mirror of
https://github.com/torvalds/linux.git
synced 2024-11-14 16:12:02 +00:00
505f5dcb1c
Add GFP flags to KASAN hooks for future patches to use. This patch is based on the "mm: kasan: unified support for SLUB and SLAB allocators" patch originally prepared by Dmitry Chernenkov. Signed-off-by: Alexander Potapenko <glider@google.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Andrey Konovalov <adech.fo@gmail.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Konstantin Serebryany <kcc@google.com> Cc: Dmitry Chernenkov <dmitryc@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
466 lines
13 KiB
C
466 lines
13 KiB
C
#ifndef MM_SLAB_H
|
|
#define MM_SLAB_H
|
|
/*
|
|
* Internal slab definitions
|
|
*/
|
|
|
|
#ifdef CONFIG_SLOB
|
|
/*
|
|
* Common fields provided in kmem_cache by all slab allocators
|
|
* This struct is either used directly by the allocator (SLOB)
|
|
* or the allocator must include definitions for all fields
|
|
* provided in kmem_cache_common in their definition of kmem_cache.
|
|
*
|
|
* Once we can do anonymous structs (C11 standard) we could put a
|
|
* anonymous struct definition in these allocators so that the
|
|
* separate allocations in the kmem_cache structure of SLAB and
|
|
* SLUB is no longer needed.
|
|
*/
|
|
struct kmem_cache {
|
|
unsigned int object_size;/* The original size of the object */
|
|
unsigned int size; /* The aligned/padded/added on size */
|
|
unsigned int align; /* Alignment as calculated */
|
|
unsigned long flags; /* Active flags on the slab */
|
|
const char *name; /* Slab name for sysfs */
|
|
int refcount; /* Use counter */
|
|
void (*ctor)(void *); /* Called on object slot creation */
|
|
struct list_head list; /* List of all slab caches on the system */
|
|
};
|
|
|
|
#endif /* CONFIG_SLOB */
|
|
|
|
#ifdef CONFIG_SLAB
|
|
#include <linux/slab_def.h>
|
|
#endif
|
|
|
|
#ifdef CONFIG_SLUB
|
|
#include <linux/slub_def.h>
|
|
#endif
|
|
|
|
#include <linux/memcontrol.h>
|
|
#include <linux/fault-inject.h>
|
|
#include <linux/kmemcheck.h>
|
|
#include <linux/kasan.h>
|
|
#include <linux/kmemleak.h>
|
|
|
|
/*
|
|
* State of the slab allocator.
|
|
*
|
|
* This is used to describe the states of the allocator during bootup.
|
|
* Allocators use this to gradually bootstrap themselves. Most allocators
|
|
* have the problem that the structures used for managing slab caches are
|
|
* allocated from slab caches themselves.
|
|
*/
|
|
enum slab_state {
|
|
DOWN, /* No slab functionality yet */
|
|
PARTIAL, /* SLUB: kmem_cache_node available */
|
|
PARTIAL_NODE, /* SLAB: kmalloc size for node struct available */
|
|
UP, /* Slab caches usable but not all extras yet */
|
|
FULL /* Everything is working */
|
|
};
|
|
|
|
extern enum slab_state slab_state;
|
|
|
|
/* The slab cache mutex protects the management structures during changes */
|
|
extern struct mutex slab_mutex;
|
|
|
|
/* The list of all slab caches on the system */
|
|
extern struct list_head slab_caches;
|
|
|
|
/* The slab cache that manages slab cache information */
|
|
extern struct kmem_cache *kmem_cache;
|
|
|
|
unsigned long calculate_alignment(unsigned long flags,
|
|
unsigned long align, unsigned long size);
|
|
|
|
#ifndef CONFIG_SLOB
|
|
/* Kmalloc array related functions */
|
|
void setup_kmalloc_cache_index_table(void);
|
|
void create_kmalloc_caches(unsigned long);
|
|
|
|
/* Find the kmalloc slab corresponding for a certain size */
|
|
struct kmem_cache *kmalloc_slab(size_t, gfp_t);
|
|
#endif
|
|
|
|
|
|
/* Functions provided by the slab allocators */
|
|
extern int __kmem_cache_create(struct kmem_cache *, unsigned long flags);
|
|
|
|
extern struct kmem_cache *create_kmalloc_cache(const char *name, size_t size,
|
|
unsigned long flags);
|
|
extern void create_boot_cache(struct kmem_cache *, const char *name,
|
|
size_t size, unsigned long flags);
|
|
|
|
int slab_unmergeable(struct kmem_cache *s);
|
|
struct kmem_cache *find_mergeable(size_t size, size_t align,
|
|
unsigned long flags, const char *name, void (*ctor)(void *));
