mirror of
https://github.com/torvalds/linux.git
synced 2024-11-11 14:42:24 +00:00
8e00b2dffd
KMSAN does not instrument stackdepot and may treat memory allocated by it as uninitialized. This is not a problem for KMSAN itself, because its functions calling stackdepot API are also not instrumented. But other kernel features (e.g. netdev tracker) may access stack depot from instrumented code, which will lead to false positives, unless we explicitly mark stackdepot outputs as initialized. Link: https://lkml.kernel.org/r/20230306111322.205724-1-glider@google.com Signed-off-by: Alexander Potapenko <glider@google.com> Reported-by: syzbot <syzkaller@googlegroups.com> Reviewed-by: Dmitry Vyukov <dvyukov@google.com> Suggested-by: Dmitry Vyukov <dvyukov@google.com> Reviewed-by: Andrey Konovalov <andreyknvl@gmail.com> Cc: Marco Elver <elver@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
542 lines
16 KiB
C
542 lines
16 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* Stack depot - a stack trace storage that avoids duplication.
|
|
*
|
|
* Internally, stack depot maintains a hash table of unique stacktraces. The
|
|
* stack traces themselves are stored contiguously one after another in a set
|
|
* of separate page allocations.
|
|
*
|
|
* Author: Alexander Potapenko <glider@google.com>
|
|
* Copyright (C) 2016 Google, Inc.
|
|
*
|
|
* Based on the code by Dmitry Chernenkov.
|
|
*/
|
|
|
|
#define pr_fmt(fmt) "stackdepot: " fmt
|
|
|
|
#include <linux/gfp.h>
|
|
#include <linux/jhash.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/kmsan.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/mutex.h>
|
|
#include <linux/percpu.h>
|
|
#include <linux/printk.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/stacktrace.h>
|
|
#include <linux/stackdepot.h>
|
|
#include <linux/string.h>
|
|
#include <linux/types.h>
|
|
#include <linux/memblock.h>
|
|
#include <linux/kasan-enabled.h>
|
|
|
|
#define DEPOT_HANDLE_BITS (sizeof(depot_stack_handle_t) * 8)
|
|
|
|
#define DEPOT_VALID_BITS 1
|
|
#define DEPOT_POOL_ORDER 2 /* Pool size order, 4 pages */
|
|
#define DEPOT_POOL_SIZE (1LL << (PAGE_SHIFT + DEPOT_POOL_ORDER))
|
|
#define DEPOT_STACK_ALIGN 4
|
|
#define DEPOT_OFFSET_BITS (DEPOT_POOL_ORDER + PAGE_SHIFT - DEPOT_STACK_ALIGN)
|
|
#define DEPOT_POOL_INDEX_BITS (DEPOT_HANDLE_BITS - DEPOT_VALID_BITS - \
|
|
DEPOT_OFFSET_BITS - STACK_DEPOT_EXTRA_BITS)
|
|
#define DEPOT_POOLS_CAP 8192
|
|
#define DEPOT_MAX_POOLS \
|
|
(((1LL << (DEPOT_POOL_INDEX_BITS)) < DEPOT_POOLS_CAP) ? \
|
|
(1LL << (DEPOT_POOL_INDEX_BITS)) : DEPOT_POOLS_CAP)
|
|
|
|
/* Compact structure that stores a reference to a stack. */
|
|
union handle_parts {
|
|
depot_stack_handle_t handle;
|
|
struct {
|
|
u32 pool_index : DEPOT_POOL_INDEX_BITS;
|
|
u32 offset : DEPOT_OFFSET_BITS;
|
|
u32 valid : DEPOT_VALID_BITS;
|
|
u32 extra : STACK_DEPOT_EXTRA_BITS;
|
|
};
|
|
};
|
|
|
|
struct stack_record {
|
|
struct stack_record *next; /* Link in the hash table */
|
|
u32 hash; /* Hash in the hash table */
|
|
u32 size; /* Number of stored frames */
|
|
union handle_parts handle;
|
|
