linux/arch/arm64/kernel/module.c
Ard Biesheuvel a257e02579 arm64/kernel: don't ban ADRP to work around Cortex-A53 erratum #843419
Working around Cortex-A53 erratum #843419 involves special handling of
ADRP instructions that end up in the last two instruction slots of a
4k page, or whose output register gets overwritten without having been
read. (Note that the latter instruction sequence is never emitted by
a properly functioning compiler, which is why it is disregarded by the
handling of the same erratum in the bfd.ld linker which we rely on for
the core kernel)

Normally, this gets taken care of by the linker, which can spot such
sequences at final link time, and insert a veneer if the ADRP ends up
at a vulnerable offset. However, linux kernel modules are partially
linked ELF objects, and so there is no 'final link time' other than the
runtime loading of the module, at which time all the static relocations
are resolved.

For this reason, we have implemented the #843419 workaround for modules
by avoiding ADRP instructions altogether, by using the large C model,
and by passing -mpc-relative-literal-loads to recent versions of GCC
that may emit adrp/ldr pairs to perform literal loads. However, this
workaround forces us to keep literal data mixed with the instructions
in the executable .text segment, and literal data may inadvertently
turn into an exploitable speculative gadget depending on the relative
offsets of arbitrary symbols.

So let's reimplement this workaround in a way that allows us to switch
back to the small C model, and to drop the -mpc-relative-literal-loads
GCC switch, by patching affected ADRP instructions at runtime:
- ADRP instructions that do not appear at 4k relative offset 0xff8 or
  0xffc are ignored
- ADRP instructions that are within 1 MB of their target symbol are
  converted into ADR instructions
- remaining ADRP instructions are redirected via a veneer that performs
  the load using an unaffected movn/movk sequence.

Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
[will: tidied up ADRP -> ADR instruction patching.]
[will: use ULL suffix for 64-bit immediate]
Signed-off-by: Will Deacon <will.deacon@arm.com>
2018-03-09 13:21:53 +00:00

462 lines
12 KiB
C

/*
* AArch64 loadable module support.
*
* Copyright (C) 2012 ARM Limited
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
* Author: Will Deacon <will.deacon@arm.com>
*/
#include <linux/bitops.h>
#include <linux/elf.h>
#include <linux/gfp.h>
#include <linux/kasan.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/moduleloader.h>
#include <linux/vmalloc.h>
#include <asm/alternative.h>
#include <asm/insn.h>
#include <asm/sections.h>
void *module_alloc(unsigned long size)
{
gfp_t gfp_mask = GFP_KERNEL;
void *p;
/* Silence the initial allocation */
if (IS_ENABLED(CONFIG_ARM64_MODULE_PLTS))
gfp_mask |= __GFP_NOWARN;
p = __vmalloc_node_range(size, MODULE_ALIGN, module_alloc_base,
module_alloc_base + MODULES_VSIZE,
gfp_mask, PAGE_KERNEL_EXEC, 0,
NUMA_NO_NODE, __builtin_return_address(0));
if (!p && IS_ENABLED(CONFIG_ARM64_MODULE_PLTS) &&
!IS_ENABLED(CONFIG_KASAN))
/*
* KASAN can only deal with module allocations being served
* from the reserved module region, since the remainder of
* the vmalloc region is already backed by zero shadow pages,
* and punching holes into it is non-trivial. Since the module
* region is not randomized when KASAN is enabled, it is even
* less likely that the module region gets exhausted, so we
* can simply omit this fallback in that case.
