INTEL_LIGHT_RIDGE;
}
static inline bool tb_switch_is_eagle_ridge(const struct tb_switch *sw)
{
return sw->config.vendor_id == PCI_VENDOR_ID_INTEL &&
sw->config.device_id == PCI_DEVICE_ID_INTEL_EAGLE_RIDGE;
}
static inline bool tb_switch_is_cactus_ridge(const struct tb_switch *sw)
{
if (sw->config.vendor_id == PCI_VENDOR_ID_INTEL) {
switch (sw->config.device_id) {
case PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_2C:
case PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_4C:
return true;
}
}
return false;
}
static inline bool tb_switch_is_falcon_ridge(const struct tb_switch *sw)
{
if (sw->config.vendor_id == PCI_VENDOR_ID_INTEL) {
switch (sw->config.device_id) {
case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_2C_BRIDGE:
case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_4C_BRIDGE:
return true;
}
}
return false;
}
static inline bool tb_switch_is_alpine_ridge(const struct tb_switch *sw)
{
if (sw->config.vendor_id == PCI_VENDOR_ID_INTEL) {
switch (sw->config.device_id) {
case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_2C_BRIDGE:
case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_4C_BRIDGE:
case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_LP_BRIDGE:
case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_4C_BRIDGE:
case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_2C_BRIDGE:
return true;
}
}
return false;
}
static inline bool tb_switch_is_titan_ridge(const struct tb_switch *sw)
{
if (sw->config.vendor_id == PCI_VENDOR_ID_INTEL) {
switch (sw->config.device_id) {
case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_2C_BRIDGE:
case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_4C_BRIDGE:
case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_DD_BRIDGE:
return true;
}
}
return false;
}
static inline bool tb_switch_is_tiger_lake(const struct tb_switch *sw)
{
if (sw->config.vendor_id == PCI_VENDOR_ID_INTEL) {
switch (sw->config.device_id) {
case PCI_DEVICE_ID_INTEL_TGL_NHI0:
case PCI_DEVICE_ID_INTEL_TGL_NHI1:
case PCI_DEVICE_ID_INTEL_TGL_H_NHI0:
case PCI_DEVICE_ID_INTEL_TGL_H_NHI1:
return true;
}
}
return false;
}
/**
* tb_switch_is_usb4() - Is the switch USB4 compliant
* @sw: Switch to check
*
* Returns true if the @sw is USB4 compliant router, false otherwise.
*/
static inline bool tb_switch_is_usb4(const struct tb_switch *sw)
{
return sw->config.thunderbolt_version == USB4_VERSION_1_0;
}
/**
* tb_switch_is_icm() - Is the switch handled by ICM firmware
* @sw: Switch to check
*
* In case there is a need to differentiate whether ICM firmware or SW CM
* is handling @sw this function can be called. It is valid to call this
* after tb_switch_alloc() and tb_switch_configure() has been called
* (latter only for SW CM case).
*/
static inline bool tb_switch_is_icm(const struct tb_switch *sw)
{
return !sw->config.enabled;
}
int tb_switch_lane_bonding_enable(struct tb_switch *sw);
void tb_switch_lane_bonding_disable(struct tb_switch *sw);
int tb_switch_configure_link(struct tb_switch *sw);
void tb_switch_unconfigure_link(struct tb_switch *sw);
bool tb_switch_query_dp_resource(struct tb_switch *sw, struct tb_port *in);
int tb_switch_alloc_dp_resource(struct tb_switch *sw, struct tb_port *in);
void tb_switch_dealloc_dp_resource(struct tb_switch *sw, struct tb_port *in);
int tb_switch_tmu_init(struct tb_switch *sw);
int tb_switch_tmu_post_time(struct tb_switch *sw);
int tb_switch_tmu_disable(struct tb_switch *sw);
int tb_switch_tmu_enable(struct tb_switch *sw);
void tb_switch_tmu_configure(struct tb_switch *sw,
enum tb_switch_tmu_rate rate,
bool unidirectional);
void tb_switch_enable_tmu_1st_child(struct tb_switch *sw,
enum tb_switch_tmu_rate rate);
/**
* tb_switch_tmu_is_enabled() - Checks if the specified TMU mode is enabled
* @sw: Router whose TMU mode to check
* @unidirectional: If uni-directional (bi-directional otherwise)
*
* Return true if hardware TMU configuration matches the one passed in
* as parameter. That is HiFi/Normal and either uni-directional or bi-directional.