|
|
#ifndef CONFIG_SLOB
|
|
struct kmem_cache *
|
|
__kmem_cache_alias(const char *name, size_t size, size_t align,
|
|
unsigned long flags, void (*ctor)(void *));
|
|
|
|
unsigned long kmem_cache_flags(unsigned long object_size,
|
|
unsigned long flags, const char *name,
|
|
void (*ctor)(void *));
|
|
#else
|
|
static inline struct kmem_cache *
|
|
__kmem_cache_alias(const char *name, size_t size, size_t align,
|
|
unsigned long flags, void (*ctor)(void *))
|
|
{ return NULL; }
|
|
|
|
static inline unsigned long kmem_cache_flags(unsigned long object_size,
|
|
unsigned long flags, const char *name,
|
|
void (*ctor)(void *))
|
|
{
|
|
return flags;
|
|
}
|
|
#endif
|
|
|
|
|
|
/* Legal flag mask for kmem_cache_create(), for various configurations */
|
|
#define SLAB_CORE_FLAGS (SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA | SLAB_PANIC | \
|
|
SLAB_DESTROY_BY_RCU | SLAB_DEBUG_OBJECTS )
|
|
|
|
#if defined(CONFIG_DEBUG_SLAB)
|
|
#define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
|
|
#elif defined(CONFIG_SLUB_DEBUG)
|
|
#define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
|
|
SLAB_TRACE | SLAB_CONSISTENCY_CHECKS)
|
|
#else
|
|
#define SLAB_DEBUG_FLAGS (0)
|
|
#endif
|
|
|
|
#if defined(CONFIG_SLAB)
|
|
#define SLAB_CACHE_FLAGS (SLAB_MEM_SPREAD | SLAB_NOLEAKTRACE | \
|
|
SLAB_RECLAIM_ACCOUNT | SLAB_TEMPORARY | \
|
|
SLAB_NOTRACK | SLAB_ACCOUNT)
|
|
#elif defined(CONFIG_SLUB)
|
|
#define SLAB_CACHE_FLAGS (SLAB_NOLEAKTRACE | SLAB_RECLAIM_ACCOUNT | \
|
|
SLAB_TEMPORARY | SLAB_NOTRACK | SLAB_ACCOUNT)
|
|
#else
|
|
#define SLAB_CACHE_FLAGS (0)
|
|
#endif
|
|
|
|
#define CACHE_CREATE_MASK (SLAB_CORE_FLAGS | SLAB_DEBUG_FLAGS | SLAB_CACHE_FLAGS)
|
|
|
|
int __kmem_cache_shutdown(struct kmem_cache *);
|
|
void __kmem_cache_release(struct kmem_cache *);
|
|
int __kmem_cache_shrink(struct kmem_cache *, bool);
|
|
void slab_kmem_cache_release(struct kmem_cache *);
|
|
|
|
struct seq_file;
|
|
struct file;
|
|
|
|
struct slabinfo {
|
|
unsigned long active_objs;
|
|
unsigned long num_objs;
|
|
unsigned long active_slabs;
|
|
unsigned long num_slabs;
|
|
unsigned long shared_avail;
|
|
unsigned int limit;
|
|
unsigned int batchcount;
|
|
unsigned int shared;
|
|
unsigned int objects_per_slab;
|
|
unsigned int cache_order;
|
|
};
|
|
|
|
void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo);
|
|
void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s);
|
|
ssize_t slabinfo_write(struct file *file, const char __user *buffer,
|
|
size_t count, loff_t *ppos);
|
|
|
|
/*
|
|
* Generic implementation of bulk operations
|
|
* These are useful for situations in which the allocator cannot
|
|
* perform optimizations. In that case segments of the object listed
|
|
* may be allocated or freed using these operations.
|
|
*/
|
|
void __kmem_cache_free_bulk(struct kmem_cache *, size_t, void **);
|
|
int __kmem_cache_alloc_bulk(struct kmem_cache *, gfp_t, size_t, void **);
|
|
|
|
#if defined(CONFIG_MEMCG) && !defined(CONFIG_SLOB)
|
|
/*
|
|
* Iterate over all memcg caches of the given root cache. The caller must hold
|
|
* slab_mutex.
|
|
*/
|
|
#define for_each_memcg_cache(iter, root) \
|
|
list_for_each_entry(iter, &(root)->memcg_params.list, \
|
|
memcg_params.list)
|
|
|
|
static inline bool is_root_cache(struct kmem_cache *s)
|
|
{
|
|
return s->memcg_params.is_root_cache;
|
|
}
|
|
|
|
static inline bool slab_equal_or_root(struct kmem_cache *s,
|
|
struct kmem_cache *p)
|
|
{
|
|
return p == s || p == s->memcg_params.root_cache;
|
|
}
|
|
|
|
/*
|
|
* We use suffixes to the name in memcg because we can't have caches
|
|
* created in the system with the same name. But when we print them
|
|
* locally, better refer to them with the base name
|
|
*/
|
|
static inline const char *cache_name(struct kmem_cache *s)
|
|
{
|
|
if (!is_root_cache(s))
|
|
s = s->memcg_params.root_cache;
|
|
return s->name;
|
|
}
|
|
|
|
/*
|
|
* Note, we protect with RCU only the memcg_caches array, not per-memcg caches.
