mirror of
https://github.com/torvalds/linux.git
synced 2024-11-10 14:11:52 +00:00
37307f7020
In cdnsp_endpoint_init(), cdnsp_ring_alloc() is assigned to pep->ring
and there is a dereference of it in cdnsp_endpoint_init(), which could
lead to a NULL pointer dereference on failure of cdnsp_ring_alloc().
Fix this bug by adding a check of pep->ring.
This bug was found by a static analyzer. The analysis employs
differential checking to identify inconsistent security operations
(e.g., checks or kfrees) between two code paths and confirms that the
inconsistent operations are not recovered in the current function or
the callers, so they constitute bugs.
Note that, as a bug found by static analysis, it can be a false
positive or hard to trigger. Multiple researchers have cross-reviewed
the bug.
Builds with CONFIG_USB_CDNSP_GADGET=y show no new warnings,
and our static analyzer no longer warns about this code.
Fixes: 3d82904559
("usb: cdnsp: cdns3 Add main part of Cadence USBSSP DRD Driver")
Cc: stable <stable@vger.kernel.org>
Acked-by: Pawel Laszczak <pawell@cadence.com>
Acked-by: Peter Chen <peter.chen@kernel.org>
Signed-off-by: Zhou Qingyang <zhou1615@umn.edu>
Link: https://lore.kernel.org/r/20211130172700.206650-1-zhou1615@umn.edu
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
1338 lines
36 KiB
C
1338 lines
36 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Cadence CDNSP DRD Driver.
|
|
*
|
|
* Copyright (C) 2020 Cadence.
|
|
*
|
|
* Author: Pawel Laszczak <pawell@cadence.com>
|
|
*
|
|
* Code based on Linux XHCI driver.
|
|
* Origin: Copyright (C) 2008 Intel Corp.
|
|
*/
|
|
|
|
#include <linux/dma-mapping.h>
|
|
#include <linux/dmapool.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/usb.h>
|
|
|
|
#include "cdnsp-gadget.h"
|
|
#include "cdnsp-trace.h"
|
|
|
|
static void cdnsp_free_stream_info(struct cdnsp_device *pdev,
|
|
struct cdnsp_ep *pep);
|
|
/*
|
|
* Allocates a generic ring segment from the ring pool, sets the dma address,
|
|
* initializes the segment to zero, and sets the private next pointer to NULL.
|
|
*
|
|
* "All components of all Command and Transfer TRBs shall be initialized to '0'"
|
|
*/
|
|
static struct cdnsp_segment *cdnsp_segment_alloc(struct cdnsp_device *pdev,
|
|
unsigned int cycle_state,
|
|
unsigned int max_packet,
|
|
gfp_t flags)
|
|
{
|
|
struct cdnsp_segment *seg;
|
|
dma_addr_t dma;
|
|
int i;
|
|
|
|
seg = kzalloc(sizeof(*seg), flags);
|
|
if (!seg)
|
|
return NULL;
|
|
|
|
seg->trbs = dma_pool_zalloc(pdev->segment_pool, flags, &dma);
|
|
if (!seg->trbs) {
|
|
kfree(seg);
|
|
return NULL;
|
|
}
|
|
|
|
if (max_packet) {
|
|
seg->bounce_buf = kzalloc(max_packet, flags | GFP_DMA);
|
|
if (!seg->bounce_buf)
|
|
goto free_dma;
|
|
}
|
|
|
|
/* If the cycle state is 0, set the cycle bit to 1 for all the TRBs. */
|
|
if (cycle_state == 0) {
|
|
for (i = 0; i < TRBS_PER_SEGMENT; i++)
|
|
seg->trbs[i].link.control |= cpu_to_le32(TRB_CYCLE);
|
|
}
|
|
seg->dma = dma;
|
|
seg->next = NULL;
|
|
|
|
return seg;
|
|
|
|
free_dma:
|
|
dma_pool_free(pdev->segment_pool, seg->trbs, dma);
|
|
kfree(seg);
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static void cdnsp_segment_free(struct cdnsp_device *pdev,
|
|
struct cdnsp_segment *seg)
|
|
{
|
|
if (seg->trbs)
|
|
dma_pool_free(pdev->segment_pool, seg->trbs, seg->dma);
|
|
|
|
kfree(seg->bounce_buf);
|
|
kfree(seg);
|
|
}
|
|
|
|
static void cdnsp_free_segments_for_ring(struct cdnsp_device *pdev,
|
|
struct cdnsp_segment *first)
|
|
{
|
|
struct cdnsp_segment *seg;
|
|
|
|
seg = first->next;
|
|
|
|
while (seg != first) {
|
|
struct cdnsp_segment *next = seg->next;
|
|
|
|
cdnsp_segment_free(pdev, seg);
|
|
seg = next;
|
|
}
|
|
|
|
cdnsp_segment_free(pdev, first);
|
|
}
|
|
|
|
/*
|
|
* Make the prev segment point to the next segment.
|
|
*
|
|
* Change the last TRB in the prev segment to be a Link TRB which points to the
|
|
* DMA address of the next segment. The caller needs to set any Link TRB
|
|
* related flags, such as End TRB, Toggle Cycle, and no snoop.
|
|
*/
|
|
static void cdnsp_link_segments(struct cdnsp_device *pdev,
|
|
struct cdnsp_segment *prev,
|
|
struct cdnsp_segment *next,
|
|
enum cdnsp_ring_type type)
|
|
{
|
|
struct cdnsp_link_trb *link;
|
|
u32 val;
|
|
|
|
if (!prev || !next)
|
|
return;
|
|
|
|
prev->next = next;
|
|
if (type != TYPE_EVENT) {
|
|
link = &prev->trbs[TRBS_PER_SEGMENT - 1].link;
|
|
link->segment_ptr = cpu_to_le64(next->dma);
|
|
|
|
/*
|
|
* Set the last TRB in the segment to have a TRB type ID
|
|
* of Link TRB
|
|
*/
|
|
val = le32_to_cpu(link->control);
|
|
val &= ~TRB_TYPE_BITMASK;
|
|
val |= TRB_TYPE(TRB_LINK);
|
|
link->control = cpu_to_le32(val);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Link the ring to the new segments.
|
|
* Set Toggle Cycle for the new ring if needed.
|
|
*/
|
|
static void cdnsp_link_rings(struct cdnsp_device *pdev,
|
|
struct cdnsp_ring *ring,
|
|
struct cdnsp_segment *first,
|
|
struct cdnsp_segment *last,
|
|
unsigned int num_segs)
|
|
{
|
|
struct cdnsp_segment *next;
|
|
|
|
if (!ring || !first || !last)
|
|
return;
|
|
|
|
next = ring->enq_seg->next;
|
|
cdnsp_link_segments(pdev, ring->enq_seg, first, ring->type);
|
|
cdnsp_link_segments(pdev, last, next, ring->type);
|
|
ring->num_segs += num_segs;
|
|
ring->num_trbs_free += (TRBS_PER_SEGMENT - 1) * num_segs;
|
|
|
|
if (ring->type != TYPE_EVENT && ring->enq_seg == ring->last_seg) {
|
|
ring->last_seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
|
|
~cpu_to_le32(LINK_TOGGLE);
|
|
last->trbs[TRBS_PER_SEGMENT - 1].link.control |=
|
|
cpu_to_le32(LINK_TOGGLE);
|
|
ring->last_seg = last;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* We need a radix tree for mapping physical addresses of TRBs to which stream
|
|
* ID they belong to. We need to do this because the device controller won't
|
|
* tell us which stream ring the TRB came from. We could store the stream ID
|
|
* in an event data TRB, but that doesn't help us for the cancellation case,
|
|
* since the endpoint may stop before it reaches that event data TRB.