*/
static inline bool tb_switch_tmu_is_enabled(const struct tb_switch *sw,
bool unidirectional)
{
return sw->tmu.rate == sw->tmu.rate_request &&
sw->tmu.unidirectional == unidirectional;
}
static inline const char *tb_switch_clx_name(enum tb_clx clx)
{
switch (clx) {
/* CL0s and CL1 are enabled and supported together */
case TB_CL1:
return "CL0s/CL1";
default:
return "unknown";
}
}
int tb_switch_enable_clx(struct tb_switch *sw, enum tb_clx clx);
int tb_switch_disable_clx(struct tb_switch *sw, enum tb_clx clx);
/**
* tb_switch_is_clx_enabled() - Checks if the CLx is enabled
* @sw: Router to check for the CLx
* @clx: The CLx state to check for
*
* Checks if the specified CLx is enabled on the router upstream link.
* Not applicable for a host router.
*/
static inline bool tb_switch_is_clx_enabled(const struct tb_switch *sw,
enum tb_clx clx)
{
return sw->clx == clx;
}
/**
* tb_switch_is_clx_supported() - Is CLx supported on this type of router
* @sw: The router to check CLx support for
*/
static inline bool tb_switch_is_clx_supported(const struct tb_switch *sw)
{
return tb_switch_is_usb4(sw) || tb_switch_is_titan_ridge(sw);
}
int tb_switch_mask_clx_objections(struct tb_switch *sw);
int tb_switch_pcie_l1_enable(struct tb_switch *sw);
int tb_switch_xhci_connect(struct tb_switch *sw);
void tb_switch_xhci_disconnect(struct tb_switch *sw);
int tb_port_state(struct tb_port *port);
int tb_wait_for_port(struct tb_port *port, bool wait_if_unplugged);
int tb_port_add_nfc_credits(struct tb_port *port, int credits);
int tb_port_clear_counter(struct tb_port *port, int counter);
int tb_port_unlock(struct tb_port *port);
int tb_port_enable(struct tb_port *port);
int tb_port_disable(struct tb_port *port);
int tb_port_alloc_in_hopid(struct tb_port *port, int hopid, int max_hopid);
void tb_port_release_in_hopid(struct tb_port *port, int hopid);
int tb_port_alloc_out_hopid(struct tb_port *port, int hopid, int max_hopid);
void tb_port_release_out_hopid(struct tb_port *port, int hopid);
struct tb_port *tb_next_port_on_path(struct tb_port *start, struct tb_port *end,
struct tb_port *prev);
static inline bool tb_port_use_credit_allocation(const struct tb_port *port)
{
return tb_port_is_null(port) && port->sw->credit_allocation;
}
/**
* tb_for_each_port_on_path() - Iterate over each port on path
* @src: Source port
* @dst: Destination port
* @p: Port used as iterator
*
* Walks over each port on path from @src to @dst.
*/
#define tb_for_each_port_on_path(src, dst, p) \
for ((p) = tb_next_port_on_path((src), (dst), NULL); (p); \
(p) = tb_next_port_on_path((src), (dst), (p)))
int tb_port_get_link_speed(struct tb_port *port);
int tb_port_get_link_width(struct tb_port *port);
int tb_port_set_link_width(struct tb_port *port, unsigned int width);
int tb_port_set_lane_bonding(struct tb_port *port, bool bonding);
int tb_port_lane_bonding_enable(struct tb_port *port);
void tb_port_lane_bonding_disable(struct tb_port *port);
int tb_port_wait_for_link_width(struct tb_port *port, int width,
int timeout_msec);
int tb_port_update_credits(struct tb_port *port);
bool tb_port_is_clx_enabled(struct tb_port *port, unsigned int clx);
int tb_switch_find_vse_cap(struct tb_switch *sw, enum tb_switch_vse_cap vsec);
int tb_switch_find_cap(struct tb_switch *sw, enum tb_switch_cap cap);
int tb_switch_next_cap(struct tb_switch *sw, unsigned int offset);
int tb_port_find_cap(struct tb_port *port, enum tb_port_cap cap);
int tb_port_next_cap(struct tb_port *port, unsigned int offset);
bool tb_port_is_enabled(struct tb_port *port);
bool tb_usb3_port_is_enabled(struct tb_port *port);
int tb_usb3_port_enable(struct tb_port *port, bool enable);
bool tb_pci_port_is_enabled(struct tb_port *port);
int tb_pci_port_enable(struct tb_port *port, bool enable);
int tb_dp_port_hpd_is_active(struct tb_port *port);
int tb_dp_port_hpd_clear(struct tb_port *port);
int tb_dp_port_set_hops(struct tb_port *port, unsigned int video,
unsigned int aux_tx, unsigned int aux_rx);
bool tb_dp_port_is_enabled(struct tb_port *port);
int tb_dp_port_enable(struct tb_port *port, bool enable);
struct tb_path *tb_path_discover(struct tb_port *src, int src_hopid,
struct tb_port *dst, int dst_hopid,
struct tb_port **last, const char *name,
bool alloc_hopid);
struct tb_path *tb_path_alloc(struct tb *tb, struct tb_port *src, int src_hopid,
struct tb_port *dst, int dst_hopid, int link_nr,
const char *name);
void tb_path_free(struct tb_path *path);
int tb_path_activate(struct tb_path *path);
void tb_path_deactivate(struct tb_path *path);
bool tb_path_is_invalid(struct tb_path *path);
bool tb_path_port_on_path(const struct tb_path *path,
const struct tb_port *port);
/**
* tb_path_for_each_hop() - Iterate over each hop on path
* @path: Path whose hops to iterate
* @hop: Hop used as iterator
*
* Iterates over each hop on path.
