linux/drivers/spi/spi-cadence-quadspi.c
Vaishnav Achath 73d5fe0462
spi: cadence-quadspi: Remove spi_master_put() in probe failure path
Currently the spi_master is allocated by devm_spi_alloc_master()
and devres core manages the deallocation, but in probe failure
path spi_master_put() is being handled manually which causes
"refcount underflow use-after-free" warning when probe failure happens
after allocating spi_master.

Trimmed backtrace during failure:

refcount_t: underflow; use-after-free.
pc : refcount_warn_saturate+0xf4/0x144
Call trace:
refcount_warn_saturate
kobject_put
put_device
devm_spi_release_controller
devres_release_all

This commit makes relevant changes to remove spi_master_put() from probe
failure path.

Fixes: 606e5d4081 ("spi: cadence-quadspi: Handle spi_unregister_master() in remove()")

Signed-off-by: Vaishnav Achath <vaishnav.a@ti.com>
Link: https://lore.kernel.org/r/20220601071611.11853-1-vaishnav.a@ti.com
Signed-off-by: Mark Brown <broonie@kernel.org>
2022-07-14 13:26:35 +01:00

1842 lines
48 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
//
// Driver for Cadence QSPI Controller
//
// Copyright Altera Corporation (C) 2012-2014. All rights reserved.
// Copyright Intel Corporation (C) 2019-2020. All rights reserved.
// Copyright (C) 2020 Texas Instruments Incorporated - http://www.ti.com
#include <linux/clk.h>
#include <linux/completion.h>
#include <linux/delay.h>
#include <linux/dma-mapping.h>
#include <linux/dmaengine.h>
#include <linux/err.h>
#include <linux/errno.h>
#include <linux/firmware/xlnx-zynqmp.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/iopoll.h>
#include <linux/jiffies.h>
#include <linux/kernel.h>
#include <linux/log2.h>
#include <linux/module.h>
#include <linux/of_device.h>
#include <linux/of.h>
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>
#include <linux/reset.h>
#include <linux/sched.h>
#include <linux/spi/spi.h>
#include <linux/spi/spi-mem.h>
#include <linux/timer.h>
#define CQSPI_NAME "cadence-qspi"
#define CQSPI_MAX_CHIPSELECT 16
/* Quirks */
#define CQSPI_NEEDS_WR_DELAY BIT(0)
#define CQSPI_DISABLE_DAC_MODE BIT(1)
#define CQSPI_SUPPORT_EXTERNAL_DMA BIT(2)
#define CQSPI_NO_SUPPORT_WR_COMPLETION BIT(3)
/* Capabilities */
#define CQSPI_SUPPORTS_OCTAL BIT(0)
#define CQSPI_OP_WIDTH(part) ((part).nbytes ? ilog2((part).buswidth) : 0)
struct cqspi_st;
struct cqspi_flash_pdata {
struct cqspi_st *cqspi;
u32 clk_rate;
u32 read_delay;
u32 tshsl_ns;
u32 tsd2d_ns;
u32 tchsh_ns;
u32 tslch_ns;
u8 cs;
};
struct cqspi_st {
struct platform_device *pdev;
struct spi_master *master;
struct clk *clk;
unsigned int sclk;
void __iomem *iobase;
void __iomem *ahb_base;
resource_size_t ahb_size;
struct completion transfer_complete;
struct dma_chan *rx_chan;
struct completion rx_dma_complete;
dma_addr_t mmap_phys_base;
int current_cs;
unsigned long master_ref_clk_hz;
bool is_decoded_cs;
u32 fifo_depth;
u32 fifo_width;
u32 num_chipselect;
bool rclk_en;
u32 trigger_address;
u32 wr_delay;
bool use_direct_mode;
struct cqspi_flash_pdata f_pdata[CQSPI_MAX_CHIPSELECT];
bool use_dma_read;
u32 pd_dev_id;
bool wr_completion;
};
struct cqspi_driver_platdata {
u32 hwcaps_mask;
u8 quirks;
int (*indirect_read_dma)(struct cqspi_flash_pdata *f_pdata,
u_char *rxbuf, loff_t from_addr, size_t n_rx);
u32 (*get_dma_status)(struct cqspi_st *cqspi);
};
/* Operation timeout value */
#define CQSPI_TIMEOUT_MS 500
#define CQSPI_READ_TIMEOUT_MS 10
#define CQSPI_DUMMY_CLKS_PER_BYTE 8
#define CQSPI_DUMMY_BYTES_MAX 4
#define CQSPI_DUMMY_CLKS_MAX 31
#define CQSPI_STIG_DATA_LEN_MAX 8
/* Register map */
#define CQSPI_REG_CONFIG 0x00
#define CQSPI_REG_CONFIG_ENABLE_MASK BIT(0)
#define CQSPI_REG_CONFIG_ENB_DIR_ACC_CTRL BIT(7)
#define CQSPI_REG_CONFIG_DECODE_MASK BIT(9)
#define CQSPI_REG_CONFIG_CHIPSELECT_LSB 10
#define CQSPI_REG_CONFIG_DMA_MASK BIT(15)
#define CQSPI_REG_CONFIG_BAUD_LSB 19
#define CQSPI_REG_CONFIG_DTR_PROTO BIT(24)
#define CQSPI_REG_CONFIG_DUAL_OPCODE BIT(30)
#define CQSPI_REG_CONFIG_IDLE_LSB 31
#define CQSPI_REG_CONFIG_CHIPSELECT_MASK 0xF
#define CQSPI_REG_CONFIG_BAUD_MASK 0xF
#define CQSPI_REG_RD_INSTR 0x04
#define CQSPI_REG_RD_INSTR_OPCODE_LSB 0
#define CQSPI_REG_RD_INSTR_TYPE_INSTR_LSB 8
#define CQSPI_REG_RD_INSTR_TYPE_ADDR_LSB 12
#define CQSPI_REG_RD_INSTR_TYPE_DATA_LSB 16
#define CQSPI_REG_RD_INSTR_MODE_EN_LSB 20
#define CQSPI_REG_RD_INSTR_DUMMY_LSB 24
#define CQSPI_REG_RD_INSTR_TYPE_INSTR_MASK 0x3
#define CQSPI_REG_RD_INSTR_TYPE_ADDR_MASK 0x3
#define CQSPI_REG_RD_INSTR_TYPE_DATA_MASK 0x3
#define CQSPI_REG_RD_INSTR_DUMMY_MASK 0x1F
#define CQSPI_REG_WR_INSTR 0x08
#define CQSPI_REG_WR_INSTR_OPCODE_LSB 0
#define CQSPI_REG_WR_INSTR_TYPE_ADDR_LSB 12
#define CQSPI_REG_WR_INSTR_TYPE_DATA_LSB 16