|
|
*
|
|
* The radix tree maps the upper portion of the TRB DMA address to a ring
|
|
* segment that has the same upper portion of DMA addresses. For example,
|
|
* say I have segments of size 1KB, that are always 1KB aligned. A segment may
|
|
* start at 0x10c91000 and end at 0x10c913f0. If I use the upper 10 bits, the
|
|
* key to the stream ID is 0x43244. I can use the DMA address of the TRB to
|
|
* pass the radix tree a key to get the right stream ID:
|
|
*
|
|
* 0x10c90fff >> 10 = 0x43243
|
|
* 0x10c912c0 >> 10 = 0x43244
|
|
* 0x10c91400 >> 10 = 0x43245
|
|
*
|
|
* Obviously, only those TRBs with DMA addresses that are within the segment
|
|
* will make the radix tree return the stream ID for that ring.
|
|
*
|
|
* Caveats for the radix tree:
|
|
*
|
|
* The radix tree uses an unsigned long as a key pair. On 32-bit systems, an
|
|
* unsigned long will be 32-bits; on a 64-bit system an unsigned long will be
|
|
* 64-bits. Since we only request 32-bit DMA addresses, we can use that as the
|
|
* key on 32-bit or 64-bit systems (it would also be fine if we asked for 64-bit
|
|
* PCI DMA addresses on a 64-bit system). There might be a problem on 32-bit
|
|
* extended systems (where the DMA address can be bigger than 32-bits),
|
|
* if we allow the PCI dma mask to be bigger than 32-bits. So don't do that.
|
|
*/
|
|
static int cdnsp_insert_segment_mapping(struct radix_tree_root *trb_address_map,
|
|
struct cdnsp_ring *ring,
|
|
struct cdnsp_segment *seg,
|
|
gfp_t mem_flags)
|
|
{
|
|
unsigned long key;
|
|
int ret;
|
|
|
|
key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT);
|
|
|
|
/* Skip any segments that were already added. */
|
|
if (radix_tree_lookup(trb_address_map, key))
|
|
return 0;
|
|
|
|
ret = radix_tree_maybe_preload(mem_flags);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = radix_tree_insert(trb_address_map, key, ring);
|
|
radix_tree_preload_end();
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void cdnsp_remove_segment_mapping(struct radix_tree_root *trb_address_map,
|
|
struct cdnsp_segment *seg)
|
|
{
|
|
unsigned long key;
|
|
|
|
key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT);
|
|
if (radix_tree_lookup(trb_address_map, key))
|
|
radix_tree_delete(trb_address_map, key);
|
|
}
|
|
|
|
static int cdnsp_update_stream_segment_mapping(struct radix_tree_root *trb_address_map,
|
|
struct cdnsp_ring *ring,
|
|
struct cdnsp_segment *first_seg,
|
|
struct cdnsp_segment *last_seg,
|
|
gfp_t mem_flags)
|
|
{
|
|
struct cdnsp_segment *failed_seg;
|
|
struct cdnsp_segment *seg;
|
|
int ret;
|
|
|
|
seg = first_seg;
|
|
do {
|
|
ret = cdnsp_insert_segment_mapping(trb_address_map, ring, seg,
|
|
mem_flags);
|
|
if (ret)
|
|
goto remove_streams;
|
|
if (seg == last_seg)
|
|
return 0;
|
|
seg = seg->next;
|
|
} while (seg != first_seg);
|
|
|
|
return 0;
|
|
|
|
remove_streams:
|
|
failed_seg = seg;
|
|
seg = first_seg;
|
|
do {
|
|
cdnsp_remove_segment_mapping(trb_address_map, seg);
|
|
if (seg == failed_seg)
|
|
return ret;
|
|
seg = seg->next;
|
|
} while (seg != first_seg);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void cdnsp_remove_stream_mapping(struct cdnsp_ring *ring)
|
|
{
|
|
struct cdnsp_segment *seg;
|
|
|
|
seg = ring->first_seg;
|
|
do {
|
|
cdnsp_remove_segment_mapping(ring->trb_address_map, seg);
|
|
seg = seg->next;
|
|
} while (seg != ring->first_seg);
|
|
}
|
|
|
|
static int cdnsp_update_stream_mapping(struct cdnsp_ring *ring)
|
|
{
|
|
return cdnsp_update_stream_segment_mapping(ring->trb_address_map, ring,
|
|
ring->first_seg, ring->last_seg, GFP_ATOMIC);
|
|
}
|
|
|
|
static void cdnsp_ring_free(struct cdnsp_device *pdev, struct cdnsp_ring *ring)
|
|
{
|
|
if (!ring)
|
|
return;
|
|
|
|
trace_cdnsp_ring_free(ring);
|
|
|
|
if (ring->first_seg) {
|
|
if (ring->type == TYPE_STREAM)
|
|
cdnsp_remove_stream_mapping(ring);
|
|
|
|
cdnsp_free_segments_for_ring(pdev, ring->first_seg);
|
|
}
|
|
|
|
kfree(ring);
|
|
}
|
|
|
|
void cdnsp_initialize_ring_info(struct cdnsp_ring *ring)
|
|
{
|
|
ring->enqueue = ring->first_seg->trbs;
|
|
ring->enq_seg = ring->first_seg;
|
|
ring->dequeue = ring->enqueue;
|
|
ring->deq_seg = ring->first_seg;
|
|
|
|
/*
|
|
* The ring is initialized to 0. The producer must write 1 to the cycle
|
|
* bit to handover ownership of the TRB, so PCS = 1. The consumer must
|
|
* compare CCS to the cycle bit to check ownership, so CCS = 1.
|
|
*
|
|
* New rings are initialized with cycle state equal to 1; if we are
|
|
* handling ring expansion, set the cycle state equal to the old ring.
|
|
*/
|
|
ring->cycle_state = 1;
|
|
|
|
/*
|
|
* Each segment has a link TRB, and leave an extra TRB for SW
|
|
* accounting purpose
|
|
*/
|
|
ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
|
|
}
|
|
|
|
/* Allocate segments and link them for a ring. */
|
|
static int cdnsp_alloc_segments_for_ring(struct cdnsp_device *pdev,
|
|
struct cdnsp_segment **first,
|
|
struct cdnsp_segment **last,
|
|
unsigned int num_segs,
|
|
unsigned int cycle_state,
|
|
enum cdnsp_ring_type type,
|
|
unsigned int max_packet,
|
|
gfp_t flags)
|
|
{
|
|
struct cdnsp_segment *prev;
|
|
|
|
/* Allocate first segment. */
|
|
prev = cdnsp_segment_alloc(pdev, cycle_state, max_packet, flags);
|
|
if (!prev)
|
|
return -ENOMEM;
|
|
|
|
num_segs--;
|
|
*first = prev;
|
|
|
|
/* Allocate all other segments. */
|
|
while (num_segs > 0) {
|
|
struct cdnsp_segment *next;
|
|
|
|
next = cdnsp_segment_alloc(pdev, cycle_state,
|
|
max_packet, flags);
|
|
if (!next) {
|
|
cdnsp_free_segments_for_ring(pdev, *first);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
cdnsp_link_segments(pdev, prev, next, type);
|
|
|
|
prev = next;
|
|
num_segs--;
|
|
}
|
|
|
|
cdnsp_link_segments(pdev, prev, *first, type);
|
|
*last = prev;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Create a new ring with zero or more segments.