*/
#define tb_path_for_each_hop(path, hop) \
for ((hop) = &(path)->hops[0]; \
(hop) <= &(path)->hops[(path)->path_length - 1]; (hop)++)
int tb_drom_read(struct tb_switch *sw);
int tb_drom_read_uid_only(struct tb_switch *sw, u64 *uid);
int tb_lc_read_uuid(struct tb_switch *sw, u32 *uuid);
int tb_lc_configure_port(struct tb_port *port);
void tb_lc_unconfigure_port(struct tb_port *port);
int tb_lc_configure_xdomain(struct tb_port *port);
void tb_lc_unconfigure_xdomain(struct tb_port *port);
int tb_lc_start_lane_initialization(struct tb_port *port);
bool tb_lc_is_clx_supported(struct tb_port *port);
bool tb_lc_is_usb_plugged(struct tb_port *port);
bool tb_lc_is_xhci_connected(struct tb_port *port);
int tb_lc_xhci_connect(struct tb_port *port);
void tb_lc_xhci_disconnect(struct tb_port *port);
int tb_lc_set_wake(struct tb_switch *sw, unsigned int flags);
int tb_lc_set_sleep(struct tb_switch *sw);
bool tb_lc_lane_bonding_possible(struct tb_switch *sw);
bool tb_lc_dp_sink_query(struct tb_switch *sw, struct tb_port *in);
int tb_lc_dp_sink_alloc(struct tb_switch *sw, struct tb_port *in);
int tb_lc_dp_sink_dealloc(struct tb_switch *sw, struct tb_port *in);
int tb_lc_force_power(struct tb_switch *sw);
static inline int tb_route_length(u64 route)
{
return (fls64(route) + TB_ROUTE_SHIFT - 1) / TB_ROUTE_SHIFT;
}
/**
* tb_downstream_route() - get route to downstream switch
*
* Port must not be the upstream port (otherwise a loop is created).
*
* Return: Returns a route to the switch behind @port.