unsigned long entries[]; /* Variable-sized array of frames */
|
|
};
|
|
|
|
static bool stack_depot_disabled;
|
|
static bool __stack_depot_early_init_requested __initdata = IS_ENABLED(CONFIG_STACKDEPOT_ALWAYS_INIT);
|
|
static bool __stack_depot_early_init_passed __initdata;
|
|
|
|
/* Use one hash table bucket per 16 KB of memory. */
|
|
#define STACK_HASH_TABLE_SCALE 14
|
|
/* Limit the number of buckets between 4K and 1M. */
|
|
#define STACK_BUCKET_NUMBER_ORDER_MIN 12
|
|
#define STACK_BUCKET_NUMBER_ORDER_MAX 20
|
|
/* Initial seed for jhash2. */
|
|
#define STACK_HASH_SEED 0x9747b28c
|
|
|
|
/* Hash table of pointers to stored stack traces. */
|
|
static struct stack_record **stack_table;
|
|
/* Fixed order of the number of table buckets. Used when KASAN is enabled. */
|
|
static unsigned int stack_bucket_number_order;
|
|
/* Hash mask for indexing the table. */
|
|
static unsigned int stack_hash_mask;
|
|
|
|
/* Array of memory regions that store stack traces. */
|
|
static void *stack_pools[DEPOT_MAX_POOLS];
|
|
/* Currently used pool in stack_pools. */
|
|
static int pool_index;
|
|
/* Offset to the unused space in the currently used pool. */
|
|
static size_t pool_offset;
|
|
/* Lock that protects the variables above. */
|
|
static DEFINE_RAW_SPINLOCK(pool_lock);
|
|
/*
|
|
* Stack depot tries to keep an extra pool allocated even before it runs out
|
|
* of space in the currently used pool.
|
|
* This flag marks that this next extra pool needs to be allocated and
|
|
* initialized. It has the value 0 when either the next pool is not yet
|
|
* initialized or the limit on the number of pools is reached.
|
|
*/
|
|
static int next_pool_required = 1;
|
|
|
|
static int __init disable_stack_depot(char *str)
|
|
{
|
|
int ret;
|
|
|
|
ret = kstrtobool(str, &stack_depot_disabled);
|
|
if (!ret && stack_depot_disabled) {
|
|
pr_info("disabled\n");
|
|
stack_table = NULL;
|
|
}
|
|
return 0;
|
|
}
|
|
early_param("stack_depot_disable", disable_stack_depot);
|
|
|
|
void __init stack_depot_request_early_init(void)
|
|
{
|
|
/* Too late to request early init now. */
|
|
WARN_ON(__stack_depot_early_init_passed);
|
|
|
|
__stack_depot_early_init_requested = true;
|
|
}
|
|
|
|
/* Allocates a hash table via memblock. Can only be used during early boot. */
|
|
int __init stack_depot_early_init(void)
|
|
{
|
|
unsigned long entries = 0;
|
|
|
|
/* This function must be called only once, from mm_init(). */
|
|
if (WARN_ON(__stack_depot_early_init_passed))
|
|
return 0;
|
|
__stack_depot_early_init_passed = true;
|
|
|
|
/*
|
|
* If KASAN is enabled, use the maximum order: KASAN is frequently used
|
|
* in fuzzing scenarios, which leads to a large number of different
|
|
* stack traces being stored in stack depot.
|
|
*/
|
|
if (kasan_enabled() && !stack_bucket_number_order)
|
|
stack_bucket_number_order = STACK_BUCKET_NUMBER_ORDER_MAX;
|
|
|
|
if (!__stack_depot_early_init_requested || stack_depot_disabled)
|
|
return 0;
|
|
|
|
/*
|
|
* If stack_bucket_number_order is not set, leave entries as 0 to rely
|
|
* on the automatic calculations performed by alloc_large_system_hash.