#define CQSPI_REG_DELAY 0x0C
#define CQSPI_REG_DELAY_TSLCH_LSB 0
#define CQSPI_REG_DELAY_TCHSH_LSB 8
#define CQSPI_REG_DELAY_TSD2D_LSB 16
#define CQSPI_REG_DELAY_TSHSL_LSB 24
#define CQSPI_REG_DELAY_TSLCH_MASK 0xFF
#define CQSPI_REG_DELAY_TCHSH_MASK 0xFF
#define CQSPI_REG_DELAY_TSD2D_MASK 0xFF
#define CQSPI_REG_DELAY_TSHSL_MASK 0xFF
#define CQSPI_REG_READCAPTURE 0x10
#define CQSPI_REG_READCAPTURE_BYPASS_LSB 0
#define CQSPI_REG_READCAPTURE_DELAY_LSB 1
#define CQSPI_REG_READCAPTURE_DELAY_MASK 0xF
#define CQSPI_REG_SIZE 0x14
#define CQSPI_REG_SIZE_ADDRESS_LSB 0
#define CQSPI_REG_SIZE_PAGE_LSB 4
#define CQSPI_REG_SIZE_BLOCK_LSB 16
#define CQSPI_REG_SIZE_ADDRESS_MASK 0xF
#define CQSPI_REG_SIZE_PAGE_MASK 0xFFF
#define CQSPI_REG_SIZE_BLOCK_MASK 0x3F
#define CQSPI_REG_SRAMPARTITION 0x18
#define CQSPI_REG_INDIRECTTRIGGER 0x1C
#define CQSPI_REG_DMA 0x20
#define CQSPI_REG_DMA_SINGLE_LSB 0
#define CQSPI_REG_DMA_BURST_LSB 8
#define CQSPI_REG_DMA_SINGLE_MASK 0xFF
#define CQSPI_REG_DMA_BURST_MASK 0xFF
#define CQSPI_REG_REMAP 0x24
#define CQSPI_REG_MODE_BIT 0x28
#define CQSPI_REG_SDRAMLEVEL 0x2C
#define CQSPI_REG_SDRAMLEVEL_RD_LSB 0
#define CQSPI_REG_SDRAMLEVEL_WR_LSB 16
#define CQSPI_REG_SDRAMLEVEL_RD_MASK 0xFFFF
#define CQSPI_REG_SDRAMLEVEL_WR_MASK 0xFFFF
#define CQSPI_REG_WR_COMPLETION_CTRL 0x38
#define CQSPI_REG_WR_DISABLE_AUTO_POLL BIT(14)
#define CQSPI_REG_IRQSTATUS 0x40
#define CQSPI_REG_IRQMASK 0x44
#define CQSPI_REG_INDIRECTRD 0x60
#define CQSPI_REG_INDIRECTRD_START_MASK BIT(0)
#define CQSPI_REG_INDIRECTRD_CANCEL_MASK BIT(1)
#define CQSPI_REG_INDIRECTRD_DONE_MASK BIT(5)
#define CQSPI_REG_INDIRECTRDWATERMARK 0x64
#define CQSPI_REG_INDIRECTRDSTARTADDR 0x68
#define CQSPI_REG_INDIRECTRDBYTES 0x6C
#define CQSPI_REG_CMDCTRL 0x90
#define CQSPI_REG_CMDCTRL_EXECUTE_MASK BIT(0)
#define CQSPI_REG_CMDCTRL_INPROGRESS_MASK BIT(1)
#define CQSPI_REG_CMDCTRL_DUMMY_LSB 7
#define CQSPI_REG_CMDCTRL_WR_BYTES_LSB 12
#define CQSPI_REG_CMDCTRL_WR_EN_LSB 15
#define CQSPI_REG_CMDCTRL_ADD_BYTES_LSB 16
#define CQSPI_REG_CMDCTRL_ADDR_EN_LSB 19
#define CQSPI_REG_CMDCTRL_RD_BYTES_LSB 20
#define CQSPI_REG_CMDCTRL_RD_EN_LSB 23
#define CQSPI_REG_CMDCTRL_OPCODE_LSB 24
#define CQSPI_REG_CMDCTRL_WR_BYTES_MASK 0x7
#define CQSPI_REG_CMDCTRL_ADD_BYTES_MASK 0x3
#define CQSPI_REG_CMDCTRL_RD_BYTES_MASK 0x7
#define CQSPI_REG_CMDCTRL_DUMMY_MASK 0x1F
#define CQSPI_REG_INDIRECTWR 0x70
#define CQSPI_REG_INDIRECTWR_START_MASK BIT(0)
#define CQSPI_REG_INDIRECTWR_CANCEL_MASK BIT(1)
#define CQSPI_REG_INDIRECTWR_DONE_MASK BIT(5)
#define CQSPI_REG_INDIRECTWRWATERMARK 0x74
#define CQSPI_REG_INDIRECTWRSTARTADDR 0x78
#define CQSPI_REG_INDIRECTWRBYTES 0x7C
#define CQSPI_REG_INDTRIG_ADDRRANGE 0x80
#define CQSPI_REG_CMDADDRESS 0x94
#define CQSPI_REG_CMDREADDATALOWER 0xA0
#define CQSPI_REG_CMDREADDATAUPPER 0xA4
#define CQSPI_REG_CMDWRITEDATALOWER 0xA8
#define CQSPI_REG_CMDWRITEDATAUPPER 0xAC
#define CQSPI_REG_POLLING_STATUS 0xB0
#define CQSPI_REG_POLLING_STATUS_DUMMY_LSB 16
#define CQSPI_REG_OP_EXT_LOWER 0xE0
#define CQSPI_REG_OP_EXT_READ_LSB 24
#define CQSPI_REG_OP_EXT_WRITE_LSB 16
#define CQSPI_REG_OP_EXT_STIG_LSB 0
#define CQSPI_REG_VERSAL_DMA_SRC_ADDR 0x1000
#define CQSPI_REG_VERSAL_DMA_DST_ADDR 0x1800
#define CQSPI_REG_VERSAL_DMA_DST_SIZE 0x1804
#define CQSPI_REG_VERSAL_DMA_DST_CTRL 0x180C
#define CQSPI_REG_VERSAL_DMA_DST_I_STS 0x1814
#define CQSPI_REG_VERSAL_DMA_DST_I_EN 0x1818
#define CQSPI_REG_VERSAL_DMA_DST_I_DIS 0x181C
#define CQSPI_REG_VERSAL_DMA_DST_DONE_MASK BIT(1)
#define CQSPI_REG_VERSAL_DMA_DST_ADDR_MSB 0x1828
#define CQSPI_REG_VERSAL_DMA_DST_CTRL_VAL 0xF43FFA00
#define CQSPI_REG_VERSAL_ADDRRANGE_WIDTH_VAL 0x6
/* Interrupt status bits */
#define CQSPI_REG_IRQ_MODE_ERR BIT(0)
#define CQSPI_REG_IRQ_UNDERFLOW BIT(1)
#define CQSPI_REG_IRQ_IND_COMP BIT(2)
#define CQSPI_REG_IRQ_IND_RD_REJECT BIT(3)
#define CQSPI_REG_IRQ_WR_PROTECTED_ERR BIT(4)
#define CQSPI_REG_IRQ_ILLEGAL_AHB_ERR BIT(5)
#define CQSPI_REG_IRQ_WATERMARK BIT(6)
#define CQSPI_REG_IRQ_IND_SRAM_FULL BIT(12)
#define CQSPI_IRQ_MASK_RD (CQSPI_REG_IRQ_WATERMARK | \
CQSPI_REG_IRQ_IND_SRAM_FULL | \
CQSPI_REG_IRQ_IND_COMP)
#define CQSPI_IRQ_MASK_WR (CQSPI_REG_IRQ_IND_COMP | \
CQSPI_REG_IRQ_WATERMARK | \
CQSPI_REG_IRQ_UNDERFLOW)
#define CQSPI_IRQ_STATUS_MASK 0x1FFFF
#define CQSPI_DMA_UNALIGN 0x3
#define CQSPI_REG_VERSAL_DMA_VAL 0x602
static int cqspi_wait_for_bit(void __iomem *reg, const u32 mask, bool clr)
{
u32 val;
return readl_relaxed_poll_timeout(reg, val,
(((clr ? ~val : val) & mask) == mask),
10, CQSPI_TIMEOUT_MS * 1000);
}
static bool cqspi_is_idle(struct cqspi_st *cqspi)
{
u32 reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
return reg & (1UL << CQSPI_REG_CONFIG_IDLE_LSB);
}