|
|
* That said the caller must assure the memcg's cache won't go away by either
|
|
* taking a css reference to the owner cgroup, or holding the slab_mutex.
|
|
*/
|
|
static inline struct kmem_cache *
|
|
cache_from_memcg_idx(struct kmem_cache *s, int idx)
|
|
{
|
|
struct kmem_cache *cachep;
|
|
struct memcg_cache_array *arr;
|
|
|
|
rcu_read_lock();
|
|
arr = rcu_dereference(s->memcg_params.memcg_caches);
|
|
|
|
/*
|
|
* Make sure we will access the up-to-date value. The code updating
|
|
* memcg_caches issues a write barrier to match this (see
|
|
* memcg_create_kmem_cache()).
|
|
*/
|
|
cachep = lockless_dereference(arr->entries[idx]);
|
|
rcu_read_unlock();
|
|
|
|
return cachep;
|
|
}
|
|
|
|
static inline struct kmem_cache *memcg_root_cache(struct kmem_cache *s)
|
|
{
|
|
if (is_root_cache(s))
|
|
return s;
|
|
return s->memcg_params.root_cache;
|
|
}
|
|
|
|
static __always_inline int memcg_charge_slab(struct page *page,
|
|
gfp_t gfp, int order,
|
|
struct kmem_cache *s)
|
|
{
|
|
int ret;
|
|
|
|
if (!memcg_kmem_enabled())
|
|
return 0;
|
|
if (is_root_cache(s))
|
|
return 0;
|
|
|
|
ret = __memcg_kmem_charge_memcg(page, gfp, order,
|
|
s->memcg_params.memcg);
|
|
if (ret)
|
|
return ret;
|
|
|
|
memcg_kmem_update_page_stat(page,
|
|
(s->flags & SLAB_RECLAIM_ACCOUNT) ?
|
|
MEMCG_SLAB_RECLAIMABLE : MEMCG_SLAB_UNRECLAIMABLE,
|
|
1 << order);
|
|
return 0;
|
|
}
|
|
|
|
static __always_inline void memcg_uncharge_slab(struct page *page, int order,
|
|
struct kmem_cache *s)
|
|
{
|
|
memcg_kmem_update_page_stat(page,
|
|
(s->flags & SLAB_RECLAIM_ACCOUNT) ?
|
|
MEMCG_SLAB_RECLAIMABLE : MEMCG_SLAB_UNRECLAIMABLE,
|
|
-(1 << order));
|
|
memcg_kmem_uncharge(page, order);
|
|
}
|
|
|
|
extern void slab_init_memcg_params(struct kmem_cache *);
|
|
|
|
#else /* CONFIG_MEMCG && !CONFIG_SLOB */
|
|
|
|
#define for_each_memcg_cache(iter, root) \
|
|
for ((void)(iter), (void)(root); 0; )
|
|
|
|
static inline bool is_root_cache(struct kmem_cache *s)
|
|
{
|
|
return true;
|
|
}
|
|
|
|
static inline bool slab_equal_or_root(struct kmem_cache *s,
|
|
struct kmem_cache *p)
|
|
{
|
|
return true;
|
|
}
|
|
|
|
static inline const char *cache_name(struct kmem_cache *s)
|
|
{
|
|
return s->name;
|
|
}
|
|
|
|
static inline struct kmem_cache *
|
|
cache_from_memcg_idx(struct kmem_cache *s, int idx)
|
|
{
|
|
return NULL;
|
|
}
|
|
|
|
static inline struct kmem_cache *memcg_root_cache(struct kmem_cache *s)
|
|
{
|
|
return s;
|
|
}
|
|
|
|
static inline int memcg_charge_slab(struct page *page, gfp_t gfp, int order,
|
|
struct kmem_cache *s)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static inline void memcg_uncharge_slab(struct page *page, int order,
|
|
struct kmem_cache *s)
|
|
{
|
|
}
|
|
|
|
static inline void slab_init_memcg_params(struct kmem_cache *s)
|
|
{
|
|
}
|
|
#endif /* CONFIG_MEMCG && !CONFIG_SLOB */
|
|
|
|
static inline struct kmem_cache *cache_from_obj(struct kmem_cache *s, void *x)
|
|
{
|
|
struct kmem_cache *cachep;
|
|
struct page *page;
|
|
|
|
/*
|
|
* When kmemcg is not being used, both assignments should return the
|
|
* same value. but we don't want to pay the assignment price in that
|
|
* case. If it is not compiled in, the compiler should be smart enough
|
|
* to not do even the assignment. In that case, slab_equal_or_root
|
|
* will also be a constant.