|
|
*/
|
|
if (stack_bucket_number_order)
|
|
entries = 1UL << stack_bucket_number_order;
|
|
pr_info("allocating hash table via alloc_large_system_hash\n");
|
|
stack_table = alloc_large_system_hash("stackdepot",
|
|
sizeof(struct stack_record *),
|
|
entries,
|
|
STACK_HASH_TABLE_SCALE,
|
|
HASH_EARLY | HASH_ZERO,
|
|
NULL,
|
|
&stack_hash_mask,
|
|
1UL << STACK_BUCKET_NUMBER_ORDER_MIN,
|
|
1UL << STACK_BUCKET_NUMBER_ORDER_MAX);
|
|
if (!stack_table) {
|
|
pr_err("hash table allocation failed, disabling\n");
|
|
stack_depot_disabled = true;
|
|
return -ENOMEM;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Allocates a hash table via kvcalloc. Can be used after boot. */
|
|
int stack_depot_init(void)
|
|
{
|
|
static DEFINE_MUTEX(stack_depot_init_mutex);
|
|
unsigned long entries;
|
|
int ret = 0;
|
|
|
|
mutex_lock(&stack_depot_init_mutex);
|
|
|
|
if (stack_depot_disabled || stack_table)
|
|
goto out_unlock;
|
|
|
|
/*
|
|
* Similarly to stack_depot_early_init, use stack_bucket_number_order
|
|
* if assigned, and rely on automatic scaling otherwise.
|
|
*/
|
|
if (stack_bucket_number_order) {
|
|
entries = 1UL << stack_bucket_number_order;
|
|
} else {
|
|
int scale = STACK_HASH_TABLE_SCALE;
|
|
|
|
entries = nr_free_buffer_pages();
|
|
entries = roundup_pow_of_two(entries);
|
|
|
|
if (scale > PAGE_SHIFT)
|
|
entries >>= (scale - PAGE_SHIFT);
|
|
else
|
|
entries <<= (PAGE_SHIFT - scale);
|
|
}
|
|
|
|
if (entries < 1UL << STACK_BUCKET_NUMBER_ORDER_MIN)
|
|
entries = 1UL << STACK_BUCKET_NUMBER_ORDER_MIN;
|
|
if (entries > 1UL << STACK_BUCKET_NUMBER_ORDER_MAX)
|
|
entries = 1UL << STACK_BUCKET_NUMBER_ORDER_MAX;
|
|
|
|
pr_info("allocating hash table of %lu entries via kvcalloc\n", entries);
|
|
stack_table = kvcalloc(entries, sizeof(struct stack_record *), GFP_KERNEL);
|
|
if (!stack_table) {
|
|
pr_err("hash table allocation failed, disabling\n");
|
|
stack_depot_disabled = true;
|
|
ret = -ENOMEM;
|
|
goto out_unlock;
|
|
}
|
|
stack_hash_mask = entries - 1;
|
|
|
|
out_unlock:
|
|
mutex_unlock(&stack_depot_init_mutex);
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(stack_depot_init);
|
|
|
|
/* Uses preallocated memory to initialize a new stack depot pool. */
|
|
static void depot_init_pool(void **prealloc)
|
|
{
|
|
/*
|
|
* If the next pool is already initialized or the maximum number of
|
|
* pools is reached, do not use the preallocated memory.
|
|
* smp_load_acquire() here pairs with smp_store_release() below and
|
|
* in depot_alloc_stack().
|
|
*/
|
|
if (!smp_load_acquire(&next_pool_required))
|
|
return;
|
|
|
|
/* Check if the current pool is not yet allocated. */
|
|
if (stack_pools[pool_index] == NULL) {
|
|
/* Use the preallocated memory for the current pool. */
|
|
stack_pools[pool_index] = *prealloc;
|
|
*prealloc = NULL;
|
|
} else {
|
|
/*
|
|
* Otherwise, use the preallocated memory for the next pool
|
|
* as long as we do not exceed the maximum number of pools.