|
|
*
|
|
* Link each segment together into a ring.
|
|
* Set the end flag and the cycle toggle bit on the last segment.
|
|
*/
|
|
static struct cdnsp_ring *cdnsp_ring_alloc(struct cdnsp_device *pdev,
|
|
unsigned int num_segs,
|
|
enum cdnsp_ring_type type,
|
|
unsigned int max_packet,
|
|
gfp_t flags)
|
|
{
|
|
struct cdnsp_ring *ring;
|
|
int ret;
|
|
|
|
ring = kzalloc(sizeof *(ring), flags);
|
|
if (!ring)
|
|
return NULL;
|
|
|
|
ring->num_segs = num_segs;
|
|
ring->bounce_buf_len = max_packet;
|
|
INIT_LIST_HEAD(&ring->td_list);
|
|
ring->type = type;
|
|
|
|
if (num_segs == 0)
|
|
return ring;
|
|
|
|
ret = cdnsp_alloc_segments_for_ring(pdev, &ring->first_seg,
|
|
&ring->last_seg, num_segs,
|
|
1, type, max_packet, flags);
|
|
if (ret)
|
|
goto fail;
|
|
|
|
/* Only event ring does not use link TRB. */
|
|
if (type != TYPE_EVENT)
|
|
ring->last_seg->trbs[TRBS_PER_SEGMENT - 1].link.control |=
|
|
cpu_to_le32(LINK_TOGGLE);
|
|
|
|
cdnsp_initialize_ring_info(ring);
|
|
trace_cdnsp_ring_alloc(ring);
|
|
return ring;
|
|
fail:
|
|
kfree(ring);
|
|
return NULL;
|
|
}
|
|
|
|
void cdnsp_free_endpoint_rings(struct cdnsp_device *pdev, struct cdnsp_ep *pep)
|
|
{
|
|
cdnsp_ring_free(pdev, pep->ring);
|
|
pep->ring = NULL;
|
|
cdnsp_free_stream_info(pdev, pep);
|
|
}
|
|
|
|
/*
|
|
* Expand an existing ring.
|
|
* Allocate a new ring which has same segment numbers and link the two rings.
|
|
*/
|
|
int cdnsp_ring_expansion(struct cdnsp_device *pdev,
|
|
struct cdnsp_ring *ring,
|
|
unsigned int num_trbs,
|
|
gfp_t flags)
|
|
{
|
|
unsigned int num_segs_needed;
|
|
struct cdnsp_segment *first;
|
|
struct cdnsp_segment *last;
|
|
unsigned int num_segs;
|
|
int ret;
|
|
|
|
num_segs_needed = (num_trbs + (TRBS_PER_SEGMENT - 1) - 1) /
|
|
(TRBS_PER_SEGMENT - 1);
|
|
|
|
/* Allocate number of segments we needed, or double the ring size. */
|
|
num_segs = max(ring->num_segs, num_segs_needed);
|
|
|
|
ret = cdnsp_alloc_segments_for_ring(pdev, &first, &last, num_segs,
|
|
ring->cycle_state, ring->type,
|
|
ring->bounce_buf_len, flags);
|
|
if (ret)
|
|
return -ENOMEM;
|
|
|
|
if (ring->type == TYPE_STREAM)
|
|
ret = cdnsp_update_stream_segment_mapping(ring->trb_address_map,
|
|
ring, first,
|
|
last, flags);
|
|
|
|
if (ret) {
|
|
cdnsp_free_segments_for_ring(pdev, first);
|
|
|
|
return ret;
|
|
}
|
|
|
|
cdnsp_link_rings(pdev, ring, first, last, num_segs);
|
|
trace_cdnsp_ring_expansion(ring);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int cdnsp_init_device_ctx(struct cdnsp_device *pdev)
|
|
{
|
|
int size = HCC_64BYTE_CONTEXT(pdev->hcc_params) ? 2048 : 1024;
|
|
|
|
pdev->out_ctx.type = CDNSP_CTX_TYPE_DEVICE;
|
|
pdev->out_ctx.size = size;
|
|
pdev->out_ctx.ctx_size = CTX_SIZE(pdev->hcc_params);
|
|
pdev->out_ctx.bytes = dma_pool_zalloc(pdev->device_pool, GFP_ATOMIC,
|
|
&pdev->out_ctx.dma);
|
|
|
|
if (!pdev->out_ctx.bytes)
|
|
return -ENOMEM;
|
|
|
|
pdev->in_ctx.type = CDNSP_CTX_TYPE_INPUT;
|
|
pdev->in_ctx.ctx_size = pdev->out_ctx.ctx_size;
|
|
pdev->in_ctx.size = size + pdev->out_ctx.ctx_size;
|
|
pdev->in_ctx.bytes = dma_pool_zalloc(pdev->device_pool, GFP_ATOMIC,
|
|
&pdev->in_ctx.dma);
|
|
|
|
if (!pdev->in_ctx.bytes) {
|
|
dma_pool_free(pdev->device_pool, pdev->out_ctx.bytes,
|
|
pdev->out_ctx.dma);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
struct cdnsp_input_control_ctx
|
|
*cdnsp_get_input_control_ctx(struct cdnsp_container_ctx *ctx)
|
|
{
|
|
if (ctx->type != CDNSP_CTX_TYPE_INPUT)
|
|
return NULL;
|
|
|
|
return (struct cdnsp_input_control_ctx *)ctx->bytes;
|
|
}
|
|
|
|
struct cdnsp_slot_ctx *cdnsp_get_slot_ctx(struct cdnsp_container_ctx *ctx)
|
|
{
|
|
if (ctx->type == CDNSP_CTX_TYPE_DEVICE)
|
|
return (struct cdnsp_slot_ctx *)ctx->bytes;
|
|
|
|
return (struct cdnsp_slot_ctx *)(ctx->bytes + ctx->ctx_size);
|
|
}
|
|
|
|
struct cdnsp_ep_ctx *cdnsp_get_ep_ctx(struct cdnsp_container_ctx *ctx,
|
|
unsigned int ep_index)
|
|
{
|
|
/* Increment ep index by offset of start of ep ctx array. */
|
|
ep_index++;
|
|
if (ctx->type == CDNSP_CTX_TYPE_INPUT)
|
|
ep_index++;
|
|
|
|
return (struct cdnsp_ep_ctx *)(ctx->bytes + (ep_index * ctx->ctx_size));
|
|
}
|
|
|
|
static void cdnsp_free_stream_ctx(struct cdnsp_device *pdev,
|
|
struct cdnsp_ep *pep)
|
|
{
|
|
dma_pool_free(pdev->device_pool, pep->stream_info.stream_ctx_array,
|
|
pep->stream_info.ctx_array_dma);
|
|
}
|
|
|
|
/* The stream context array must be a power of 2. */
|
|
static struct cdnsp_stream_ctx
|
|
*cdnsp_alloc_stream_ctx(struct cdnsp_device *pdev, struct cdnsp_ep *pep)
|
|
{
|
|
size_t size = sizeof(struct cdnsp_stream_ctx) *
|
|
pep->stream_info.num_stream_ctxs;
|
|
|
|
if (size > CDNSP_CTX_SIZE)
|
|
return NULL;
|
|
|
|
/**
|
|
* Driver uses intentionally the device_pool to allocated stream
|
|
* context array. Device Pool has 2048 bytes of size what gives us
|
|
* 128 entries.