static u32 cqspi_get_rd_sram_level(struct cqspi_st *cqspi)
{
u32 reg = readl(cqspi->iobase + CQSPI_REG_SDRAMLEVEL);
reg >>= CQSPI_REG_SDRAMLEVEL_RD_LSB;
return reg & CQSPI_REG_SDRAMLEVEL_RD_MASK;
}
static u32 cqspi_get_versal_dma_status(struct cqspi_st *cqspi)
{
u32 dma_status;
dma_status = readl(cqspi->iobase +
CQSPI_REG_VERSAL_DMA_DST_I_STS);
writel(dma_status, cqspi->iobase +
CQSPI_REG_VERSAL_DMA_DST_I_STS);
return dma_status & CQSPI_REG_VERSAL_DMA_DST_DONE_MASK;
}
static irqreturn_t cqspi_irq_handler(int this_irq, void *dev)
{
struct cqspi_st *cqspi = dev;
unsigned int irq_status;
struct device *device = &cqspi->pdev->dev;
const struct cqspi_driver_platdata *ddata;
ddata = of_device_get_match_data(device);
/* Read interrupt status */
irq_status = readl(cqspi->iobase + CQSPI_REG_IRQSTATUS);
/* Clear interrupt */
writel(irq_status, cqspi->iobase + CQSPI_REG_IRQSTATUS);
if (cqspi->use_dma_read && ddata && ddata->get_dma_status) {
if (ddata->get_dma_status(cqspi)) {
complete(&cqspi->transfer_complete);
return IRQ_HANDLED;
}
}
irq_status &= CQSPI_IRQ_MASK_RD | CQSPI_IRQ_MASK_WR;
if (irq_status)
complete(&cqspi->transfer_complete);
return IRQ_HANDLED;
}
static unsigned int cqspi_calc_rdreg(const struct spi_mem_op *op)
{
u32 rdreg = 0;
rdreg |= CQSPI_OP_WIDTH(op->cmd) << CQSPI_REG_RD_INSTR_TYPE_INSTR_LSB;
rdreg |= CQSPI_OP_WIDTH(op->addr) << CQSPI_REG_RD_INSTR_TYPE_ADDR_LSB;
rdreg |= CQSPI_OP_WIDTH(op->data) << CQSPI_REG_RD_INSTR_TYPE_DATA_LSB;
return rdreg;
}
static unsigned int cqspi_calc_dummy(const struct spi_mem_op *op)
{
unsigned int dummy_clk;
if (!op->dummy.nbytes)
return 0;
dummy_clk = op->dummy.nbytes * (8 / op->dummy.buswidth);
if (op->cmd.dtr)
dummy_clk /= 2;
return dummy_clk;
}
static int cqspi_wait_idle(struct cqspi_st *cqspi)
{
const unsigned int poll_idle_retry = 3;
unsigned int count = 0;
unsigned long timeout;
timeout = jiffies + msecs_to_jiffies(CQSPI_TIMEOUT_MS);
while (1) {
/*
* Read few times in succession to ensure the controller
* is indeed idle, that is, the bit does not transition
* low again.
*/
if (cqspi_is_idle(cqspi))
count++;
else
count = 0;
if (count >= poll_idle_retry)
return 0;
if (time_after(jiffies, timeout)) {
/* Timeout, in busy mode. */
dev_err(&cqspi->pdev->dev,
"QSPI is still busy after %dms timeout.\n",
CQSPI_TIMEOUT_MS);
return -ETIMEDOUT;
}
cpu_relax();
}
}
static int cqspi_exec_flash_cmd(struct cqspi_st *cqspi, unsigned int reg)
{
void __iomem *reg_base = cqspi->iobase;
int ret;
/* Write the CMDCTRL without start execution. */
writel(reg, reg_base + CQSPI_REG_CMDCTRL);
/* Start execute */
reg |= CQSPI_REG_CMDCTRL_EXECUTE_MASK;
writel(reg, reg_base + CQSPI_REG_CMDCTRL);
/* Polling for completion. */
ret = cqspi_wait_for_bit(reg_base + CQSPI_REG_CMDCTRL,
CQSPI_REG_CMDCTRL_INPROGRESS_MASK, 1);
if (ret) {
dev_err(&cqspi->pdev->dev,
"Flash command execution timed out.\n");
return ret;
}
/* Polling QSPI idle status. */
return cqspi_wait_idle(cqspi);
}
static int cqspi_setup_opcode_ext(struct cqspi_flash_pdata *f_pdata,
const struct spi_mem_op *op,
unsigned int shift)
{
struct cqspi_st *cqspi = f_pdata->cqspi;
void __iomem *reg_base = cqspi->iobase;
unsigned int reg;
u8 ext;
if (op->cmd.nbytes != 2)
return -EINVAL;
/* Opcode extension is the LSB. */
ext = op->cmd.opcode & 0xff;
reg = readl(reg_base + CQSPI_REG_OP_EXT_LOWER);
reg &= ~(0xff << shift);
reg |= ext << shift;
writel(reg, reg_base + CQSPI_REG_OP_EXT_LOWER);
return 0;
}
static int cqspi_enable_dtr(struct cqspi_flash_pdata *f_pdata,
const struct spi_mem_op *op, unsigned int shift)
{
struct cqspi_st *cqspi = f_pdata->cqspi;
void __iomem *reg_base = cqspi->iobase;
unsigned int reg;
int ret;
reg = readl(reg_base + CQSPI_REG_CONFIG);
/*
* We enable dual byte opcode here. The callers have to set up the
* extension opcode based on which type of operation it is.
*/
if (op->cmd.dtr) {
reg |= CQSPI_REG_CONFIG_DTR_PROTO;
reg |= CQSPI_REG_CONFIG_DUAL_OPCODE;
/* Set up command opcode extension. */
ret = cqspi_setup_opcode_ext(f_pdata, op, shift);
if (ret)
return ret;
} else {
reg &= ~CQSPI_REG_CONFIG_DTR_PROTO;
reg &= ~CQSPI_REG_CONFIG_DUAL_OPCODE;
}
writel(reg, reg_base + CQSPI_REG_CONFIG);
return cqspi_wait_idle(cqspi);
}
static int cqspi_command_read(struct cqspi_flash_pdata *f_pdata,
const struct spi_mem_op *op)
{
struct cqspi_st *cqspi = f_pdata->cqspi;
void __iomem *reg_base = cqspi->iobase;
u8 *rxbuf = op->data.buf.in;
u8 opcode;
size_t n_rx = op->data.nbytes;
unsigned int rdreg;
unsigned int reg;
unsigned int dummy_clk;
size_t read_len;
int status;
status = cqspi_enable_dtr(f_pdata, op, CQSPI_REG_OP_EXT_STIG_LSB);
if (status)
return status;
if (!n_rx || n_rx > CQSPI_STIG_DATA_LEN_MAX || !rxbuf) {
dev_err(&cqspi->pdev->dev,