*/
p = __vmalloc_node_range(size, MODULE_ALIGN, module_alloc_base,
module_alloc_base + SZ_4G, GFP_KERNEL,
PAGE_KERNEL_EXEC, 0, NUMA_NO_NODE,
__builtin_return_address(0));
if (p && (kasan_module_alloc(p, size) < 0)) {
vfree(p);
return NULL;
}
return p;
}
enum aarch64_reloc_op {
RELOC_OP_NONE,
RELOC_OP_ABS,
RELOC_OP_PREL,
RELOC_OP_PAGE,
};
static u64 do_reloc(enum aarch64_reloc_op reloc_op, __le32 *place, u64 val)
{
switch (reloc_op) {
case RELOC_OP_ABS:
return val;
case RELOC_OP_PREL:
return val - (u64)place;
case RELOC_OP_PAGE:
return (val & ~0xfff) - ((u64)place & ~0xfff);
case RELOC_OP_NONE:
return 0;
}
pr_err("do_reloc: unknown relocation operation %d\n", reloc_op);
return 0;
}
static int reloc_data(enum aarch64_reloc_op op, void *place, u64 val, int len)
{
s64 sval = do_reloc(op, place, val);
switch (len) {
case 16:
*(s16 *)place = sval;
if (sval < S16_MIN || sval > U16_MAX)
return -ERANGE;
break;
case 32:
*(s32 *)place = sval;
if (sval < S32_MIN || sval > U32_MAX)
return -ERANGE;
break;
case 64:
*(s64 *)place = sval;
break;
default:
pr_err("Invalid length (%d) for data relocation\n", len);
return 0;
}
return 0;
}
enum aarch64_insn_movw_imm_type {
AARCH64_INSN_IMM_MOVNZ,
AARCH64_INSN_IMM_MOVKZ,
};
static int reloc_insn_movw(enum aarch64_reloc_op op, __le32 *place, u64 val,
int lsb, enum aarch64_insn_movw_imm_type imm_type)
{
u64 imm;
s64 sval;
u32 insn = le32_to_cpu(*place);
sval = do_reloc(op, place, val);
imm = sval >> lsb;
if (imm_type == AARCH64_INSN_IMM_MOVNZ) {
/*
* For signed MOVW relocations, we have to manipulate the
* instruction encoding depending on whether or not the
* immediate is less than zero.
*/
insn &= ~(3 << 29);
if (sval >= 0) {
/* >=0: Set the instruction to MOVZ (opcode 10b). */
insn |= 2 << 29;
} else {
/*
* <0: Set the instruction to MOVN (opcode 00b).
* Since we've masked the opcode already, we
* don't need to do anything other than
* inverting the new immediate field.
*/
imm = ~imm;
}
}
/* Update the instruction with the new encoding. */
insn = aarch64_insn_encode_immediate(AARCH64_INSN_IMM_16, insn, imm);
*place = cpu_to_le32(insn);
if (imm > U16_MAX)
return -ERANGE;
return 0;
}
static int reloc_insn_imm(enum aarch64_reloc_op op, __le32 *place, u64 val,
int lsb, int len, enum aarch64_insn_imm_type imm_type)
{
u64 imm, imm_mask;
s64 sval;
u32 insn = le32_to_cpu(*place);
/* Calculate the relocation value. */
sval = do_reloc(op, place, val);
sval >>= lsb;
/* Extract the value bits and shift them to bit 0. */
imm_mask = (BIT(lsb + len) - 1) >> lsb;
imm = sval & imm_mask;
/* Update the instruction's immediate field. */
insn = aarch64_insn_encode_immediate(imm_type, insn, imm);
*place = cpu_to_le32(insn);
/*
* Extract the upper value bits (including the sign bit) and
* shift them to bit 0.
*/
sval = (s64)(sval & ~(imm_mask >> 1)) >> (len - 1);
/*
* Overflow has occurred if the upper bits are not all equal to
* the sign bit of the value.