|
|
*/
|
|
return dma_pool_zalloc(pdev->device_pool, GFP_DMA32 | GFP_ATOMIC,
|
|
&pep->stream_info.ctx_array_dma);
|
|
}
|
|
|
|
struct cdnsp_ring *cdnsp_dma_to_transfer_ring(struct cdnsp_ep *pep, u64 address)
|
|
{
|
|
if (pep->ep_state & EP_HAS_STREAMS)
|
|
return radix_tree_lookup(&pep->stream_info.trb_address_map,
|
|
address >> TRB_SEGMENT_SHIFT);
|
|
|
|
return pep->ring;
|
|
}
|
|
|
|
/*
|
|
* Change an endpoint's internal structure so it supports stream IDs.
|
|
* The number of requested streams includes stream 0, which cannot be used by
|
|
* driver.
|
|
*
|
|
* The number of stream contexts in the stream context array may be bigger than
|
|
* the number of streams the driver wants to use. This is because the number of
|
|
* stream context array entries must be a power of two.
|
|
*/
|
|
int cdnsp_alloc_stream_info(struct cdnsp_device *pdev,
|
|
struct cdnsp_ep *pep,
|
|
unsigned int num_stream_ctxs,
|
|
unsigned int num_streams)
|
|
{
|
|
struct cdnsp_stream_info *stream_info;
|
|
struct cdnsp_ring *cur_ring;
|
|
u32 cur_stream;
|
|
u64 addr;
|
|
int ret;
|
|
int mps;
|
|
|
|
stream_info = &pep->stream_info;
|
|
stream_info->num_streams = num_streams;
|
|
stream_info->num_stream_ctxs = num_stream_ctxs;
|
|
|
|
/* Initialize the array of virtual pointers to stream rings. */
|
|
stream_info->stream_rings = kcalloc(num_streams,
|
|
sizeof(struct cdnsp_ring *),
|
|
GFP_ATOMIC);
|
|
if (!stream_info->stream_rings)
|
|
return -ENOMEM;
|
|
|
|
/* Initialize the array of DMA addresses for stream rings for the HW. */
|
|
stream_info->stream_ctx_array = cdnsp_alloc_stream_ctx(pdev, pep);
|
|
if (!stream_info->stream_ctx_array)
|
|
goto cleanup_stream_rings;
|
|
|
|
memset(stream_info->stream_ctx_array, 0,
|
|
sizeof(struct cdnsp_stream_ctx) * num_stream_ctxs);
|
|
INIT_RADIX_TREE(&stream_info->trb_address_map, GFP_ATOMIC);
|
|
mps = usb_endpoint_maxp(pep->endpoint.desc);
|
|
|
|
/*
|
|
* Allocate rings for all the streams that the driver will use,
|
|
* and add their segment DMA addresses to the radix tree.
|
|
* Stream 0 is reserved.
|
|
*/
|
|
for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
|
|
cur_ring = cdnsp_ring_alloc(pdev, 2, TYPE_STREAM, mps,
|
|
GFP_ATOMIC);
|
|
stream_info->stream_rings[cur_stream] = cur_ring;
|
|
|
|
if (!cur_ring)
|
|
goto cleanup_rings;
|
|
|
|
cur_ring->stream_id = cur_stream;
|
|
cur_ring->trb_address_map = &stream_info->trb_address_map;
|
|
|
|
/* Set deq ptr, cycle bit, and stream context type. */
|
|
addr = cur_ring->first_seg->dma | SCT_FOR_CTX(SCT_PRI_TR) |
|
|
cur_ring->cycle_state;
|
|
|
|
stream_info->stream_ctx_array[cur_stream].stream_ring =
|
|
cpu_to_le64(addr);
|
|
|
|
trace_cdnsp_set_stream_ring(cur_ring);
|
|
|
|
ret = cdnsp_update_stream_mapping(cur_ring);
|
|
if (ret)
|
|
goto cleanup_rings;
|
|
}
|
|
|
|
return 0;
|
|
|
|
cleanup_rings:
|
|
for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
|
|
cur_ring = stream_info->stream_rings[cur_stream];
|
|
if (cur_ring) {
|
|
cdnsp_ring_free(pdev, cur_ring);
|
|
stream_info->stream_rings[cur_stream] = NULL;
|
|
}
|
|
}
|
|
|
|
cleanup_stream_rings:
|
|
kfree(pep->stream_info.stream_rings);
|
|
|
|
return -ENOMEM;
|
|
}
|
|
|
|
/* Frees all stream contexts associated with the endpoint. */
|
|
static void cdnsp_free_stream_info(struct cdnsp_device *pdev,
|
|
struct cdnsp_ep *pep)
|
|
{
|
|
struct cdnsp_stream_info *stream_info = &pep->stream_info;
|
|
struct cdnsp_ring *cur_ring;
|
|
int cur_stream;
|
|
|
|
if (!(pep->ep_state & EP_HAS_STREAMS))
|
|
return;
|
|
|
|
for (cur_stream = 1; cur_stream < stream_info->num_streams;
|
|
cur_stream++) {
|
|
cur_ring = stream_info->stream_rings[cur_stream];
|
|
if (cur_ring) {
|
|
cdnsp_ring_free(pdev, cur_ring);
|
|
stream_info->stream_rings[cur_stream] = NULL;
|
|
}
|
|
}
|
|
|
|
if (stream_info->stream_ctx_array)
|
|
cdnsp_free_stream_ctx(pdev, pep);
|
|
|
|
kfree(stream_info->stream_rings);
|
|
pep->ep_state &= ~EP_HAS_STREAMS;
|
|
}
|
|
|
|
/* All the cdnsp_tds in the ring's TD list should be freed at this point.*/
|
|
static void cdnsp_free_priv_device(struct cdnsp_device *pdev)
|
|
{
|
|
pdev->dcbaa->dev_context_ptrs[1] = 0;
|
|
|
|
cdnsp_free_endpoint_rings(pdev, &pdev->eps[0]);
|
|
|
|
if (pdev->in_ctx.bytes)
|
|
dma_pool_free(pdev->device_pool, pdev->in_ctx.bytes,
|
|
pdev->in_ctx.dma);
|
|
|
|
if (pdev->out_ctx.bytes)
|
|
dma_pool_free(pdev->device_pool, pdev->out_ctx.bytes,
|
|
pdev->out_ctx.dma);
|
|
|
|
pdev->in_ctx.bytes = NULL;
|
|
pdev->out_ctx.bytes = NULL;
|
|
}
|
|
|
|
static int cdnsp_alloc_priv_device(struct cdnsp_device *pdev)
|
|
{
|
|
int ret;
|
|
|
|
ret = cdnsp_init_device_ctx(pdev);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* Allocate endpoint 0 ring. */
|
|
pdev->eps[0].ring = cdnsp_ring_alloc(pdev, 2, TYPE_CTRL, 0, GFP_ATOMIC);
|
|
if (!pdev->eps[0].ring)
|
|
goto fail;
|
|
|
|
/* Point to output device context in dcbaa. */
|
|
pdev->dcbaa->dev_context_ptrs[1] = cpu_to_le64(pdev->out_ctx.dma);