*/
static inline u64 tb_downstream_route(struct tb_port *port)
{
return tb_route(port->sw)
| ((u64) port->port << (port->sw->config.depth * 8));
}
bool tb_is_xdomain_enabled(void);
bool tb_xdomain_handle_request(struct tb *tb, enum tb_cfg_pkg_type type,
const void *buf, size_t size);
struct tb_xdomain *tb_xdomain_alloc(struct tb *tb, struct device *parent,
u64 route, const uuid_t *local_uuid,
const uuid_t *remote_uuid);
void tb_xdomain_add(struct tb_xdomain *xd);
void tb_xdomain_remove(struct tb_xdomain *xd);
struct tb_xdomain *tb_xdomain_find_by_link_depth(struct tb *tb, u8 link,
u8 depth);
static inline struct tb_switch *tb_xdomain_parent(struct tb_xdomain *xd)
{
return tb_to_switch(xd->dev.parent);
}
int tb_retimer_nvm_read(struct tb_retimer *rt, unsigned int address, void *buf,
size_t size);
int tb_retimer_scan(struct tb_port *port, bool add);
void tb_retimer_remove_all(struct tb_port *port);
static inline bool tb_is_retimer(const struct device *dev)
{
return dev->type == &tb_retimer_type;
}
static inline struct tb_retimer *tb_to_retimer(struct device *dev)
{
if (tb_is_retimer(dev))
return container_of(dev, struct tb_retimer, dev);
return NULL;
}
int usb4_switch_setup(struct tb_switch *sw);
int usb4_switch_read_uid(struct tb_switch *sw, u64 *uid);
int usb4_switch_drom_read(struct tb_switch *sw, unsigned int address, void *buf,
size_t size);
bool usb4_switch_lane_bonding_possible(struct tb_switch *sw);
int usb4_switch_set_wake(struct tb_switch *sw, unsigned int flags);
int usb4_switch_set_sleep(struct tb_switch *sw);
int usb4_switch_nvm_sector_size(struct tb_switch *sw);
int usb4_switch_nvm_read(struct tb_switch *sw, unsigned int address, void *buf,
size_t size);
int usb4_switch_nvm_set_offset(struct tb_switch *sw, unsigned int address);
int usb4_switch_nvm_write(struct tb_switch *sw, unsigned int address,
const void *buf, size_t size);
int usb4_switch_nvm_authenticate(struct tb_switch *sw);
int usb4_switch_nvm_authenticate_status(struct tb_switch *sw, u32 *status);
int usb4_switch_credits_init(struct tb_switch *sw);
bool usb4_switch_query_dp_resource(struct tb_switch *sw, struct tb_port *in);
int usb4_switch_alloc_dp_resource(struct tb_switch *sw, struct tb_port *in);
int usb4_switch_dealloc_dp_resource(struct tb_switch *sw, struct tb_port *in);
struct tb_port *usb4_switch_map_pcie_down(struct tb_switch *sw,
const struct tb_port *port);
struct tb_port *usb4_switch_map_usb3_down(struct tb_switch *sw,
const struct tb_port *port);
int usb4_switch_add_ports(struct tb_switch *sw);
void usb4_switch_remove_ports(struct tb_switch *sw);
int usb4_port_unlock(struct tb_port *port);
int usb4_port_hotplug_enable(struct tb_port *port);
int usb4_port_configure(struct tb_port *port);
void usb4_port_unconfigure(struct tb_port *port);
int usb4_port_configure_xdomain(struct tb_port *port, struct tb_xdomain *xd);
void usb4_port_unconfigure_xdomain(struct tb_port *port);
int usb4_port_router_offline(struct tb_port *port);
int usb4_port_router_online(struct tb_port *port);
int usb4_port_enumerate_retimers(struct tb_port *port);
bool usb4_port_clx_supported(struct tb_port *port);
int usb4_port_margining_caps(struct tb_port *port, u32 *caps);
int usb4_port_hw_margin(struct tb_port *port, unsigned int lanes,
unsigned int ber_level, bool timing, bool right_high,
u32 *results);
int usb4_port_sw_margin(struct tb_port *port, unsigned int lanes, bool timing,
bool right_high, u32 counter);
int usb4_port_sw_margin_errors(struct tb_port *port, u32 *errors);
int usb4_port_retimer_set_inbound_sbtx(struct tb_port *port, u8 index);
int usb4_port_retimer_read(struct tb_port *port, u8 index, u8 reg, void *buf,
u8 size);
int usb4_port_retimer_write(struct tb_port *port, u8 index, u8 reg,
const void *buf, u8 size);
int usb4_port_retimer_is_last(struct tb_port *port, u8 index);
int usb4_port_retimer_nvm_sector_size(struct tb_port *port, u8 index);
int usb4_port_retimer_nvm_set_offset(struct tb_port *port, u8 index,
unsigned int address);
int usb4_port_retimer_nvm_write(struct tb_port *port, u8 index,
unsigned int address, const void *buf,
size_t size);