"Invalid input argument, len %zu rxbuf 0x%p\n",
n_rx, rxbuf);
return -EINVAL;
}
if (op->cmd.dtr)
opcode = op->cmd.opcode >> 8;
else
opcode = op->cmd.opcode;
reg = opcode << CQSPI_REG_CMDCTRL_OPCODE_LSB;
rdreg = cqspi_calc_rdreg(op);
writel(rdreg, reg_base + CQSPI_REG_RD_INSTR);
dummy_clk = cqspi_calc_dummy(op);
if (dummy_clk > CQSPI_DUMMY_CLKS_MAX)
return -EOPNOTSUPP;
if (dummy_clk)
reg |= (dummy_clk & CQSPI_REG_CMDCTRL_DUMMY_MASK)
<< CQSPI_REG_CMDCTRL_DUMMY_LSB;
reg |= (0x1 << CQSPI_REG_CMDCTRL_RD_EN_LSB);
/* 0 means 1 byte. */
reg |= (((n_rx - 1) & CQSPI_REG_CMDCTRL_RD_BYTES_MASK)
<< CQSPI_REG_CMDCTRL_RD_BYTES_LSB);
status = cqspi_exec_flash_cmd(cqspi, reg);
if (status)
return status;
reg = readl(reg_base + CQSPI_REG_CMDREADDATALOWER);
/* Put the read value into rx_buf */
read_len = (n_rx > 4) ? 4 : n_rx;
memcpy(rxbuf, &reg, read_len);
rxbuf += read_len;
if (n_rx > 4) {
reg = readl(reg_base + CQSPI_REG_CMDREADDATAUPPER);
read_len = n_rx - read_len;
memcpy(rxbuf, &reg, read_len);
}
return 0;
}
static int cqspi_command_write(struct cqspi_flash_pdata *f_pdata,
const struct spi_mem_op *op)
{
struct cqspi_st *cqspi = f_pdata->cqspi;
void __iomem *reg_base = cqspi->iobase;
u8 opcode;
const u8 *txbuf = op->data.buf.out;
size_t n_tx = op->data.nbytes;
unsigned int reg;
unsigned int data;
size_t write_len;
int ret;
ret = cqspi_enable_dtr(f_pdata, op, CQSPI_REG_OP_EXT_STIG_LSB);
if (ret)
return ret;
if (n_tx > CQSPI_STIG_DATA_LEN_MAX || (n_tx && !txbuf)) {
dev_err(&cqspi->pdev->dev,
"Invalid input argument, cmdlen %zu txbuf 0x%p\n",
n_tx, txbuf);
return -EINVAL;
}
reg = cqspi_calc_rdreg(op);
writel(reg, reg_base + CQSPI_REG_RD_INSTR);
if (op->cmd.dtr)
opcode = op->cmd.opcode >> 8;
else
opcode = op->cmd.opcode;
reg = opcode << CQSPI_REG_CMDCTRL_OPCODE_LSB;
if (op->addr.nbytes) {
reg |= (0x1 << CQSPI_REG_CMDCTRL_ADDR_EN_LSB);
reg |= ((op->addr.nbytes - 1) &
CQSPI_REG_CMDCTRL_ADD_BYTES_MASK)
<< CQSPI_REG_CMDCTRL_ADD_BYTES_LSB;
writel(op->addr.val, reg_base + CQSPI_REG_CMDADDRESS);
}
if (n_tx) {
reg |= (0x1 << CQSPI_REG_CMDCTRL_WR_EN_LSB);
reg |= ((n_tx - 1) & CQSPI_REG_CMDCTRL_WR_BYTES_MASK)
<< CQSPI_REG_CMDCTRL_WR_BYTES_LSB;
data = 0;
write_len = (n_tx > 4) ? 4 : n_tx;
memcpy(&data, txbuf, write_len);
txbuf += write_len;
writel(data, reg_base + CQSPI_REG_CMDWRITEDATALOWER);
if (n_tx > 4) {
data = 0;
write_len = n_tx - 4;
memcpy(&data, txbuf, write_len);
writel(data, reg_base + CQSPI_REG_CMDWRITEDATAUPPER);
}
}
return cqspi_exec_flash_cmd(cqspi, reg);
}
static int cqspi_read_setup(struct cqspi_flash_pdata *f_pdata,
const struct spi_mem_op *op)
{
struct cqspi_st *cqspi = f_pdata->cqspi;
void __iomem *reg_base = cqspi->iobase;
unsigned int dummy_clk = 0;
unsigned int reg;
int ret;
u8 opcode;
ret = cqspi_enable_dtr(f_pdata, op, CQSPI_REG_OP_EXT_READ_LSB);
if (ret)
return ret;
if (op->cmd.dtr)
opcode = op->cmd.opcode >> 8;
else
opcode = op->cmd.opcode;
reg = opcode << CQSPI_REG_RD_INSTR_OPCODE_LSB;
reg |= cqspi_calc_rdreg(op);
/* Setup dummy clock cycles */
dummy_clk = cqspi_calc_dummy(op);
if (dummy_clk > CQSPI_DUMMY_CLKS_MAX)
return -EOPNOTSUPP;
if (dummy_clk)
reg |= (dummy_clk & CQSPI_REG_RD_INSTR_DUMMY_MASK)
<< CQSPI_REG_RD_INSTR_DUMMY_LSB;
writel(reg, reg_base + CQSPI_REG_RD_INSTR);
/* Set address width */
reg = readl(reg_base + CQSPI_REG_SIZE);
reg &= ~CQSPI_REG_SIZE_ADDRESS_MASK;
reg |= (op->addr.nbytes - 1);
writel(reg, reg_base + CQSPI_REG_SIZE);
return 0;
}
static int cqspi_indirect_read_execute(struct cqspi_flash_pdata *f_pdata,
u8 *rxbuf, loff_t from_addr,
const size_t n_rx)
{
struct cqspi_st *cqspi = f_pdata->cqspi;
struct device *dev = &cqspi->pdev->dev;
void __iomem *reg_base = cqspi->iobase;
void __iomem *ahb_base = cqspi->ahb_base;
unsigned int remaining = n_rx;
unsigned int mod_bytes = n_rx % 4;
unsigned int bytes_to_read = 0;
u8 *rxbuf_end = rxbuf + n_rx;
int ret = 0;
writel(from_addr, reg_base + CQSPI_REG_INDIRECTRDSTARTADDR);
writel(remaining, reg_base + CQSPI_REG_INDIRECTRDBYTES);
/* Clear all interrupts. */
writel(CQSPI_IRQ_STATUS_MASK, reg_base + CQSPI_REG_IRQSTATUS);
writel(CQSPI_IRQ_MASK_RD, reg_base + CQSPI_REG_IRQMASK);
reinit_completion(&cqspi->transfer_complete);
writel(CQSPI_REG_INDIRECTRD_START_MASK,
reg_base + CQSPI_REG_INDIRECTRD);
while (remaining > 0) {
if (!wait_for_completion_timeout(&cqspi->transfer_complete,
msecs_to_jiffies(CQSPI_READ_TIMEOUT_MS)))
ret = -ETIMEDOUT;
bytes_to_read = cqspi_get_rd_sram_level(cqspi);
if (ret && bytes_to_read == 0) {
dev_err(dev, "Indirect read timeout, no bytes\n");
goto failrd;
}
while (bytes_to_read != 0) {
unsigned int word_remain = round_down(remaining, 4);
bytes_to_read *= cqspi->fifo_width;
bytes_to_read = bytes_to_read > remaining ?