|
|
pdev->cmd.in_ctx = &pdev->in_ctx;
|
|
|
|
trace_cdnsp_alloc_priv_device(pdev);
|
|
return 0;
|
|
fail:
|
|
dma_pool_free(pdev->device_pool, pdev->out_ctx.bytes,
|
|
pdev->out_ctx.dma);
|
|
dma_pool_free(pdev->device_pool, pdev->in_ctx.bytes,
|
|
pdev->in_ctx.dma);
|
|
|
|
return ret;
|
|
}
|
|
|
|
void cdnsp_copy_ep0_dequeue_into_input_ctx(struct cdnsp_device *pdev)
|
|
{
|
|
struct cdnsp_ep_ctx *ep0_ctx = pdev->eps[0].in_ctx;
|
|
struct cdnsp_ring *ep_ring = pdev->eps[0].ring;
|
|
dma_addr_t dma;
|
|
|
|
dma = cdnsp_trb_virt_to_dma(ep_ring->enq_seg, ep_ring->enqueue);
|
|
ep0_ctx->deq = cpu_to_le64(dma | ep_ring->cycle_state);
|
|
}
|
|
|
|
/* Setup an controller private device for a Set Address command. */
|
|
int cdnsp_setup_addressable_priv_dev(struct cdnsp_device *pdev)
|
|
{
|
|
struct cdnsp_slot_ctx *slot_ctx;
|
|
struct cdnsp_ep_ctx *ep0_ctx;
|
|
u32 max_packets, port;
|
|
|
|
ep0_ctx = cdnsp_get_ep_ctx(&pdev->in_ctx, 0);
|
|
slot_ctx = cdnsp_get_slot_ctx(&pdev->in_ctx);
|
|
|
|
/* Only the control endpoint is valid - one endpoint context. */
|
|
slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
|
|
|
|
switch (pdev->gadget.speed) {
|
|
case USB_SPEED_SUPER_PLUS:
|
|
slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SSP);
|
|
max_packets = MAX_PACKET(512);
|
|
break;
|
|
case USB_SPEED_SUPER:
|
|
slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SS);
|
|
max_packets = MAX_PACKET(512);
|
|
break;
|
|
case USB_SPEED_HIGH:
|
|
slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_HS);
|
|
max_packets = MAX_PACKET(64);
|
|
break;
|
|
case USB_SPEED_FULL:
|
|
slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_FS);
|
|
max_packets = MAX_PACKET(64);
|
|
break;
|
|
default:
|
|
/* Speed was not set , this shouldn't happen. */
|
|
return -EINVAL;
|
|
}
|
|
|
|
port = DEV_PORT(pdev->active_port->port_num);
|
|
slot_ctx->dev_port |= cpu_to_le32(port);
|
|
slot_ctx->dev_state = cpu_to_le32((pdev->device_address &
|
|
DEV_ADDR_MASK));
|
|
ep0_ctx->tx_info = cpu_to_le32(EP_AVG_TRB_LENGTH(0x8));
|
|
ep0_ctx->ep_info2 = cpu_to_le32(EP_TYPE(CTRL_EP));
|
|
ep0_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(0) | ERROR_COUNT(3) |
|
|
max_packets);
|
|
|
|
ep0_ctx->deq = cpu_to_le64(pdev->eps[0].ring->first_seg->dma |
|
|
pdev->eps[0].ring->cycle_state);
|
|
|
|
trace_cdnsp_setup_addressable_priv_device(pdev);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Convert interval expressed as 2^(bInterval - 1) == interval into
|
|
* straight exponent value 2^n == interval.
|
|
*/
|
|
static unsigned int cdnsp_parse_exponent_interval(struct usb_gadget *g,
|
|
struct cdnsp_ep *pep)
|
|
{
|
|
unsigned int interval;
|
|
|
|
interval = clamp_val(pep->endpoint.desc->bInterval, 1, 16) - 1;
|
|
if (interval != pep->endpoint.desc->bInterval - 1)
|
|
dev_warn(&g->dev, "ep %s - rounding interval to %d %sframes\n",
|
|
pep->name, 1 << interval,
|
|
g->speed == USB_SPEED_FULL ? "" : "micro");
|
|
|
|
/*
|
|
* Full speed isoc endpoints specify interval in frames,
|
|
* not microframes. We are using microframes everywhere,
|
|
* so adjust accordingly.
|
|
*/
|
|
if (g->speed == USB_SPEED_FULL)
|
|
interval += 3; /* 1 frame = 2^3 uframes */
|
|
|
|
/* Controller handles only up to 512ms (2^12). */
|
|
if (interval > 12)
|
|
interval = 12;
|
|
|
|
return interval;
|
|
}
|
|
|
|
/*
|
|
* Convert bInterval expressed in microframes (in 1-255 range) to exponent of
|
|
* microframes, rounded down to nearest power of 2.
|
|
*/
|
|
static unsigned int cdnsp_microframes_to_exponent(struct usb_gadget *g,
|
|
struct cdnsp_ep *pep,
|
|
unsigned int desc_interval,
|
|
unsigned int min_exponent,
|
|
unsigned int max_exponent)
|
|
{
|
|
unsigned int interval;
|
|
|
|
interval = fls(desc_interval) - 1;
|
|
return clamp_val(interval, min_exponent, max_exponent);
|
|
}
|
|
|
|
/*
|
|
* Return the polling interval.
|
|
*
|
|
* The polling interval is expressed in "microframes". If controllers's Interval
|
|
* field is set to N, it will service the endpoint every 2^(Interval)*125us.
|
|
*/
|
|
static unsigned int cdnsp_get_endpoint_interval(struct usb_gadget *g,
|
|
struct cdnsp_ep *pep)
|
|
{
|
|
unsigned int interval = 0;
|
|
|
|
switch (g->speed) {
|
|
case USB_SPEED_HIGH:
|
|
case USB_SPEED_SUPER_PLUS:
|
|
case USB_SPEED_SUPER:
|
|
if (usb_endpoint_xfer_int(pep->endpoint.desc) ||
|
|
usb_endpoint_xfer_isoc(pep->endpoint.desc))
|
|
interval = cdnsp_parse_exponent_interval(g, pep);
|
|
break;
|
|
case USB_SPEED_FULL:
|
|
if (usb_endpoint_xfer_isoc(pep->endpoint.desc)) {
|
|
interval = cdnsp_parse_exponent_interval(g, pep);
|
|
} else if (usb_endpoint_xfer_int(pep->endpoint.desc)) {
|
|
interval = pep->endpoint.desc->bInterval << 3;
|
|
interval = cdnsp_microframes_to_exponent(g, pep,
|
|
interval,
|
|
3, 10);
|
|
}
|
|
|
|
break;
|
|
default:
|
|
WARN_ON(1);
|
|
}
|
|
|
|
return interval;
|
|
}
|
|
|
|
/*
|
|
* The "Mult" field in the endpoint context is only set for SuperSpeed isoc eps.
