linux/drivers/peci/request.c
Iwona Winiarska 93e1821c80 peci: Add peci-cpu driver
PECI is an interface that may be used by different types of devices.
Add a peci-cpu driver compatible with Intel processors. The driver is
responsible for handling auxiliary devices that can subsequently be used
by other drivers (e.g. hwmons).

Reviewed-by: Pierre-Louis Bossart <pierre-louis.bossart@linux.intel.com>
Acked-by: Joel Stanley <joel@jms.id.au>
Signed-off-by: Iwona Winiarska <iwona.winiarska@intel.com>
Link: https://lore.kernel.org/r/20220208153639.255278-10-iwona.winiarska@intel.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-02-09 08:04:44 +01:00

483 lines
13 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
// Copyright (c) 2021 Intel Corporation
#include <linux/bug.h>
#include <linux/export.h>
#include <linux/pci.h>
#include <linux/peci.h>
#include <linux/slab.h>
#include <linux/types.h>
#include <asm/unaligned.h>
#include "internal.h"
#define PECI_GET_DIB_CMD 0xf7
#define PECI_GET_DIB_WR_LEN 1
#define PECI_GET_DIB_RD_LEN 8
#define PECI_GET_TEMP_CMD 0x01
#define PECI_GET_TEMP_WR_LEN 1
#define PECI_GET_TEMP_RD_LEN 2
#define PECI_RDPKGCFG_CMD 0xa1
#define PECI_RDPKGCFG_WR_LEN 5
#define PECI_RDPKGCFG_RD_LEN_BASE 1
#define PECI_WRPKGCFG_CMD 0xa5
#define PECI_WRPKGCFG_WR_LEN_BASE 6
#define PECI_WRPKGCFG_RD_LEN 1
#define PECI_RDIAMSR_CMD 0xb1
#define PECI_RDIAMSR_WR_LEN 5
#define PECI_RDIAMSR_RD_LEN 9
#define PECI_WRIAMSR_CMD 0xb5
#define PECI_RDIAMSREX_CMD 0xd1
#define PECI_RDIAMSREX_WR_LEN 6
#define PECI_RDIAMSREX_RD_LEN 9
#define PECI_RDPCICFG_CMD 0x61
#define PECI_RDPCICFG_WR_LEN 6
#define PECI_RDPCICFG_RD_LEN 5
#define PECI_RDPCICFG_RD_LEN_MAX 24
#define PECI_WRPCICFG_CMD 0x65
#define PECI_RDPCICFGLOCAL_CMD 0xe1
#define PECI_RDPCICFGLOCAL_WR_LEN 5
#define PECI_RDPCICFGLOCAL_RD_LEN_BASE 1
#define PECI_WRPCICFGLOCAL_CMD 0xe5
#define PECI_WRPCICFGLOCAL_WR_LEN_BASE 6
#define PECI_WRPCICFGLOCAL_RD_LEN 1
#define PECI_ENDPTCFG_TYPE_LOCAL_PCI 0x03
#define PECI_ENDPTCFG_TYPE_PCI 0x04
#define PECI_ENDPTCFG_TYPE_MMIO 0x05
#define PECI_ENDPTCFG_ADDR_TYPE_PCI 0x04
#define PECI_ENDPTCFG_ADDR_TYPE_MMIO_D 0x05
#define PECI_ENDPTCFG_ADDR_TYPE_MMIO_Q 0x06
#define PECI_RDENDPTCFG_CMD 0xc1
#define PECI_RDENDPTCFG_PCI_WR_LEN 12
#define PECI_RDENDPTCFG_MMIO_WR_LEN_BASE 10
#define PECI_RDENDPTCFG_MMIO_D_WR_LEN 14
#define PECI_RDENDPTCFG_MMIO_Q_WR_LEN 18
#define PECI_RDENDPTCFG_RD_LEN_BASE 1
#define PECI_WRENDPTCFG_CMD 0xc5
#define PECI_WRENDPTCFG_PCI_WR_LEN_BASE 13
#define PECI_WRENDPTCFG_MMIO_D_WR_LEN_BASE 15
#define PECI_WRENDPTCFG_MMIO_Q_WR_LEN_BASE 19
#define PECI_WRENDPTCFG_RD_LEN 1
/* Device Specific Completion Code (CC) Definition */
#define PECI_CC_SUCCESS 0x40
#define PECI_CC_NEED_RETRY 0x80
#define PECI_CC_OUT_OF_RESOURCE 0x81
#define PECI_CC_UNAVAIL_RESOURCE 0x82
#define PECI_CC_INVALID_REQ 0x90
#define PECI_CC_MCA_ERROR 0x91
#define PECI_CC_CATASTROPHIC_MCA_ERROR 0x93