remaining : bytes_to_read;
bytes_to_read = round_down(bytes_to_read, 4);
/* Read 4 byte word chunks then single bytes */
if (bytes_to_read) {
ioread32_rep(ahb_base, rxbuf,
(bytes_to_read / 4));
} else if (!word_remain && mod_bytes) {
unsigned int temp = ioread32(ahb_base);
bytes_to_read = mod_bytes;
memcpy(rxbuf, &temp, min((unsigned int)
(rxbuf_end - rxbuf),
bytes_to_read));
}
rxbuf += bytes_to_read;
remaining -= bytes_to_read;
bytes_to_read = cqspi_get_rd_sram_level(cqspi);
}
if (remaining > 0)
reinit_completion(&cqspi->transfer_complete);
}
/* Check indirect done status */
ret = cqspi_wait_for_bit(reg_base + CQSPI_REG_INDIRECTRD,
CQSPI_REG_INDIRECTRD_DONE_MASK, 0);
if (ret) {
dev_err(dev, "Indirect read completion error (%i)\n", ret);
goto failrd;
}
/* Disable interrupt */
writel(0, reg_base + CQSPI_REG_IRQMASK);
/* Clear indirect completion status */
writel(CQSPI_REG_INDIRECTRD_DONE_MASK, reg_base + CQSPI_REG_INDIRECTRD);
return 0;
failrd:
/* Disable interrupt */
writel(0, reg_base + CQSPI_REG_IRQMASK);
/* Cancel the indirect read */
writel(CQSPI_REG_INDIRECTWR_CANCEL_MASK,
reg_base + CQSPI_REG_INDIRECTRD);
return ret;
}
static int cqspi_versal_indirect_read_dma(struct cqspi_flash_pdata *f_pdata,
u_char *rxbuf, loff_t from_addr,
size_t n_rx)
{
struct cqspi_st *cqspi = f_pdata->cqspi;
struct device *dev = &cqspi->pdev->dev;
void __iomem *reg_base = cqspi->iobase;
u32 reg, bytes_to_dma;
loff_t addr = from_addr;
void *buf = rxbuf;
dma_addr_t dma_addr;
u8 bytes_rem;
int ret = 0;
bytes_rem = n_rx % 4;
bytes_to_dma = (n_rx - bytes_rem);
if (!bytes_to_dma)
goto nondmard;
ret = zynqmp_pm_ospi_mux_select(cqspi->pd_dev_id, PM_OSPI_MUX_SEL_DMA);
if (ret)
return ret;
reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
reg |= CQSPI_REG_CONFIG_DMA_MASK;
writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
dma_addr = dma_map_single(dev, rxbuf, bytes_to_dma, DMA_FROM_DEVICE);
if (dma_mapping_error(dev, dma_addr)) {
dev_err(dev, "dma mapping failed\n");
return -ENOMEM;
}
writel(from_addr, reg_base + CQSPI_REG_INDIRECTRDSTARTADDR);
writel(bytes_to_dma, reg_base + CQSPI_REG_INDIRECTRDBYTES);
writel(CQSPI_REG_VERSAL_ADDRRANGE_WIDTH_VAL,
reg_base + CQSPI_REG_INDTRIG_ADDRRANGE);
/* Clear all interrupts. */
writel(CQSPI_IRQ_STATUS_MASK, reg_base + CQSPI_REG_IRQSTATUS);
/* Enable DMA done interrupt */
writel(CQSPI_REG_VERSAL_DMA_DST_DONE_MASK,
reg_base + CQSPI_REG_VERSAL_DMA_DST_I_EN);
/* Default DMA periph configuration */
writel(CQSPI_REG_VERSAL_DMA_VAL, reg_base + CQSPI_REG_DMA);
/* Configure DMA Dst address */
writel(lower_32_bits(dma_addr),
reg_base + CQSPI_REG_VERSAL_DMA_DST_ADDR);
writel(upper_32_bits(dma_addr),
reg_base + CQSPI_REG_VERSAL_DMA_DST_ADDR_MSB);
/* Configure DMA Src address */
writel(cqspi->trigger_address, reg_base +
CQSPI_REG_VERSAL_DMA_SRC_ADDR);
/* Set DMA destination size */
writel(bytes_to_dma, reg_base + CQSPI_REG_VERSAL_DMA_DST_SIZE);
/* Set DMA destination control */
writel(CQSPI_REG_VERSAL_DMA_DST_CTRL_VAL,
reg_base + CQSPI_REG_VERSAL_DMA_DST_CTRL);
writel(CQSPI_REG_INDIRECTRD_START_MASK,
reg_base + CQSPI_REG_INDIRECTRD);
reinit_completion(&cqspi->transfer_complete);
if (!wait_for_completion_timeout(&cqspi->transfer_complete,
msecs_to_jiffies(CQSPI_READ_TIMEOUT_MS))) {
ret = -ETIMEDOUT;
goto failrd;
}
/* Disable DMA interrupt */
writel(0x0, cqspi->iobase + CQSPI_REG_VERSAL_DMA_DST_I_DIS);
/* Clear indirect completion status */
writel(CQSPI_REG_INDIRECTRD_DONE_MASK,
cqspi->iobase + CQSPI_REG_INDIRECTRD);
dma_unmap_single(dev, dma_addr, bytes_to_dma, DMA_FROM_DEVICE);
reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
reg &= ~CQSPI_REG_CONFIG_DMA_MASK;
writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
ret = zynqmp_pm_ospi_mux_select(cqspi->pd_dev_id,
PM_OSPI_MUX_SEL_LINEAR);
if (ret)
return ret;
nondmard:
if (bytes_rem) {
addr += bytes_to_dma;
buf += bytes_to_dma;
ret = cqspi_indirect_read_execute(f_pdata, buf, addr,
bytes_rem);
if (ret)
return ret;
}
return 0;
failrd:
/* Disable DMA interrupt */
writel(0x0, reg_base + CQSPI_REG_VERSAL_DMA_DST_I_DIS);
/* Cancel the indirect read */
writel(CQSPI_REG_INDIRECTWR_CANCEL_MASK,
reg_base + CQSPI_REG_INDIRECTRD);
dma_unmap_single(dev, dma_addr, bytes_to_dma, DMA_FROM_DEVICE);
reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
reg &= ~CQSPI_REG_CONFIG_DMA_MASK;
writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
zynqmp_pm_ospi_mux_select(cqspi->pd_dev_id, PM_OSPI_MUX_SEL_LINEAR);
return ret;
}
static int cqspi_write_setup(struct cqspi_flash_pdata *f_pdata,
const struct spi_mem_op *op)
{
unsigned int reg;
int ret;
struct cqspi_st *cqspi = f_pdata->cqspi;
void __iomem *reg_base = cqspi->iobase;
u8 opcode;
ret = cqspi_enable_dtr(f_pdata, op, CQSPI_REG_OP_EXT_WRITE_LSB);
if (ret)
return ret;
if (op->cmd.dtr)
opcode = op->cmd.opcode >> 8;
else
opcode = op->cmd.opcode;
/* Set opcode. */
reg = opcode << CQSPI_REG_WR_INSTR_OPCODE_LSB;
reg |= CQSPI_OP_WIDTH(op->data) << CQSPI_REG_WR_INSTR_TYPE_DATA_LSB;
reg |= CQSPI_OP_WIDTH(op->addr) << CQSPI_REG_WR_INSTR_TYPE_ADDR_LSB;
writel(reg, reg_base + CQSPI_REG_WR_INSTR);
reg = cqspi_calc_rdreg(op);
writel(reg, reg_base + CQSPI_REG_RD_INSTR);
/*
* SPI NAND flashes require the address of the status register to be
* passed in the Read SR command. Also, some SPI NOR flashes like the
* cypress Semper flash expect a 4-byte dummy address in the Read SR
* command in DTR mode.
*
* But this controller does not support address phase in the Read SR
* command when doing auto-HW polling. So, disable write completion
* polling on the controller's side. spinand and spi-nor will take
* care of polling the status register.
*/
if (cqspi->wr_completion) {
reg = readl(reg_base + CQSPI_REG_WR_COMPLETION_CTRL);
reg |= CQSPI_REG_WR_DISABLE_AUTO_POLL;
writel(reg, reg_base + CQSPI_REG_WR_COMPLETION_CTRL);
}
reg = readl(reg_base + CQSPI_REG_SIZE);
reg &= ~CQSPI_REG_SIZE_ADDRESS_MASK;
reg |= (op->addr.nbytes - 1);
writel(reg, reg_base + CQSPI_REG_SIZE);
return 0;
}
static int cqspi_indirect_write_execute(struct cqspi_flash_pdata *f_pdata,
loff_t to_addr, const u8 *txbuf,
const size_t n_tx)
{
struct cqspi_st *cqspi = f_pdata->cqspi;
struct device *dev = &cqspi->pdev->dev;
void __iomem *reg_base = cqspi->iobase;
unsigned int remaining = n_tx;
unsigned int write_bytes;
int ret;
writel(to_addr, reg_base + CQSPI_REG_INDIRECTWRSTARTADDR);
writel(remaining, reg_base + CQSPI_REG_INDIRECTWRBYTES);
/* Clear all interrupts. */
writel(CQSPI_IRQ_STATUS_MASK, reg_base + CQSPI_REG_IRQSTATUS);
writel(CQSPI_IRQ_MASK_WR, reg_base + CQSPI_REG_IRQMASK);
reinit_completion(&cqspi->transfer_complete);
writel(CQSPI_REG_INDIRECTWR_START_MASK,
reg_base + CQSPI_REG_INDIRECTWR);
/*
* As per 66AK2G02 TRM SPRUHY8F section 11.15.5.3 Indirect Access
* Controller programming sequence, couple of cycles of
* QSPI_REF_CLK delay is required for the above bit to
* be internally synchronized by the QSPI module. Provide 5
* cycles of delay.