|
|
* High speed endpoint descriptors can define "the number of additional
|
|
* transaction opportunities per microframe", but that goes in the Max Burst
|
|
* endpoint context field.
|
|
*/
|
|
static u32 cdnsp_get_endpoint_mult(struct usb_gadget *g, struct cdnsp_ep *pep)
|
|
{
|
|
if (g->speed < USB_SPEED_SUPER ||
|
|
!usb_endpoint_xfer_isoc(pep->endpoint.desc))
|
|
return 0;
|
|
|
|
return pep->endpoint.comp_desc->bmAttributes;
|
|
}
|
|
|
|
static u32 cdnsp_get_endpoint_max_burst(struct usb_gadget *g,
|
|
struct cdnsp_ep *pep)
|
|
{
|
|
/* Super speed and Plus have max burst in ep companion desc */
|
|
if (g->speed >= USB_SPEED_SUPER)
|
|
return pep->endpoint.comp_desc->bMaxBurst;
|
|
|
|
if (g->speed == USB_SPEED_HIGH &&
|
|
(usb_endpoint_xfer_isoc(pep->endpoint.desc) ||
|
|
usb_endpoint_xfer_int(pep->endpoint.desc)))
|
|
return usb_endpoint_maxp_mult(pep->endpoint.desc) - 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static u32 cdnsp_get_endpoint_type(const struct usb_endpoint_descriptor *desc)
|
|
{
|
|
int in;
|
|
|
|
in = usb_endpoint_dir_in(desc);
|
|
|
|
switch (usb_endpoint_type(desc)) {
|
|
case USB_ENDPOINT_XFER_CONTROL:
|
|
return CTRL_EP;
|
|
case USB_ENDPOINT_XFER_BULK:
|
|
return in ? BULK_IN_EP : BULK_OUT_EP;
|
|
case USB_ENDPOINT_XFER_ISOC:
|
|
return in ? ISOC_IN_EP : ISOC_OUT_EP;
|
|
case USB_ENDPOINT_XFER_INT:
|
|
return in ? INT_IN_EP : INT_OUT_EP;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Return the maximum endpoint service interval time (ESIT) payload.
|
|
* Basically, this is the maxpacket size, multiplied by the burst size
|
|
* and mult size.
|
|
*/
|
|
static u32 cdnsp_get_max_esit_payload(struct usb_gadget *g,
|
|
struct cdnsp_ep *pep)
|
|
{
|
|
int max_packet;
|
|
int max_burst;
|
|
|
|
/* Only applies for interrupt or isochronous endpoints*/
|
|
if (usb_endpoint_xfer_control(pep->endpoint.desc) ||
|
|
usb_endpoint_xfer_bulk(pep->endpoint.desc))
|
|
return 0;
|
|
|
|
/* SuperSpeedPlus Isoc ep sending over 48k per EIST. */
|
|
if (g->speed >= USB_SPEED_SUPER_PLUS &&
|
|
USB_SS_SSP_ISOC_COMP(pep->endpoint.desc->bmAttributes))
|
|
return le16_to_cpu(pep->endpoint.comp_desc->wBytesPerInterval);
|
|
/* SuperSpeed or SuperSpeedPlus Isoc ep with less than 48k per esit */
|
|
else if (g->speed >= USB_SPEED_SUPER)
|
|
return le16_to_cpu(pep->endpoint.comp_desc->wBytesPerInterval);
|
|
|
|
max_packet = usb_endpoint_maxp(pep->endpoint.desc);
|
|
max_burst = usb_endpoint_maxp_mult(pep->endpoint.desc);
|
|
|
|
/* A 0 in max burst means 1 transfer per ESIT */
|
|
return max_packet * max_burst;
|
|
}
|
|
|
|
int cdnsp_endpoint_init(struct cdnsp_device *pdev,
|
|
struct cdnsp_ep *pep,
|
|
gfp_t mem_flags)
|
|
{
|
|
enum cdnsp_ring_type ring_type;
|
|
struct cdnsp_ep_ctx *ep_ctx;
|
|
unsigned int err_count = 0;
|
|
unsigned int avg_trb_len;
|
|
unsigned int max_packet;
|
|
unsigned int max_burst;
|
|
unsigned int interval;
|
|
u32 max_esit_payload;
|
|
unsigned int mult;
|
|
u32 endpoint_type;
|
|
int ret;
|
|
|
|
ep_ctx = pep->in_ctx;
|
|
|
|
endpoint_type = cdnsp_get_endpoint_type(pep->endpoint.desc);
|
|
if (!endpoint_type)
|
|
return -EINVAL;
|
|
|
|
ring_type = usb_endpoint_type(pep->endpoint.desc);
|
|
|
|
/*
|
|
* Get values to fill the endpoint context, mostly from ep descriptor.
|
|
* The average TRB buffer length for bulk endpoints is unclear as we
|
|
* have no clue on scatter gather list entry size. For Isoc and Int,
|
|
* set it to max available.