#define PECI_CC_FATAL_MCA_ERROR 0x94
#define PECI_CC_PARITY_ERR_GPSB_OR_PMSB 0x98
#define PECI_CC_PARITY_ERR_GPSB_OR_PMSB_IERR 0x9B
#define PECI_CC_PARITY_ERR_GPSB_OR_PMSB_MCA 0x9C
#define PECI_RETRY_BIT BIT(0)
#define PECI_RETRY_TIMEOUT msecs_to_jiffies(700)
#define PECI_RETRY_INTERVAL_MIN msecs_to_jiffies(1)
#define PECI_RETRY_INTERVAL_MAX msecs_to_jiffies(128)
static u8 peci_request_data_cc(struct peci_request *req)
{
return req->rx.buf[0];
}
/**
* peci_request_status() - return -errno based on PECI completion code
* @req: the PECI request that contains response data with completion code
*
* It can't be used for Ping(), GetDIB() and GetTemp() - for those commands we
* don't expect completion code in the response.
*
* Return: -errno
*/
int peci_request_status(struct peci_request *req)
{
u8 cc = peci_request_data_cc(req);
if (cc != PECI_CC_SUCCESS)
dev_dbg(&req->device->dev, "ret: %#02x\n", cc);
switch (cc) {
case PECI_CC_SUCCESS:
return 0;
case PECI_CC_NEED_RETRY:
case PECI_CC_OUT_OF_RESOURCE:
case PECI_CC_UNAVAIL_RESOURCE:
return -EAGAIN;
case PECI_CC_INVALID_REQ:
return -EINVAL;
case PECI_CC_MCA_ERROR:
case PECI_CC_CATASTROPHIC_MCA_ERROR:
case PECI_CC_FATAL_MCA_ERROR:
case PECI_CC_PARITY_ERR_GPSB_OR_PMSB:
case PECI_CC_PARITY_ERR_GPSB_OR_PMSB_IERR:
case PECI_CC_PARITY_ERR_GPSB_OR_PMSB_MCA:
return -EIO;
}
WARN_ONCE(1, "Unknown PECI completion code: %#02x\n", cc);
return -EIO;
}
EXPORT_SYMBOL_NS_GPL(peci_request_status, PECI);
static int peci_request_xfer(struct peci_request *req)
{
struct peci_device *device = req->device;
struct peci_controller *controller = to_peci_controller(device->dev.parent);
int ret;
mutex_lock(&controller->bus_lock);
ret = controller->ops->xfer(controller, device->addr, req);
mutex_unlock(&controller->bus_lock);
return ret;
}
static int peci_request_xfer_retry(struct peci_request *req)
{
long wait_interval = PECI_RETRY_INTERVAL_MIN;
struct peci_device *device = req->device;
struct peci_controller *controller = to_peci_controller(device->dev.parent);
unsigned long start = jiffies;
int ret;
/* Don't try to use it for ping */
if (WARN_ON(req->tx.len == 0))
return 0;
do {
ret = peci_request_xfer(req);
if (ret) {
dev_dbg(&controller->dev, "xfer error: %d\n", ret);
return ret;
}
if (peci_request_status(req) != -EAGAIN)
return 0;
/* Set the retry bit to indicate a retry attempt */
req->tx.buf[1] |= PECI_RETRY_BIT;
if (schedule_timeout_interruptible(wait_interval))
return -ERESTARTSYS;
wait_interval = min_t(long, wait_interval * 2, PECI_RETRY_INTERVAL_MAX);
} while (time_before(jiffies, start + PECI_RETRY_TIMEOUT));
dev_dbg(&controller->dev, "request timed out\n");
return -ETIMEDOUT;
}
/**
* peci_request_alloc() - allocate &struct peci_requests
* @device: PECI device to which request is going to be sent
* @tx_len: TX length
* @rx_len: RX length
*
* Return: A pointer to a newly allocated &struct peci_request on success or NULL otherwise.