*/
if (cqspi->wr_delay)
ndelay(cqspi->wr_delay);
while (remaining > 0) {
size_t write_words, mod_bytes;
write_bytes = remaining;
write_words = write_bytes / 4;
mod_bytes = write_bytes % 4;
/* Write 4 bytes at a time then single bytes. */
if (write_words) {
iowrite32_rep(cqspi->ahb_base, txbuf, write_words);
txbuf += (write_words * 4);
}
if (mod_bytes) {
unsigned int temp = 0xFFFFFFFF;
memcpy(&temp, txbuf, mod_bytes);
iowrite32(temp, cqspi->ahb_base);
txbuf += mod_bytes;
}
if (!wait_for_completion_timeout(&cqspi->transfer_complete,
msecs_to_jiffies(CQSPI_TIMEOUT_MS))) {
dev_err(dev, "Indirect write timeout\n");
ret = -ETIMEDOUT;
goto failwr;
}
remaining -= write_bytes;
if (remaining > 0)
reinit_completion(&cqspi->transfer_complete);
}
/* Check indirect done status */
ret = cqspi_wait_for_bit(reg_base + CQSPI_REG_INDIRECTWR,
CQSPI_REG_INDIRECTWR_DONE_MASK, 0);
if (ret) {
dev_err(dev, "Indirect write completion error (%i)\n", ret);
goto failwr;
}
/* Disable interrupt. */
writel(0, reg_base + CQSPI_REG_IRQMASK);
/* Clear indirect completion status */
writel(CQSPI_REG_INDIRECTWR_DONE_MASK, reg_base + CQSPI_REG_INDIRECTWR);
cqspi_wait_idle(cqspi);
return 0;
failwr:
/* Disable interrupt. */
writel(0, reg_base + CQSPI_REG_IRQMASK);
/* Cancel the indirect write */
writel(CQSPI_REG_INDIRECTWR_CANCEL_MASK,
reg_base + CQSPI_REG_INDIRECTWR);
return ret;
}
static void cqspi_chipselect(struct cqspi_flash_pdata *f_pdata)
{
struct cqspi_st *cqspi = f_pdata->cqspi;
void __iomem *reg_base = cqspi->iobase;
unsigned int chip_select = f_pdata->cs;
unsigned int reg;
reg = readl(reg_base + CQSPI_REG_CONFIG);
if (cqspi->is_decoded_cs) {
reg |= CQSPI_REG_CONFIG_DECODE_MASK;
} else {
reg &= ~CQSPI_REG_CONFIG_DECODE_MASK;
/* Convert CS if without decoder.
* CS0 to 4b'1110
* CS1 to 4b'1101
* CS2 to 4b'1011
* CS3 to 4b'0111
*/
chip_select = 0xF & ~(1 << chip_select);
}
reg &= ~(CQSPI_REG_CONFIG_CHIPSELECT_MASK
<< CQSPI_REG_CONFIG_CHIPSELECT_LSB);
reg |= (chip_select & CQSPI_REG_CONFIG_CHIPSELECT_MASK)
<< CQSPI_REG_CONFIG_CHIPSELECT_LSB;
writel(reg, reg_base + CQSPI_REG_CONFIG);
}
static unsigned int calculate_ticks_for_ns(const unsigned int ref_clk_hz,
const unsigned int ns_val)
{
unsigned int ticks;
ticks = ref_clk_hz / 1000; /* kHz */
ticks = DIV_ROUND_UP(ticks * ns_val, 1000000);
return ticks;
}
static void cqspi_delay(struct cqspi_flash_pdata *f_pdata)
{
struct cqspi_st *cqspi = f_pdata->cqspi;
void __iomem *iobase = cqspi->iobase;
const unsigned int ref_clk_hz = cqspi->master_ref_clk_hz;
unsigned int tshsl, tchsh, tslch, tsd2d;
unsigned int reg;
unsigned int tsclk;
/* calculate the number of ref ticks for one sclk tick */
tsclk = DIV_ROUND_UP(ref_clk_hz, cqspi->sclk);
tshsl = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tshsl_ns);
/* this particular value must be at least one sclk */
if (tshsl < tsclk)
tshsl = tsclk;
tchsh = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tchsh_ns);
tslch = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tslch_ns);
tsd2d = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tsd2d_ns);
reg = (tshsl & CQSPI_REG_DELAY_TSHSL_MASK)
<< CQSPI_REG_DELAY_TSHSL_LSB;
reg |= (tchsh & CQSPI_REG_DELAY_TCHSH_MASK)
<< CQSPI_REG_DELAY_TCHSH_LSB;
reg |= (tslch & CQSPI_REG_DELAY_TSLCH_MASK)
<< CQSPI_REG_DELAY_TSLCH_LSB;
reg |= (tsd2d & CQSPI_REG_DELAY_TSD2D_MASK)
<< CQSPI_REG_DELAY_TSD2D_LSB;
writel(reg, iobase + CQSPI_REG_DELAY);
}
static void cqspi_config_baudrate_div(struct cqspi_st *cqspi)
{
const unsigned int ref_clk_hz = cqspi->master_ref_clk_hz;
void __iomem *reg_base = cqspi->iobase;
u32 reg, div;
/* Recalculate the baudrate divisor based on QSPI specification. */
div = DIV_ROUND_UP(ref_clk_hz, 2 * cqspi->sclk) - 1;
reg = readl(reg_base + CQSPI_REG_CONFIG);
reg &= ~(CQSPI_REG_CONFIG_BAUD_MASK << CQSPI_REG_CONFIG_BAUD_LSB);
reg |= (div & CQSPI_REG_CONFIG_BAUD_MASK) << CQSPI_REG_CONFIG_BAUD_LSB;
writel(reg, reg_base + CQSPI_REG_CONFIG);
}
static void cqspi_readdata_capture(struct cqspi_st *cqspi,
const bool bypass,
const unsigned int delay)
{
void __iomem *reg_base = cqspi->iobase;
unsigned int reg;
reg = readl(reg_base + CQSPI_REG_READCAPTURE);
if (bypass)
reg |= (1 << CQSPI_REG_READCAPTURE_BYPASS_LSB);
else
reg &= ~(1 << CQSPI_REG_READCAPTURE_BYPASS_LSB);
reg &= ~(CQSPI_REG_READCAPTURE_DELAY_MASK
<< CQSPI_REG_READCAPTURE_DELAY_LSB);
reg |= (delay & CQSPI_REG_READCAPTURE_DELAY_MASK)
<< CQSPI_REG_READCAPTURE_DELAY_LSB;
writel(reg, reg_base + CQSPI_REG_READCAPTURE);
}
static void cqspi_controller_enable(struct cqspi_st *cqspi, bool enable)
{
void __iomem *reg_base = cqspi->iobase;
unsigned int reg;
reg = readl(reg_base + CQSPI_REG_CONFIG);
if (enable)
reg |= CQSPI_REG_CONFIG_ENABLE_MASK;
else
reg &= ~CQSPI_REG_CONFIG_ENABLE_MASK;
writel(reg, reg_base + CQSPI_REG_CONFIG);
}
static void cqspi_configure(struct cqspi_flash_pdata *f_pdata,
unsigned long sclk)
{
struct cqspi_st *cqspi = f_pdata->cqspi;
int switch_cs = (cqspi->current_cs != f_pdata->cs);
int switch_ck = (cqspi->sclk != sclk);
if (switch_cs || switch_ck)
cqspi_controller_enable(cqspi, 0);
/* Switch chip select. */
if (switch_cs) {
cqspi->current_cs = f_pdata->cs;
cqspi_chipselect(f_pdata);
}
/* Setup baudrate divisor and delays */
if (switch_ck) {
cqspi->sclk = sclk;
cqspi_config_baudrate_div(cqspi);
cqspi_delay(f_pdata);
cqspi_readdata_capture(cqspi, !cqspi->rclk_en,
f_pdata->read_delay);
}
if (switch_cs || switch_ck)
cqspi_controller_enable(cqspi, 1);
}
static ssize_t cqspi_write(struct cqspi_flash_pdata *f_pdata,
const struct spi_mem_op *op)
{
struct cqspi_st *cqspi = f_pdata->cqspi;
loff_t to = op->addr.val;
size_t len = op->data.nbytes;
const u_char *buf = op->data.buf.out;
int ret;
ret = cqspi_write_setup(f_pdata, op);
if (ret)
return ret;
/*
* Some flashes like the Cypress Semper flash expect a dummy 4-byte
* address (all 0s) with the read status register command in DTR mode.