|
|
*/
|
|
max_esit_payload = cdnsp_get_max_esit_payload(&pdev->gadget, pep);
|
|
interval = cdnsp_get_endpoint_interval(&pdev->gadget, pep);
|
|
mult = cdnsp_get_endpoint_mult(&pdev->gadget, pep);
|
|
max_packet = usb_endpoint_maxp(pep->endpoint.desc);
|
|
max_burst = cdnsp_get_endpoint_max_burst(&pdev->gadget, pep);
|
|
avg_trb_len = max_esit_payload;
|
|
|
|
/* Allow 3 retries for everything but isoc, set CErr = 3. */
|
|
if (!usb_endpoint_xfer_isoc(pep->endpoint.desc))
|
|
err_count = 3;
|
|
if (usb_endpoint_xfer_bulk(pep->endpoint.desc) &&
|
|
pdev->gadget.speed == USB_SPEED_HIGH)
|
|
max_packet = 512;
|
|
/* Controller spec indicates that ctrl ep avg TRB Length should be 8. */
|
|
if (usb_endpoint_xfer_control(pep->endpoint.desc))
|
|
avg_trb_len = 8;
|
|
|
|
/* Set up the endpoint ring. */
|
|
pep->ring = cdnsp_ring_alloc(pdev, 2, ring_type, max_packet, mem_flags);
|
|
if (!pep->ring)
|
|
return -ENOMEM;
|
|
|
|
pep->skip = false;
|
|
|
|
/* Fill the endpoint context */
|
|
ep_ctx->ep_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_HI(max_esit_payload) |
|
|
EP_INTERVAL(interval) | EP_MULT(mult));
|
|
ep_ctx->ep_info2 = cpu_to_le32(EP_TYPE(endpoint_type) |
|
|
MAX_PACKET(max_packet) | MAX_BURST(max_burst) |
|
|
ERROR_COUNT(err_count));
|
|
ep_ctx->deq = cpu_to_le64(pep->ring->first_seg->dma |
|
|
pep->ring->cycle_state);
|
|
|
|
ep_ctx->tx_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_LO(max_esit_payload) |
|
|
EP_AVG_TRB_LENGTH(avg_trb_len));
|
|
|
|
if (usb_endpoint_xfer_bulk(pep->endpoint.desc) &&
|
|
pdev->gadget.speed > USB_SPEED_HIGH) {
|
|
ret = cdnsp_alloc_streams(pdev, pep);
|
|
if (ret < 0)
|
|
return ret;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
void cdnsp_endpoint_zero(struct cdnsp_device *pdev, struct cdnsp_ep *pep)
|
|
{
|
|
pep->in_ctx->ep_info = 0;
|
|
pep->in_ctx->ep_info2 = 0;
|
|
pep->in_ctx->deq = 0;
|
|
pep->in_ctx->tx_info = 0;
|
|
}
|
|
|
|
static int cdnsp_alloc_erst(struct cdnsp_device *pdev,
|
|
struct cdnsp_ring *evt_ring,
|
|
struct cdnsp_erst *erst)
|
|
{
|
|
struct cdnsp_erst_entry *entry;
|
|
struct cdnsp_segment *seg;
|
|
unsigned int val;
|
|
size_t size;
|
|
|
|
size = sizeof(struct cdnsp_erst_entry) * evt_ring->num_segs;
|
|
erst->entries = dma_alloc_coherent(pdev->dev, size,
|
|
&erst->erst_dma_addr, GFP_KERNEL);
|
|
if (!erst->entries)
|
|
return -ENOMEM;
|
|
|
|
erst->num_entries = evt_ring->num_segs;
|
|
|
|
seg = evt_ring->first_seg;
|
|
for (val = 0; val < evt_ring->num_segs; val++) {
|
|
entry = &erst->entries[val];
|
|
entry->seg_addr = cpu_to_le64(seg->dma);
|
|
entry->seg_size = cpu_to_le32(TRBS_PER_SEGMENT);
|
|
entry->rsvd = 0;
|
|
seg = seg->next;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void cdnsp_free_erst(struct cdnsp_device *pdev, struct cdnsp_erst *erst)
|
|
{
|
|
size_t size = sizeof(struct cdnsp_erst_entry) * (erst->num_entries);
|
|
struct device *dev = pdev->dev;
|
|
|
|
if (erst->entries)
|
|
dma_free_coherent(dev, size, erst->entries,
|
|
erst->erst_dma_addr);
|
|
|
|
erst->entries = NULL;
|
|
}
|
|
|
|
void cdnsp_mem_cleanup(struct cdnsp_device *pdev)
|
|
{
|
|
struct device *dev = pdev->dev;
|
|
|
|
cdnsp_free_priv_device(pdev);
|
|
cdnsp_free_erst(pdev, &pdev->erst);
|
|
|
|
if (pdev->event_ring)
|
|
cdnsp_ring_free(pdev, pdev->event_ring);
|
|
|
|
pdev->event_ring = NULL;
|
|
|
|
if (pdev->cmd_ring)
|
|
cdnsp_ring_free(pdev, pdev->cmd_ring);
|
|
|
|
pdev->cmd_ring = NULL;
|
|
|
|
dma_pool_destroy(pdev->segment_pool);
|
|
pdev->segment_pool = NULL;
|
|
dma_pool_destroy(pdev->device_pool);
|
|
pdev->device_pool = NULL;
|
|
|
|
dma_free_coherent(dev, sizeof(*pdev->dcbaa),
|
|
pdev->dcbaa, pdev->dcbaa->dma);
|
|
|
|
pdev->dcbaa = NULL;
|
|
|
|
pdev->usb2_port.exist = 0;
|
|
pdev->usb3_port.exist = 0;
|
|
pdev->usb2_port.port_num = 0;
|
|
pdev->usb3_port.port_num = 0;
|
|
pdev->active_port = NULL;
|
|
}
|
|
|
|
static void cdnsp_set_event_deq(struct cdnsp_device *pdev)
|
|
{
|
|
dma_addr_t deq;
|
|
u64 temp;
|
|
|
|
deq = cdnsp_trb_virt_to_dma(pdev->event_ring->deq_seg,
|
|
pdev->event_ring->dequeue);
|
|
|
|
/* Update controller event ring dequeue pointer */
|
|
temp = cdnsp_read_64(&pdev->ir_set->erst_dequeue);
|
|
temp &= ERST_PTR_MASK;
|
|
|
|
/*
|
|
* Don't clear the EHB bit (which is RW1C) because
|
|
* there might be more events to service.
|
|
*/
|
|
temp &= ~ERST_EHB;
|
|
|
|
cdnsp_write_64(((u64)deq & (u64)~ERST_PTR_MASK) | temp,
|
|
&pdev->ir_set->erst_dequeue);
|
|
}
|
|
|
|
static void cdnsp_add_in_port(struct cdnsp_device *pdev,
|
|
struct cdnsp_port *port,
|
|
__le32 __iomem *addr)
|
|
{
|
|
u32 temp, port_offset, port_count;
|
|
|
|
temp = readl(addr);
|
|
port->maj_rev = CDNSP_EXT_PORT_MAJOR(temp);
|
|
port->min_rev = CDNSP_EXT_PORT_MINOR(temp);
|
|
|
|
/* Port offset and count in the third dword.*/
|
|
temp = readl(addr + 2);
|
|
port_offset = CDNSP_EXT_PORT_OFF(temp);
|
|
port_count = CDNSP_EXT_PORT_COUNT(temp);
|
|
|
|
trace_cdnsp_port_info(addr, port_offset, port_count, port->maj_rev);
|
|
|
|
port->port_num = port_offset;
|
|
port->exist = 1;
|
|
}
|
|
|
|
/*
|
|
* Scan the Extended Capabilities for the "Supported Protocol Capabilities" that
|
|
* specify what speeds each port is supposed to be.
|
|
*/
|
|
static int cdnsp_setup_port_arrays(struct cdnsp_device *pdev)
|
|
{
|
|
void __iomem *base;
|
|
u32 offset;
|
|
int i;
|
|
|
|
base = &pdev->cap_regs->hc_capbase;
|
|
offset = cdnsp_find_next_ext_cap(base, 0,
|
|
EXT_CAP_CFG_DEV_20PORT_CAP_ID);
|
|
pdev->port20_regs = base + offset;
|
|
|
|
offset = cdnsp_find_next_ext_cap(base, 0, D_XEC_CFG_3XPORT_CAP);
|
|
pdev->port3x_regs = base + offset;
|
|
|
|
offset = 0;
|
|
base = &pdev->cap_regs->hc_capbase;
|
|
|
|
/* Driver expects max 2 extended protocol capability. */
|
|
for (i = 0; i < 2; i++) {
|
|
u32 temp;
|
|
|
|
offset = cdnsp_find_next_ext_cap(base, offset,
|
|
EXT_CAPS_PROTOCOL);
|
|
temp = readl(base + offset);
|
|
|
|
if (CDNSP_EXT_PORT_MAJOR(temp) == 0x03 &&
|
|
!pdev->usb3_port.port_num)
|
|
cdnsp_add_in_port(pdev, &pdev->usb3_port,
|
|
base + offset);
|
|
|
|
if (CDNSP_EXT_PORT_MAJOR(temp) == 0x02 &&
|
|
!pdev->usb2_port.port_num)
|
|
cdnsp_add_in_port(pdev, &pdev->usb2_port,
|
|
base + offset);
|
|
}
|
|
|
|
if (!pdev->usb2_port.exist || !pdev->usb3_port.exist) {
|
|
dev_err(pdev->dev, "Error: Only one port detected\n");
|
|
return -ENODEV;
|
|
}
|
|
|
|
trace_cdnsp_init("Found USB 2.0 ports and USB 3.0 ports.");
|
|
|
|
pdev->usb2_port.regs = (struct cdnsp_port_regs __iomem *)
|
|
(&pdev->op_regs->port_reg_base + NUM_PORT_REGS *
|
|
(pdev->usb2_port.port_num - 1));
|
|
|
|
pdev->usb3_port.regs = (struct cdnsp_port_regs __iomem *)
|
|
(&pdev->op_regs->port_reg_base + NUM_PORT_REGS *
|
|
(pdev->usb3_port.port_num - 1));
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Initialize memory for CDNSP (one-time init).