*/
struct peci_request *peci_request_alloc(struct peci_device *device, u8 tx_len, u8 rx_len)
{
struct peci_request *req;
/*
* TX and RX buffers are fixed length members of peci_request, this is
* just a warn for developers to make sure to expand the buffers (or
* change the allocation method) if we go over the current limit.
*/
if (WARN_ON_ONCE(tx_len > PECI_REQUEST_MAX_BUF_SIZE || rx_len > PECI_REQUEST_MAX_BUF_SIZE))
return NULL;
/*
* PECI controllers that we are using now don't support DMA, this
* should be converted to DMA API once support for controllers that do
* allow it is added to avoid an extra copy.
*/
req = kzalloc(sizeof(*req), GFP_KERNEL);
if (!req)
return NULL;
req->device = device;
req->tx.len = tx_len;
req->rx.len = rx_len;
return req;
}
EXPORT_SYMBOL_NS_GPL(peci_request_alloc, PECI);
/**
* peci_request_free() - free peci_request
* @req: the PECI request to be freed
*/
void peci_request_free(struct peci_request *req)
{
kfree(req);
}
EXPORT_SYMBOL_NS_GPL(peci_request_free, PECI);
struct peci_request *peci_xfer_get_dib(struct peci_device *device)
{
struct peci_request *req;
int ret;
req = peci_request_alloc(device, PECI_GET_DIB_WR_LEN, PECI_GET_DIB_RD_LEN);
if (!req)
return ERR_PTR(-ENOMEM);
req->tx.buf[0] = PECI_GET_DIB_CMD;
ret = peci_request_xfer(req);
if (ret) {
peci_request_free(req);
return ERR_PTR(ret);
}
return req;
}
EXPORT_SYMBOL_NS_GPL(peci_xfer_get_dib, PECI);
struct peci_request *peci_xfer_get_temp(struct peci_device *device)
{
struct peci_request *req;
int ret;
req = peci_request_alloc(device, PECI_GET_TEMP_WR_LEN, PECI_GET_TEMP_RD_LEN);
if (!req)
return ERR_PTR(-ENOMEM);
req->tx.buf[0] = PECI_GET_TEMP_CMD;
ret = peci_request_xfer(req);
if (ret) {
peci_request_free(req);
return ERR_PTR(ret);
}
return req;
}
EXPORT_SYMBOL_NS_GPL(peci_xfer_get_temp, PECI);
static struct peci_request *
__pkg_cfg_read(struct peci_device *device, u8 index, u16 param, u8 len)
{
struct peci_request *req;
int ret;
req = peci_request_alloc(device, PECI_RDPKGCFG_WR_LEN, PECI_RDPKGCFG_RD_LEN_BASE + len);
if (!req)
return ERR_PTR(-ENOMEM);
req->tx.buf[0] = PECI_RDPKGCFG_CMD;
req->tx.buf[1] = 0;
req->tx.buf[2] = index;
put_unaligned_le16(param, &req->tx.buf[3]);
ret = peci_request_xfer_retry(req);
if (ret) {
peci_request_free(req);
return ERR_PTR(ret);
}
return req;
}
static u32 __get_pci_addr(u8 bus, u8 dev, u8 func, u16 reg)
{
return reg | PCI_DEVID(bus, PCI_DEVFN(dev, func)) << 12;
}
static struct peci_request *
__pci_cfg_local_read(struct peci_device *device, u8 bus, u8 dev, u8 func, u16 reg, u8 len)
{