|
|
*/
|
|
if (pool_index + 1 < DEPOT_MAX_POOLS) {
|
|
stack_pools[pool_index + 1] = *prealloc;
|
|
*prealloc = NULL;
|
|
}
|
|
/*
|
|
* At this point, either the next pool is initialized or the
|
|
* maximum number of pools is reached. In either case, take
|
|
* note that initializing another pool is not required.
|
|
* This smp_store_release pairs with smp_load_acquire() above
|
|
* and in stack_depot_save().
|
|
*/
|
|
smp_store_release(&next_pool_required, 0);
|
|
}
|
|
}
|
|
|
|
/* Allocates a new stack in a stack depot pool. */
|
|
static struct stack_record *
|
|
depot_alloc_stack(unsigned long *entries, int size, u32 hash, void **prealloc)
|
|
{
|
|
struct stack_record *stack;
|
|
size_t required_size = struct_size(stack, entries, size);
|
|
|
|
required_size = ALIGN(required_size, 1 << DEPOT_STACK_ALIGN);
|
|
|
|
/* Check if there is not enough space in the current pool. */
|
|
if (unlikely(pool_offset + required_size > DEPOT_POOL_SIZE)) {
|
|
/* Bail out if we reached the pool limit. */
|
|
if (unlikely(pool_index + 1 >= DEPOT_MAX_POOLS)) {
|
|
WARN_ONCE(1, "Stack depot reached limit capacity");
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* Move on to the next pool.
|
|
* WRITE_ONCE pairs with potential concurrent read in
|
|
* stack_depot_fetch().
|
|
*/
|
|
WRITE_ONCE(pool_index, pool_index + 1);
|
|
pool_offset = 0;
|
|
/*
|
|
* If the maximum number of pools is not reached, take note
|
|
* that the next pool needs to initialized.
|
|
* smp_store_release() here pairs with smp_load_acquire() in
|
|
* stack_depot_save() and depot_init_pool().
|
|
*/
|
|
if (pool_index + 1 < DEPOT_MAX_POOLS)
|
|
smp_store_release(&next_pool_required, 1);
|
|
}
|
|
|
|
/* Assign the preallocated memory to a pool if required. */
|
|
if (*prealloc)
|
|
depot_init_pool(prealloc);
|
|
|
|
/* Check if we have a pool to save the stack trace. */
|
|
if (stack_pools[pool_index] == NULL)
|
|
return NULL;
|
|
|
|
/* Save the stack trace. */
|
|
stack = stack_pools[pool_index] + pool_offset;
|
|
stack->hash = hash;
|
|
stack->size = size;
|
|
stack->handle.pool_index = pool_index;
|
|
stack->handle.offset = pool_offset >> DEPOT_STACK_ALIGN;
|
|
stack->handle.valid = 1;
|
|
stack->handle.extra = 0;
|
|
memcpy(stack->entries, entries, flex_array_size(stack, entries, size));
|
|
pool_offset += required_size;
|
|
/*
|
|
* Let KMSAN know the stored stack record is initialized. This shall
|
|
* prevent false positive reports if instrumented code accesses it.
|
|
*/
|
|
kmsan_unpoison_memory(stack, required_size);
|
|
|
|
return stack;
|
|
}
|
|
|
|
/* Calculates the hash for a stack. */
|
|
static inline u32 hash_stack(unsigned long *entries, unsigned int size)
|
|
{
|
|
return jhash2((u32 *)entries,
|
|
array_size(size, sizeof(*entries)) / sizeof(u32),
|
|
STACK_HASH_SEED);
|
|
}
|
|
|
|
/*
|
|
* Non-instrumented version of memcmp().
|
|
* Does not check the lexicographical order, only the equality.