|
|
*
|
|
* Program the PAGESIZE register, initialize the device context array, create
|
|
* device contexts, set up a command ring segment, create event
|
|
* ring (one for now).
|
|
*/
|
|
int cdnsp_mem_init(struct cdnsp_device *pdev)
|
|
{
|
|
struct device *dev = pdev->dev;
|
|
int ret = -ENOMEM;
|
|
unsigned int val;
|
|
dma_addr_t dma;
|
|
u32 page_size;
|
|
u64 val_64;
|
|
|
|
/*
|
|
* Use 4K pages, since that's common and the minimum the
|
|
* controller supports
|
|
*/
|
|
page_size = 1 << 12;
|
|
|
|
val = readl(&pdev->op_regs->config_reg);
|
|
val |= ((val & ~MAX_DEVS) | CDNSP_DEV_MAX_SLOTS) | CONFIG_U3E;
|
|
writel(val, &pdev->op_regs->config_reg);
|
|
|
|
/*
|
|
* Doorbell array must be physically contiguous
|
|
* and 64-byte (cache line) aligned.
|
|
*/
|
|
pdev->dcbaa = dma_alloc_coherent(dev, sizeof(*pdev->dcbaa),
|
|
&dma, GFP_KERNEL);
|
|
if (!pdev->dcbaa)
|
|
return -ENOMEM;
|
|
|
|
pdev->dcbaa->dma = dma;
|
|
|
|
cdnsp_write_64(dma, &pdev->op_regs->dcbaa_ptr);
|
|
|
|
/*
|
|
* Initialize the ring segment pool. The ring must be a contiguous
|
|
* structure comprised of TRBs. The TRBs must be 16 byte aligned,
|
|
* however, the command ring segment needs 64-byte aligned segments
|
|
* and our use of dma addresses in the trb_address_map radix tree needs
|
|
* TRB_SEGMENT_SIZE alignment, so driver pick the greater alignment
|
|
* need.
|
|
*/
|
|
pdev->segment_pool = dma_pool_create("CDNSP ring segments", dev,
|
|
TRB_SEGMENT_SIZE, TRB_SEGMENT_SIZE,
|
|
page_size);
|
|
if (!pdev->segment_pool)
|
|
goto release_dcbaa;
|
|
|
|
pdev->device_pool = dma_pool_create("CDNSP input/output contexts", dev,
|
|
CDNSP_CTX_SIZE, 64, page_size);
|
|
if (!pdev->device_pool)
|
|
goto destroy_segment_pool;
|
|
|
|
|
|
/* Set up the command ring to have one segments for now. */
|
|
pdev->cmd_ring = cdnsp_ring_alloc(pdev, 1, TYPE_COMMAND, 0, GFP_KERNEL);
|
|
if (!pdev->cmd_ring)
|
|
goto destroy_device_pool;
|
|
|
|
/* Set the address in the Command Ring Control register */
|
|
val_64 = cdnsp_read_64(&pdev->op_regs->cmd_ring);
|
|
val_64 = (val_64 & (u64)CMD_RING_RSVD_BITS) |
|
|
(pdev->cmd_ring->first_seg->dma & (u64)~CMD_RING_RSVD_BITS) |
|
|
pdev->cmd_ring->cycle_state;
|
|
cdnsp_write_64(val_64, &pdev->op_regs->cmd_ring);
|
|
|
|
val = readl(&pdev->cap_regs->db_off);
|
|
val &= DBOFF_MASK;
|
|
pdev->dba = (void __iomem *)pdev->cap_regs + val;
|
|
|
|
/* Set ir_set to interrupt register set 0 */
|
|
pdev->ir_set = &pdev->run_regs->ir_set[0];
|
|
|
|
/*
|
|
* Event ring setup: Allocate a normal ring, but also setup
|
|
* the event ring segment table (ERST).
|
|
*/
|
|
pdev->event_ring = cdnsp_ring_alloc(pdev, ERST_NUM_SEGS, TYPE_EVENT,
|
|
0, GFP_KERNEL);
|
|
if (!pdev->event_ring)
|
|
goto free_cmd_ring;
|
|
|
|
ret = cdnsp_alloc_erst(pdev, pdev->event_ring, &pdev->erst);
|
|
if (ret)
|
|
goto free_event_ring;
|
|
|
|
/* Set ERST count with the number of entries in the segment table. */
|
|
val = readl(&pdev->ir_set->erst_size);
|
|
val &= ERST_SIZE_MASK;
|
|
val |= ERST_NUM_SEGS;
|
|
writel(val, &pdev->ir_set->erst_size);
|
|
|
|
/* Set the segment table base address. */
|
|
val_64 = cdnsp_read_64(&pdev->ir_set->erst_base);
|
|
val_64 &= ERST_PTR_MASK;
|
|
val_64 |= (pdev->erst.erst_dma_addr & (u64)~ERST_PTR_MASK);
|
|
cdnsp_write_64(val_64, &pdev->ir_set->erst_base);
|
|
|
|
/* Set the event ring dequeue address. */
|
|
cdnsp_set_event_deq(pdev);
|
|
|
|
ret = cdnsp_setup_port_arrays(pdev);
|
|
if (ret)
|
|
goto free_erst;
|
|
|
|
ret = cdnsp_alloc_priv_device(pdev);
|
|
if (ret) {
|
|
dev_err(pdev->dev,
|
|
"Could not allocate cdnsp_device data structures\n");
|
|
goto free_erst;
|
|
}
|
|
|
|
return 0;
|
|
|
|
free_erst:
|
|
cdnsp_free_erst(pdev, &pdev->erst);
|
|
free_event_ring:
|
|
cdnsp_ring_free(pdev, pdev->event_ring);
|
|
free_cmd_ring:
|
|
cdnsp_ring_free(pdev, pdev->cmd_ring);
|
|
destroy_device_pool:
|
|
dma_pool_destroy(pdev->device_pool);
|
|
destroy_segment_pool:
|
|
dma_pool_destroy(pdev->segment_pool);
|
|
release_dcbaa:
|
|
dma_free_coherent(dev, sizeof(*pdev->dcbaa), pdev->dcbaa,
|
|
pdev->dcbaa->dma);
|
|
|
|
cdnsp_reset(pdev);
|
|
|
|
return ret;
|
|
}
|