struct peci_request *req;
u32 pci_addr;
int ret;
req = peci_request_alloc(device, PECI_RDPCICFGLOCAL_WR_LEN,
PECI_RDPCICFGLOCAL_RD_LEN_BASE + len);
if (!req)
return ERR_PTR(-ENOMEM);
pci_addr = __get_pci_addr(bus, dev, func, reg);
req->tx.buf[0] = PECI_RDPCICFGLOCAL_CMD;
req->tx.buf[1] = 0;
put_unaligned_le24(pci_addr, &req->tx.buf[2]);
ret = peci_request_xfer_retry(req);
if (ret) {
peci_request_free(req);
return ERR_PTR(ret);
}
return req;
}
static struct peci_request *
__ep_pci_cfg_read(struct peci_device *device, u8 msg_type, u8 seg,
u8 bus, u8 dev, u8 func, u16 reg, u8 len)
{
struct peci_request *req;
u32 pci_addr;
int ret;
req = peci_request_alloc(device, PECI_RDENDPTCFG_PCI_WR_LEN,
PECI_RDENDPTCFG_RD_LEN_BASE + len);
if (!req)
return ERR_PTR(-ENOMEM);
pci_addr = __get_pci_addr(bus, dev, func, reg);
req->tx.buf[0] = PECI_RDENDPTCFG_CMD;
req->tx.buf[1] = 0;
req->tx.buf[2] = msg_type;
req->tx.buf[3] = 0;
req->tx.buf[4] = 0;
req->tx.buf[5] = 0;
req->tx.buf[6] = PECI_ENDPTCFG_ADDR_TYPE_PCI;
req->tx.buf[7] = seg; /* PCI Segment */
put_unaligned_le32(pci_addr, &req->tx.buf[8]);
ret = peci_request_xfer_retry(req);
if (ret) {
peci_request_free(req);
return ERR_PTR(ret);
}
return req;
}
static struct peci_request *
__ep_mmio_read(struct peci_device *device, u8 bar, u8 addr_type, u8 seg,
u8 bus, u8 dev, u8 func, u64 offset, u8 tx_len, u8 len)
{
struct peci_request *req;
int ret;
req = peci_request_alloc(device, tx_len, PECI_RDENDPTCFG_RD_LEN_BASE + len);
if (!req)
return ERR_PTR(-ENOMEM);
req->tx.buf[0] = PECI_RDENDPTCFG_CMD;
req->tx.buf[1] = 0;
req->tx.buf[2] = PECI_ENDPTCFG_TYPE_MMIO;
req->tx.buf[3] = 0; /* Endpoint ID */
req->tx.buf[4] = 0; /* Reserved */
req->tx.buf[5] = bar;
req->tx.buf[6] = addr_type;
req->tx.buf[7] = seg; /* PCI Segment */
req->tx.buf[8] = PCI_DEVFN(dev, func);
req->tx.buf[9] = bus; /* PCI Bus */
if (addr_type == PECI_ENDPTCFG_ADDR_TYPE_MMIO_D)
put_unaligned_le32(offset, &req->tx.buf[10]);
else
put_unaligned_le64(offset, &req->tx.buf[10]);
ret = peci_request_xfer_retry(req);
if (ret) {
peci_request_free(req);
return ERR_PTR(ret);
}
return req;
}
u8 peci_request_data_readb(struct peci_request *req)
{
return req->rx.buf[1];
}
EXPORT_SYMBOL_NS_GPL(peci_request_data_readb, PECI);
u16 peci_request_data_readw(struct peci_request *req)
{
return get_unaligned_le16(&req->rx.buf[1]);
}
EXPORT_SYMBOL_NS_GPL(peci_request_data_readw, PECI);
u32 peci_request_data_readl(struct peci_request *req)
{
return get_unaligned_le32(&req->rx.buf[1]);
}