|
|
*/
|
|
static inline
|
|
int stackdepot_memcmp(const unsigned long *u1, const unsigned long *u2,
|
|
unsigned int n)
|
|
{
|
|
for ( ; n-- ; u1++, u2++) {
|
|
if (*u1 != *u2)
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* Finds a stack in a bucket of the hash table. */
|
|
static inline struct stack_record *find_stack(struct stack_record *bucket,
|
|
unsigned long *entries, int size,
|
|
u32 hash)
|
|
{
|
|
struct stack_record *found;
|
|
|
|
for (found = bucket; found; found = found->next) {
|
|
if (found->hash == hash &&
|
|
found->size == size &&
|
|
!stackdepot_memcmp(entries, found->entries, size))
|
|
return found;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
depot_stack_handle_t __stack_depot_save(unsigned long *entries,
|
|
unsigned int nr_entries,
|
|
gfp_t alloc_flags, bool can_alloc)
|
|
{
|
|
struct stack_record *found = NULL, **bucket;
|
|
union handle_parts retval = { .handle = 0 };
|
|
struct page *page = NULL;
|
|
void *prealloc = NULL;
|
|
unsigned long flags;
|
|
u32 hash;
|
|
|
|
/*
|
|
* If this stack trace is from an interrupt, including anything before
|
|
* interrupt entry usually leads to unbounded stack depot growth.
|
|
*
|
|
* Since use of filter_irq_stacks() is a requirement to ensure stack
|
|
* depot can efficiently deduplicate interrupt stacks, always
|
|
* filter_irq_stacks() to simplify all callers' use of stack depot.
|
|
*/
|
|
nr_entries = filter_irq_stacks(entries, nr_entries);
|
|
|
|
if (unlikely(nr_entries == 0) || stack_depot_disabled)
|
|
goto fast_exit;
|
|
|
|
hash = hash_stack(entries, nr_entries);
|
|
bucket = &stack_table[hash & stack_hash_mask];
|
|
|
|
/*
|
|
* Fast path: look the stack trace up without locking.
|
|
* The smp_load_acquire() here pairs with smp_store_release() to
|
|
* |bucket| below.
|
|
*/
|
|
found = find_stack(smp_load_acquire(bucket), entries, nr_entries, hash);
|
|
if (found)
|
|
goto exit;
|
|
|
|
/*
|
|
* Check if another stack pool needs to be initialized. If so, allocate
|
|
* the memory now - we won't be able to do that under the lock.
|
|
*
|
|
* The smp_load_acquire() here pairs with smp_store_release() to
|
|
* |next_pool_inited| in depot_alloc_stack() and depot_init_pool().
|
|
*/
|
|
if (unlikely(can_alloc && smp_load_acquire(&next_pool_required))) {
|
|
/*
|
|
* Zero out zone modifiers, as we don't have specific zone
|
|
* requirements. Keep the flags related to allocation in atomic
|
|
* contexts and I/O.
|
|
*/
|
|
alloc_flags &= ~GFP_ZONEMASK;
|
|
alloc_flags &= (GFP_ATOMIC | GFP_KERNEL);
|
|
alloc_flags |= __GFP_NOWARN;
|
|
page = alloc_pages(alloc_flags, DEPOT_POOL_ORDER);
|
|
if (page)
|
|
prealloc = page_address(page);
|
|
}
|
|
|
|
raw_spin_lock_irqsave(&pool_lock, flags);
|
|
|
|
found = find_stack(*bucket, entries, nr_entries, hash);
|
|
if (!found) {
|
|
struct stack_record *new =
|
|
depot_alloc_stack(entries, nr_entries, hash, &prealloc);
|
|
|
|
if (new) {
|
|
new->next = *bucket;
|
|
/*
|
|
* This smp_store_release() pairs with
|
|
* smp_load_acquire() from |bucket| above.
|
|
*/
|
|
smp_store_release(bucket, new);
|
|
found = new;
|
|
}
|
|
} else if (prealloc) {
|
|
/*
|
|
* Stack depot already contains this stack trace, but let's
|
|
* keep the preallocated memory for the future.