int usb4_port_retimer_nvm_authenticate(struct tb_port *port, u8 index);
int usb4_port_retimer_nvm_authenticate_status(struct tb_port *port, u8 index,
u32 *status);
int usb4_port_retimer_nvm_read(struct tb_port *port, u8 index,
unsigned int address, void *buf, size_t size);
int usb4_usb3_port_max_link_rate(struct tb_port *port);
int usb4_usb3_port_actual_link_rate(struct tb_port *port);
int usb4_usb3_port_allocated_bandwidth(struct tb_port *port, int *upstream_bw,
int *downstream_bw);
int usb4_usb3_port_allocate_bandwidth(struct tb_port *port, int *upstream_bw,
int *downstream_bw);
int usb4_usb3_port_release_bandwidth(struct tb_port *port, int *upstream_bw,
int *downstream_bw);
int usb4_dp_port_set_cm_id(struct tb_port *port, int cm_id);
bool usb4_dp_port_bw_mode_supported(struct tb_port *port);
bool usb4_dp_port_bw_mode_enabled(struct tb_port *port);
int usb4_dp_port_set_cm_bw_mode_supported(struct tb_port *port, bool supported);
int usb4_dp_port_group_id(struct tb_port *port);
int usb4_dp_port_set_group_id(struct tb_port *port, int group_id);
int usb4_dp_port_nrd(struct tb_port *port, int *rate, int *lanes);
int usb4_dp_port_set_nrd(struct tb_port *port, int rate, int lanes);
int usb4_dp_port_granularity(struct tb_port *port);
int usb4_dp_port_set_granularity(struct tb_port *port, int granularity);
int usb4_dp_port_set_estimated_bw(struct tb_port *port, int bw);
int usb4_dp_port_allocated_bw(struct tb_port *port);
int usb4_dp_port_allocate_bw(struct tb_port *port, int bw);
int usb4_dp_port_requested_bw(struct tb_port *port);
static inline bool tb_is_usb4_port_device(const struct device *dev)
{
return dev->type == &usb4_port_device_type;
}
static inline struct usb4_port *tb_to_usb4_port_device(struct device *dev)
{
if (tb_is_usb4_port_device(dev))
return container_of(dev, struct usb4_port, dev);
return NULL;
}
struct usb4_port *usb4_port_device_add(struct tb_port *port);
void usb4_port_device_remove(struct usb4_port *usb4);
int usb4_port_device_resume(struct usb4_port *usb4);
/* Keep link controller awake during update */
#define QUIRK_FORCE_POWER_LINK_CONTROLLER BIT(0)
void tb_check_quirks(struct tb_switch *sw);
#ifdef CONFIG_ACPI
void tb_acpi_add_links(struct tb_nhi *nhi);
bool tb_acpi_is_native(void);
bool tb_acpi_may_tunnel_usb3(void);
bool tb_acpi_may_tunnel_dp(void);
bool tb_acpi_may_tunnel_pcie(void);
bool tb_acpi_is_xdomain_allowed(void);
int tb_acpi_init(void);
void tb_acpi_exit(void);
int tb_acpi_power_on_retimers(struct tb_port *port);
int tb_acpi_power_off_retimers(struct tb_port *port);
#else
static inline void tb_acpi_add_links(struct tb_nhi *nhi) { }
static inline bool tb_acpi_is_native(void) { return true; }
static inline bool tb_acpi_may_tunnel_usb3(void) { return true; }
static inline bool tb_acpi_may_tunnel_dp(void) { return true; }
static inline bool tb_acpi_may_tunnel_pcie(void) { return true; }
static inline bool tb_acpi_is_xdomain_allowed(void) { return true; }
static inline int tb_acpi_init(void) { return 0; }
static inline void tb_acpi_exit(void) { }
static inline int tb_acpi_power_on_retimers(struct tb_port *port) { return 0; }
static inline int tb_acpi_power_off_retimers(struct tb_port *port) { return 0; }
#endif
#ifdef CONFIG_DEBUG_FS
void tb_debugfs_init(void);
void tb_debugfs_exit(void);
void tb_switch_debugfs_init(struct tb_switch *sw);
void tb_switch_debugfs_remove(struct tb_switch *sw);
void tb_xdomain_debugfs_init(struct tb_xdomain *xd);
void tb_xdomain_debugfs_remove(struct tb_xdomain *xd);
void tb_service_debugfs_init(struct tb_service *svc);
void tb_service_debugfs_remove(struct tb_service *svc);
#else
static inline void tb_debugfs_init(void) { }
static inline void tb_debugfs_exit(void) { }
static inline void tb_switch_debugfs_init(struct tb_switch *sw) { }
static inline void tb_switch_debugfs_remove(struct tb_switch *sw) { }
static inline void tb_xdomain_debugfs_init(struct tb_xdomain *xd) { }
static inline void tb_xdomain_debugfs_remove(struct tb_xdomain *xd) { }
static inline void tb_service_debugfs_init(struct tb_service *svc) { }
static inline void tb_service_debugfs_remove(struct tb_service *svc) { }
#endif
#endif