EXPORT_SYMBOL_NS_GPL(peci_request_data_readl, PECI);
u64 peci_request_data_readq(struct peci_request *req)
{
return get_unaligned_le64(&req->rx.buf[1]);
}
EXPORT_SYMBOL_NS_GPL(peci_request_data_readq, PECI);
u64 peci_request_dib_read(struct peci_request *req)
{
return get_unaligned_le64(&req->rx.buf[0]);
}
EXPORT_SYMBOL_NS_GPL(peci_request_dib_read, PECI);
s16 peci_request_temp_read(struct peci_request *req)
{
return get_unaligned_le16(&req->rx.buf[0]);
}
EXPORT_SYMBOL_NS_GPL(peci_request_temp_read, PECI);
#define __read_pkg_config(x, type) \
struct peci_request *peci_xfer_pkg_cfg_##x(struct peci_device *device, u8 index, u16 param) \
{ \
return __pkg_cfg_read(device, index, param, sizeof(type)); \
} \
EXPORT_SYMBOL_NS_GPL(peci_xfer_pkg_cfg_##x, PECI)
__read_pkg_config(readb, u8);
__read_pkg_config(readw, u16);
__read_pkg_config(readl, u32);
__read_pkg_config(readq, u64);
#define __read_pci_config_local(x, type) \
struct peci_request * \
peci_xfer_pci_cfg_local_##x(struct peci_device *device, u8 bus, u8 dev, u8 func, u16 reg) \
{ \
return __pci_cfg_local_read(device, bus, dev, func, reg, sizeof(type)); \
} \
EXPORT_SYMBOL_NS_GPL(peci_xfer_pci_cfg_local_##x, PECI)
__read_pci_config_local(readb, u8);
__read_pci_config_local(readw, u16);
__read_pci_config_local(readl, u32);
#define __read_ep_pci_config(x, msg_type, type) \
struct peci_request * \
peci_xfer_ep_pci_cfg_##x(struct peci_device *device, u8 seg, u8 bus, u8 dev, u8 func, u16 reg) \
{ \
return __ep_pci_cfg_read(device, msg_type, seg, bus, dev, func, reg, sizeof(type)); \
} \
EXPORT_SYMBOL_NS_GPL(peci_xfer_ep_pci_cfg_##x, PECI)
__read_ep_pci_config(local_readb, PECI_ENDPTCFG_TYPE_LOCAL_PCI, u8);
__read_ep_pci_config(local_readw, PECI_ENDPTCFG_TYPE_LOCAL_PCI, u16);
__read_ep_pci_config(local_readl, PECI_ENDPTCFG_TYPE_LOCAL_PCI, u32);
__read_ep_pci_config(readb, PECI_ENDPTCFG_TYPE_PCI, u8);
__read_ep_pci_config(readw, PECI_ENDPTCFG_TYPE_PCI, u16);
__read_ep_pci_config(readl, PECI_ENDPTCFG_TYPE_PCI, u32);
#define __read_ep_mmio(x, y, addr_type, type1, type2) \
struct peci_request *peci_xfer_ep_mmio##y##_##x(struct peci_device *device, u8 bar, u8 seg, \
u8 bus, u8 dev, u8 func, u64 offset) \
{ \
return __ep_mmio_read(device, bar, addr_type, seg, bus, dev, func, \
offset, PECI_RDENDPTCFG_MMIO_WR_LEN_BASE + sizeof(type1), \
sizeof(type2)); \
} \
EXPORT_SYMBOL_NS_GPL(peci_xfer_ep_mmio##y##_##x, PECI)
__read_ep_mmio(readl, 32, PECI_ENDPTCFG_ADDR_TYPE_MMIO_D, u32, u32);
__read_ep_mmio(readl, 64, PECI_ENDPTCFG_ADDR_TYPE_MMIO_Q, u64, u32);