* But this controller does not support sending dummy address bytes to
* the flash when it is polling the write completion register in DTR
* mode. So, we can not use direct mode when in DTR mode for writing
* data.
*/
if (!op->cmd.dtr && cqspi->use_direct_mode &&
((to + len) <= cqspi->ahb_size)) {
memcpy_toio(cqspi->ahb_base + to, buf, len);
return cqspi_wait_idle(cqspi);
}
return cqspi_indirect_write_execute(f_pdata, to, buf, len);
}
static void cqspi_rx_dma_callback(void *param)
{
struct cqspi_st *cqspi = param;
complete(&cqspi->rx_dma_complete);
}
static int cqspi_direct_read_execute(struct cqspi_flash_pdata *f_pdata,
u_char *buf, loff_t from, size_t len)
{
struct cqspi_st *cqspi = f_pdata->cqspi;
struct device *dev = &cqspi->pdev->dev;
enum dma_ctrl_flags flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT;
dma_addr_t dma_src = (dma_addr_t)cqspi->mmap_phys_base + from;
int ret = 0;
struct dma_async_tx_descriptor *tx;
dma_cookie_t cookie;
dma_addr_t dma_dst;
struct device *ddev;
if (!cqspi->rx_chan || !virt_addr_valid(buf)) {
memcpy_fromio(buf, cqspi->ahb_base + from, len);
return 0;
}
ddev = cqspi->rx_chan->device->dev;
dma_dst = dma_map_single(ddev, buf, len, DMA_FROM_DEVICE);
if (dma_mapping_error(ddev, dma_dst)) {
dev_err(dev, "dma mapping failed\n");
return -ENOMEM;
}
tx = dmaengine_prep_dma_memcpy(cqspi->rx_chan, dma_dst, dma_src,
len, flags);
if (!tx) {
dev_err(dev, "device_prep_dma_memcpy error\n");
ret = -EIO;
goto err_unmap;
}
tx->callback = cqspi_rx_dma_callback;
tx->callback_param = cqspi;
cookie = tx->tx_submit(tx);
reinit_completion(&cqspi->rx_dma_complete);
ret = dma_submit_error(cookie);
if (ret) {
dev_err(dev, "dma_submit_error %d\n", cookie);
ret = -EIO;
goto err_unmap;
}
dma_async_issue_pending(cqspi->rx_chan);
if (!wait_for_completion_timeout(&cqspi->rx_dma_complete,
msecs_to_jiffies(max_t(size_t, len, 500)))) {
dmaengine_terminate_sync(cqspi->rx_chan);
dev_err(dev, "DMA wait_for_completion_timeout\n");
ret = -ETIMEDOUT;
goto err_unmap;
}
err_unmap:
dma_unmap_single(ddev, dma_dst, len, DMA_FROM_DEVICE);
return ret;
}
static ssize_t cqspi_read(struct cqspi_flash_pdata *f_pdata,
const struct spi_mem_op *op)
{
struct cqspi_st *cqspi = f_pdata->cqspi;
struct device *dev = &cqspi->pdev->dev;
const struct cqspi_driver_platdata *ddata;
loff_t from = op->addr.val;
size_t len = op->data.nbytes;
u_char *buf = op->data.buf.in;
u64 dma_align = (u64)(uintptr_t)buf;
int ret;
ddata = of_device_get_match_data(dev);
ret = cqspi_read_setup(f_pdata, op);
if (ret)
return ret;
if (cqspi->use_direct_mode && ((from + len) <= cqspi->ahb_size))
return cqspi_direct_read_execute(f_pdata, buf, from, len);
if (cqspi->use_dma_read && ddata && ddata->indirect_read_dma &&
virt_addr_valid(buf) && ((dma_align & CQSPI_DMA_UNALIGN) == 0))
return ddata->indirect_read_dma(f_pdata, buf, from, len);
return cqspi_indirect_read_execute(f_pdata, buf, from, len);
}
static int cqspi_mem_process(struct spi_mem *mem, const struct spi_mem_op *op)
{
struct cqspi_st *cqspi = spi_master_get_devdata(mem->spi->master);
struct cqspi_flash_pdata *f_pdata;
f_pdata = &cqspi->f_pdata[mem->spi->chip_select];
cqspi_configure(f_pdata, mem->spi->max_speed_hz);
if (op->data.dir == SPI_MEM_DATA_IN && op->data.buf.in) {
if (!op->addr.nbytes)
return cqspi_command_read(f_pdata, op);
return cqspi_read(f_pdata, op);
}
if (!op->addr.nbytes || !op->data.buf.out)
return cqspi_command_write(f_pdata, op);
return cqspi_write(f_pdata, op);
}
static int cqspi_exec_mem_op(struct spi_mem *mem, const struct spi_mem_op *op)
{
int ret;
ret = cqspi_mem_process(mem, op);
if (ret)
dev_err(&mem->spi->dev, "operation failed with %d\n", ret);
return ret;
}
static bool cqspi_supports_mem_op(struct spi_mem *mem,
const struct spi_mem_op *op)
{
bool all_true, all_false;
/*
* op->dummy.dtr is required for converting nbytes into ncycles.
* Also, don't check the dtr field of the op phase having zero nbytes.