*/
if ((u64)(sval + 1) >= 2)
return -ERANGE;
return 0;
}
static int reloc_insn_adrp(struct module *mod, __le32 *place, u64 val)
{
u32 insn;
if (!IS_ENABLED(CONFIG_ARM64_ERRATUM_843419) ||
((u64)place & 0xfff) < 0xff8)
return reloc_insn_imm(RELOC_OP_PAGE, place, val, 12, 21,
AARCH64_INSN_IMM_ADR);
/* patch ADRP to ADR if it is in range */
if (!reloc_insn_imm(RELOC_OP_PREL, place, val & ~0xfff, 0, 21,
AARCH64_INSN_IMM_ADR)) {
insn = le32_to_cpu(*place);
insn &= ~BIT(31);
} else {
/* out of range for ADR -> emit a veneer */
val = module_emit_adrp_veneer(mod, place, val & ~0xfff);
if (!val)
return -ENOEXEC;
insn = aarch64_insn_gen_branch_imm((u64)place, val,
AARCH64_INSN_BRANCH_NOLINK);
}
*place = cpu_to_le32(insn);
return 0;
}
int apply_relocate_add(Elf64_Shdr *sechdrs,
const char *strtab,
unsigned int symindex,
unsigned int relsec,
struct module *me)
{
unsigned int i;
int ovf;
bool overflow_check;
Elf64_Sym *sym;
void *loc;
u64 val;
Elf64_Rela *rel = (void *)sechdrs[relsec].sh_addr;
for (i = 0; i < sechdrs[relsec].sh_size / sizeof(*rel); i++) {
/* loc corresponds to P in the AArch64 ELF document. */
loc = (void *)sechdrs[sechdrs[relsec].sh_info].sh_addr
+ rel[i].r_offset;
/* sym is the ELF symbol we're referring to. */
sym = (Elf64_Sym *)sechdrs[symindex].sh_addr
+ ELF64_R_SYM(rel[i].r_info);
/* val corresponds to (S + A) in the AArch64 ELF document. */
val = sym->st_value + rel[i].r_addend;
/* Check for overflow by default. */
overflow_check = true;
/* Perform the static relocation. */
switch (ELF64_R_TYPE(rel[i].r_info)) {
/* Null relocations. */
case R_ARM_NONE:
case R_AARCH64_NONE:
ovf = 0;
break;
/* Data relocations. */
case R_AARCH64_ABS64:
overflow_check = false;
ovf = reloc_data(RELOC_OP_ABS, loc, val, 64);
break;
case R_AARCH64_ABS32:
ovf = reloc_data(RELOC_OP_ABS, loc, val, 32);
break;
case R_AARCH64_ABS16:
ovf = reloc_data(RELOC_OP_ABS, loc, val, 16);
break;
case R_AARCH64_PREL64:
overflow_check = false;
ovf = reloc_data(RELOC_OP_PREL, loc, val, 64);
break;
case R_AARCH64_PREL32:
ovf = reloc_data(RELOC_OP_PREL, loc, val, 32);
break;
case R_AARCH64_PREL16:
ovf = reloc_data(RELOC_OP_PREL, loc, val, 16);
break;
/* MOVW instruction relocations. */
case R_AARCH64_MOVW_UABS_G0_NC:
overflow_check = false;
case R_AARCH64_MOVW_UABS_G0:
ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 0,
AARCH64_INSN_IMM_MOVKZ);
break;
case R_AARCH64_MOVW_UABS_G1_NC:
overflow_check = false;
case R_AARCH64_MOVW_UABS_G1:
ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 16,
AARCH64_INSN_IMM_MOVKZ);
break;
case R_AARCH64_MOVW_UABS_G2_NC:
overflow_check = false;
case R_AARCH64_MOVW_UABS_G2:
ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 32,
AARCH64_INSN_IMM_MOVKZ);
break;
case R_AARCH64_MOVW_UABS_G3:
/* We're using the top bits so we can't overflow. */
overflow_check = false;
ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 48,
AARCH64_INSN_IMM_MOVKZ);
break;
case R_AARCH64_MOVW_SABS_G0:
ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 0,
AARCH64_INSN_IMM_MOVNZ);
break;
case R_AARCH64_MOVW_SABS_G1:
ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 16,
AARCH64_INSN_IMM_MOVNZ);
break;
case R_AARCH64_MOVW_SABS_G2:
ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 32,
AARCH64_INSN_IMM_MOVNZ);
break;
case R_AARCH64_MOVW_PREL_G0_NC:
overflow_check = false;
ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 0,
AARCH64_INSN_IMM_MOVKZ);
break;
case R_AARCH64_MOVW_PREL_G0:
ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 0,
AARCH64_INSN_IMM_MOVNZ);
break;
case R_AARCH64_MOVW_PREL_G1_NC:
overflow_check = false;
ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 16,
AARCH64_INSN_IMM_MOVKZ);
break;
case R_AARCH64_MOVW_PREL_G1:
ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 16,
AARCH64_INSN_IMM_MOVNZ);
break;
case R_AARCH64_MOVW_PREL_G2_NC:
overflow_check = false;
ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 32,
AARCH64_INSN_IMM_MOVKZ);
break;
case R_AARCH64_MOVW_PREL_G2:
ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 32,
AARCH64_INSN_IMM_MOVNZ);
break;
case R_AARCH64_MOVW_PREL_G3:
/* We're using the top bits so we can't overflow. */
overflow_check = false;
ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 48,
AARCH64_INSN_IMM_MOVNZ);
break;
/* Immediate instruction relocations. */
case R_AARCH64_LD_PREL_LO19:
ovf = reloc_insn_imm(RELOC_OP_PREL, loc, val, 2, 19,
AARCH64_INSN_IMM_19);
break;
case R_AARCH64_ADR_PREL_LO21:
ovf = reloc_insn_imm(RELOC_OP_PREL, loc, val, 0, 21,
AARCH64_INSN_IMM_ADR);
break;
case R_AARCH64_ADR_PREL_PG_HI21_NC:
overflow_check = false;
case R_AARCH64_ADR_PREL_PG_HI21:
ovf = reloc_insn_adrp(me, loc, val);
if (ovf && ovf != -ERANGE)
return ovf;
break;
case R_AARCH64_ADD_ABS_LO12_NC:
case R_AARCH64_LDST8_ABS_LO12_NC:
overflow_check = false;
ovf = reloc_insn_imm(RELOC_OP_ABS, loc, val, 0, 12,
AARCH64_INSN_IMM_12);
break;
case R_AARCH64_LDST16_ABS_LO12_NC:
overflow_check = false;
ovf = reloc_insn_imm(RELOC_OP_ABS, loc, val, 1, 11,
AARCH64_INSN_IMM_12);
break;
case R_AARCH64_LDST32_ABS_LO12_NC:
overflow_check = false;
ovf = reloc_insn_imm(RELOC_OP_ABS, loc, val, 2, 10,
AARCH64_INSN_IMM_12);
break;
case R_AARCH64_LDST64_ABS_LO12_NC:
overflow_check = false;
ovf = reloc_insn_imm(RELOC_OP_ABS, loc, val, 3, 9,
AARCH64_INSN_IMM_12);
break;
case R_AARCH64_LDST128_ABS_LO12_NC:
overflow_check = false;
ovf = reloc_insn_imm(RELOC_OP_ABS, loc, val, 4, 8,
AARCH64_INSN_IMM_12);
break;
case R_AARCH64_TSTBR14:
ovf = reloc_insn_imm(RELOC_OP_PREL, loc, val, 2, 14,
AARCH64_INSN_IMM_14);
break;
case R_AARCH64_CONDBR19:
ovf = reloc_insn_imm(RELOC_OP_PREL, loc, val, 2, 19,
AARCH64_INSN_IMM_19);
break;
case R_AARCH64_JUMP26:
case R_AARCH64_CALL26:
ovf = reloc_insn_imm(RELOC_OP_PREL, loc, val, 2, 26,
AARCH64_INSN_IMM_26);
if (IS_ENABLED(CONFIG_ARM64_MODULE_PLTS) &&
ovf == -ERANGE) {
val = module_emit_plt_entry(me, loc, &rel[i], sym);
if (!val)
return -ENOEXEC;
ovf = reloc_insn_imm(RELOC_OP_PREL, loc, val, 2,
26, AARCH64_INSN_IMM_26);
}
break;
default:
pr_err("module %s: unsupported RELA relocation: %llu\n",
me->name, ELF64_R_TYPE(rel[i].r_info));
return -ENOEXEC;
}
if (overflow_check && ovf == -ERANGE)
goto overflow;
}
return 0;
overflow:
pr_err("module %s: overflow in relocation type %d val %Lx\n",
me->name, (int)ELF64_R_TYPE(rel[i].r_info), val);
return -ENOEXEC;
}
int module_finalize(const Elf_Ehdr *hdr,
const Elf_Shdr *sechdrs,
struct module *me)
{
const Elf_Shdr *s, *se;
const char *secstrs = (void *)hdr + sechdrs[hdr->e_shstrndx].sh_offset;
for (s = sechdrs, se = sechdrs + hdr->e_shnum; s < se; s++) {
if (strcmp(".altinstructions", secstrs + s->sh_name) == 0) {
apply_alternatives((void *)s->sh_addr, s->sh_size);
}
#ifdef CONFIG_ARM64_MODULE_PLTS
if (IS_ENABLED(CONFIG_DYNAMIC_FTRACE) &&
!strcmp(".text.ftrace_trampoline", secstrs + s->sh_name))
me->arch.ftrace_trampoline = (void *)s->sh_addr;
#endif
}
return 0;
}