|
|
*/
|
|
depot_init_pool(&prealloc);
|
|
}
|
|
|
|
raw_spin_unlock_irqrestore(&pool_lock, flags);
|
|
exit:
|
|
if (prealloc) {
|
|
/* Stack depot didn't use this memory, free it. */
|
|
free_pages((unsigned long)prealloc, DEPOT_POOL_ORDER);
|
|
}
|
|
if (found)
|
|
retval.handle = found->handle.handle;
|
|
fast_exit:
|
|
return retval.handle;
|
|
}
|
|
EXPORT_SYMBOL_GPL(__stack_depot_save);
|
|
|
|
depot_stack_handle_t stack_depot_save(unsigned long *entries,
|
|
unsigned int nr_entries,
|
|
gfp_t alloc_flags)
|
|
{
|
|
return __stack_depot_save(entries, nr_entries, alloc_flags, true);
|
|
}
|
|
EXPORT_SYMBOL_GPL(stack_depot_save);
|
|
|
|
unsigned int stack_depot_fetch(depot_stack_handle_t handle,
|
|
unsigned long **entries)
|
|
{
|
|
union handle_parts parts = { .handle = handle };
|
|
/*
|
|
* READ_ONCE pairs with potential concurrent write in
|
|
* depot_alloc_stack.
|
|
*/
|
|
int pool_index_cached = READ_ONCE(pool_index);
|
|
void *pool;
|
|
size_t offset = parts.offset << DEPOT_STACK_ALIGN;
|
|
struct stack_record *stack;
|
|
|
|
*entries = NULL;
|
|
/*
|
|
* Let KMSAN know *entries is initialized. This shall prevent false
|
|
* positive reports if instrumented code accesses it.
|
|
*/
|
|
kmsan_unpoison_memory(entries, sizeof(*entries));
|
|
|
|
if (!handle)
|
|
return 0;
|
|
|
|
if (parts.pool_index > pool_index_cached) {
|
|
WARN(1, "pool index %d out of bounds (%d) for stack id %08x\n",
|
|
parts.pool_index, pool_index_cached, handle);
|
|
return 0;
|
|
}
|
|
pool = stack_pools[parts.pool_index];
|
|
if (!pool)
|
|
return 0;
|
|
stack = pool + offset;
|
|
|
|
*entries = stack->entries;
|
|
return stack->size;
|
|
}
|
|
EXPORT_SYMBOL_GPL(stack_depot_fetch);
|
|
|
|
void stack_depot_print(depot_stack_handle_t stack)
|
|
{
|
|
unsigned long *entries;
|
|
unsigned int nr_entries;
|
|
|
|
nr_entries = stack_depot_fetch(stack, &entries);
|
|
if (nr_entries > 0)
|
|
stack_trace_print(entries, nr_entries, 0);
|
|
}
|
|
EXPORT_SYMBOL_GPL(stack_depot_print);
|
|
|
|
int stack_depot_snprint(depot_stack_handle_t handle, char *buf, size_t size,
|
|
int spaces)
|
|
{
|
|
unsigned long *entries;
|
|
unsigned int nr_entries;
|
|
|
|
nr_entries = stack_depot_fetch(handle, &entries);
|
|
return nr_entries ? stack_trace_snprint(buf, size, entries, nr_entries,
|
|
spaces) : 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(stack_depot_snprint);
|
|
|
|
depot_stack_handle_t __must_check stack_depot_set_extra_bits(
|
|
depot_stack_handle_t handle, unsigned int extra_bits)
|
|
{
|
|
union handle_parts parts = { .handle = handle };
|
|
|
|
/* Don't set extra bits on empty handles. */
|
|
if (!handle)
|
|
return 0;
|
|
|
|
parts.extra = extra_bits;
|
|
return parts.handle;
|
|
}
|
|
EXPORT_SYMBOL(stack_depot_set_extra_bits);
|
|
|
|
unsigned int stack_depot_get_extra_bits(depot_stack_handle_t handle)
|
|
{
|
|
union handle_parts parts = { .handle = handle };
|
|
|
|
return parts.extra;
|
|
}
|
|
EXPORT_SYMBOL(stack_depot_get_extra_bits);
|