|
|
*/
|
|
if (!memcg_kmem_enabled() &&
|
|
!unlikely(s->flags & SLAB_CONSISTENCY_CHECKS))
|
|
return s;
|
|
|
|
page = virt_to_head_page(x);
|
|
cachep = page->slab_cache;
|
|
if (slab_equal_or_root(cachep, s))
|
|
return cachep;
|
|
|
|
pr_err("%s: Wrong slab cache. %s but object is from %s\n",
|
|
__func__, s->name, cachep->name);
|
|
WARN_ON_ONCE(1);
|
|
return s;
|
|
}
|
|
|
|
static inline size_t slab_ksize(const struct kmem_cache *s)
|
|
{
|
|
#ifndef CONFIG_SLUB
|
|
return s->object_size;
|
|
|
|
#else /* CONFIG_SLUB */
|
|
# ifdef CONFIG_SLUB_DEBUG
|
|
/*
|
|
* Debugging requires use of the padding between object
|
|
* and whatever may come after it.
|
|
*/
|
|
if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
|
|
return s->object_size;
|
|
# endif
|
|
/*
|
|
* If we have the need to store the freelist pointer
|
|
* back there or track user information then we can
|
|
* only use the space before that information.
|
|
*/
|
|
if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
|
|
return s->inuse;
|
|
/*
|
|
* Else we can use all the padding etc for the allocation
|
|
*/
|
|
return s->size;
|
|
#endif
|
|
}
|
|
|
|
static inline struct kmem_cache *slab_pre_alloc_hook(struct kmem_cache *s,
|
|
gfp_t flags)
|
|
{
|
|
flags &= gfp_allowed_mask;
|
|
lockdep_trace_alloc(flags);
|
|
might_sleep_if(gfpflags_allow_blocking(flags));
|
|
|
|
if (should_failslab(s, flags))
|
|
return NULL;
|
|
|
|
return memcg_kmem_get_cache(s, flags);
|
|
}
|
|
|
|
static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
|
|
size_t size, void **p)
|
|
{
|
|
size_t i;
|
|
|
|
flags &= gfp_allowed_mask;
|
|
for (i = 0; i < size; i++) {
|
|
void *object = p[i];
|
|
|
|
kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
|
|
kmemleak_alloc_recursive(object, s->object_size, 1,
|
|
s->flags, flags);
|
|
kasan_slab_alloc(s, object, flags);
|
|
}
|
|
memcg_kmem_put_cache(s);
|
|
}
|
|
|
|
#ifndef CONFIG_SLOB
|
|
/*
|
|
* The slab lists for all objects.
|
|
*/
|
|
struct kmem_cache_node {
|
|
spinlock_t list_lock;
|
|
|
|
#ifdef CONFIG_SLAB
|
|
struct list_head slabs_partial; /* partial list first, better asm code */
|
|
struct list_head slabs_full;
|
|
struct list_head slabs_free;
|
|
unsigned long free_objects;
|
|
unsigned int free_limit;
|
|
unsigned int colour_next; /* Per-node cache coloring */
|
|
struct array_cache *shared; /* shared per node */
|
|
struct alien_cache **alien; /* on other nodes */
|
|
unsigned long next_reap; /* updated without locking */
|
|
int free_touched; /* updated without locking */
|
|
#endif
|
|
|
|
#ifdef CONFIG_SLUB
|
|
unsigned long nr_partial;
|
|
struct list_head partial;
|
|
#ifdef CONFIG_SLUB_DEBUG
|
|
atomic_long_t nr_slabs;
|
|
atomic_long_t total_objects;
|
|
struct list_head full;
|
|
#endif
|
|
#endif
|
|
|
|
};
|
|
|
|
static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
|
|
{
|
|
return s->node[node];
|
|
}
|
|
|
|
/*
|
|
* Iterator over all nodes. The body will be executed for each node that has
|
|
* a kmem_cache_node structure allocated (which is true for all online nodes)
|
|
*/
|
|
#define for_each_kmem_cache_node(__s, __node, __n) \
|
|
for (__node = 0; __node < nr_node_ids; __node++) \
|
|
if ((__n = get_node(__s, __node)))
|
|
|
|
#endif
|
|
|
|
void *slab_start(struct seq_file *m, loff_t *pos);
|
|
void *slab_next(struct seq_file *m, void *p, loff_t *pos);
|
|
void slab_stop(struct seq_file *m, void *p);
|
|
int memcg_slab_show(struct seq_file *m, void *p);
|
|
|
|
#endif /* MM_SLAB_H */
|