*/
all_true = op->cmd.dtr &&
(!op->addr.nbytes || op->addr.dtr) &&
(!op->dummy.nbytes || op->dummy.dtr) &&
(!op->data.nbytes || op->data.dtr);
all_false = !op->cmd.dtr && !op->addr.dtr && !op->dummy.dtr &&
!op->data.dtr;
if (all_true) {
/* Right now we only support 8-8-8 DTR mode. */
if (op->cmd.nbytes && op->cmd.buswidth != 8)
return false;
if (op->addr.nbytes && op->addr.buswidth != 8)
return false;
if (op->data.nbytes && op->data.buswidth != 8)
return false;
} else if (!all_false) {
/* Mixed DTR modes are not supported. */
return false;
}
return spi_mem_default_supports_op(mem, op);
}
static int cqspi_of_get_flash_pdata(struct platform_device *pdev,
struct cqspi_flash_pdata *f_pdata,
struct device_node *np)
{
if (of_property_read_u32(np, "cdns,read-delay", &f_pdata->read_delay)) {
dev_err(&pdev->dev, "couldn't determine read-delay\n");
return -ENXIO;
}
if (of_property_read_u32(np, "cdns,tshsl-ns", &f_pdata->tshsl_ns)) {
dev_err(&pdev->dev, "couldn't determine tshsl-ns\n");
return -ENXIO;
}
if (of_property_read_u32(np, "cdns,tsd2d-ns", &f_pdata->tsd2d_ns)) {
dev_err(&pdev->dev, "couldn't determine tsd2d-ns\n");
return -ENXIO;
}
if (of_property_read_u32(np, "cdns,tchsh-ns", &f_pdata->tchsh_ns)) {
dev_err(&pdev->dev, "couldn't determine tchsh-ns\n");
return -ENXIO;
}
if (of_property_read_u32(np, "cdns,tslch-ns", &f_pdata->tslch_ns)) {
dev_err(&pdev->dev, "couldn't determine tslch-ns\n");
return -ENXIO;
}
if (of_property_read_u32(np, "spi-max-frequency", &f_pdata->clk_rate)) {
dev_err(&pdev->dev, "couldn't determine spi-max-frequency\n");
return -ENXIO;
}
return 0;
}
static int cqspi_of_get_pdata(struct cqspi_st *cqspi)
{
struct device *dev = &cqspi->pdev->dev;
struct device_node *np = dev->of_node;
u32 id[2];
cqspi->is_decoded_cs = of_property_read_bool(np, "cdns,is-decoded-cs");
if (of_property_read_u32(np, "cdns,fifo-depth", &cqspi->fifo_depth)) {
dev_err(dev, "couldn't determine fifo-depth\n");
return -ENXIO;
}
if (of_property_read_u32(np, "cdns,fifo-width", &cqspi->fifo_width)) {
dev_err(dev, "couldn't determine fifo-width\n");
return -ENXIO;
}
if (of_property_read_u32(np, "cdns,trigger-address",
&cqspi->trigger_address)) {
dev_err(dev, "couldn't determine trigger-address\n");
return -ENXIO;
}
if (of_property_read_u32(np, "num-cs", &cqspi->num_chipselect))
cqspi->num_chipselect = CQSPI_MAX_CHIPSELECT;
cqspi->rclk_en = of_property_read_bool(np, "cdns,rclk-en");
if (!of_property_read_u32_array(np, "power-domains", id,
ARRAY_SIZE(id)))
cqspi->pd_dev_id = id[1];
return 0;
}
static void cqspi_controller_init(struct cqspi_st *cqspi)
{
u32 reg;
cqspi_controller_enable(cqspi, 0);
/* Configure the remap address register, no remap */
writel(0, cqspi->iobase + CQSPI_REG_REMAP);
/* Disable all interrupts. */
writel(0, cqspi->iobase + CQSPI_REG_IRQMASK);
/* Configure the SRAM split to 1:1 . */
writel(cqspi->fifo_depth / 2, cqspi->iobase + CQSPI_REG_SRAMPARTITION);
/* Load indirect trigger address. */
writel(cqspi->trigger_address,
cqspi->iobase + CQSPI_REG_INDIRECTTRIGGER);
/* Program read watermark -- 1/2 of the FIFO. */
writel(cqspi->fifo_depth * cqspi->fifo_width / 2,
cqspi->iobase + CQSPI_REG_INDIRECTRDWATERMARK);
/* Program write watermark -- 1/8 of the FIFO. */
writel(cqspi->fifo_depth * cqspi->fifo_width / 8,
cqspi->iobase + CQSPI_REG_INDIRECTWRWATERMARK);
/* Disable direct access controller */
if (!cqspi->use_direct_mode) {
reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
reg &= ~CQSPI_REG_CONFIG_ENB_DIR_ACC_CTRL;
writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
}
/* Enable DMA interface */
if (cqspi->use_dma_read) {
reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
reg |= CQSPI_REG_CONFIG_DMA_MASK;
writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
}
cqspi_controller_enable(cqspi, 1);
}
static int cqspi_request_mmap_dma(struct cqspi_st *cqspi)
{
dma_cap_mask_t mask;
dma_cap_zero(mask);
dma_cap_set(DMA_MEMCPY, mask);
cqspi->rx_chan = dma_request_chan_by_mask(&mask);
if (IS_ERR(cqspi->rx_chan)) {
int ret = PTR_ERR(cqspi->rx_chan);
cqspi->rx_chan = NULL;
return dev_err_probe(&cqspi->pdev->dev, ret, "No Rx DMA available\n");
}
init_completion(&cqspi->rx_dma_complete);
return 0;
}
static const char *cqspi_get_name(struct spi_mem *mem)
{
struct cqspi_st *cqspi = spi_master_get_devdata(mem->spi->master);
struct device *dev = &cqspi->pdev->dev;
return devm_kasprintf(dev, GFP_KERNEL, "%s.%d", dev_name(dev), mem->spi->chip_select);
}
static const struct spi_controller_mem_ops cqspi_mem_ops = {
.exec_op = cqspi_exec_mem_op,
.get_name = cqspi_get_name,
.supports_op = cqspi_supports_mem_op,
};
static const struct spi_controller_mem_caps cqspi_mem_caps = {
.dtr = true,
};
static int cqspi_setup_flash(struct cqspi_st *cqspi)
{
struct platform_device *pdev = cqspi->pdev;
struct device *dev = &pdev->dev;
struct device_node *np = dev->of_node;
struct cqspi_flash_pdata *f_pdata;
unsigned int cs;
int ret;
/* Get flash device data */
for_each_available_child_of_node(dev->of_node, np) {
ret = of_property_read_u32(np, "reg", &cs);
if (ret) {
dev_err(dev, "Couldn't determine chip select.\n");
of_node_put(np);
return ret;
}
if (cs >= CQSPI_MAX_CHIPSELECT) {
dev_err(dev, "Chip select %d out of range.\n", cs);
of_node_put(np);
return -EINVAL;
}
f_pdata = &cqspi->f_pdata[cs];
f_pdata->cqspi = cqspi;
f_pdata->cs = cs;
ret = cqspi_of_get_flash_pdata(pdev, f_pdata, np);
if (ret) {
of_node_put(np);
return ret;
}
}
return 0;
}
static int cqspi_probe(struct platform_device *pdev)
{
const struct cqspi_driver_platdata *ddata;
struct reset_control *rstc, *rstc_ocp;
struct device *dev = &pdev->dev;
struct spi_master *master;
struct resource *res_ahb;
struct cqspi_st *cqspi;
struct resource *res;
int ret;
int irq;
master = devm_spi_alloc_master(&pdev->dev, sizeof(*cqspi));
if (!master) {
dev_err(&pdev->dev, "spi_alloc_master failed\n");
return -ENOMEM;
}
master->mode_bits = SPI_RX_QUAD | SPI_RX_DUAL;
master->mem_ops = &cqspi_mem_ops;
master->mem_caps = &cqspi_mem_caps;
master->dev.of_node = pdev->dev.of_node;
cqspi = spi_master_get_devdata(master);
cqspi->pdev = pdev;
cqspi->master = master;
platform_set_drvdata(pdev, cqspi);
/* Obtain configuration from OF. */
ret = cqspi_of_get_pdata(cqspi);
if (ret) {
dev_err(dev, "Cannot get mandatory OF data.\n");
return -ENODEV;
}
/* Obtain QSPI clock. */
cqspi->clk = devm_clk_get(dev, NULL);
if (IS_ERR(cqspi->clk)) {
dev_err(dev, "Cannot claim QSPI clock.\n");
ret = PTR_ERR(cqspi->clk);
return ret;
}
/* Obtain and remap controller address. */
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
cqspi->iobase = devm_ioremap_resource(dev, res);
if (IS_ERR(cqspi->iobase)) {
dev_err(dev, "Cannot remap controller address.\n");
ret = PTR_ERR(cqspi->iobase);
return ret;
}
/* Obtain and remap AHB address. */
res_ahb = platform_get_resource(pdev, IORESOURCE_MEM, 1);
cqspi->ahb_base = devm_ioremap_resource(dev, res_ahb);
if (IS_ERR(cqspi->ahb_base)) {
dev_err(dev, "Cannot remap AHB address.\n");
ret = PTR_ERR(cqspi->ahb_base);
return ret;
}
cqspi->mmap_phys_base = (dma_addr_t)res_ahb->start;
cqspi->ahb_size = resource_size(res_ahb);
init_completion(&cqspi->transfer_complete);
/* Obtain IRQ line. */
irq = platform_get_irq(pdev, 0);
if (irq < 0)
return -ENXIO;
pm_runtime_enable(dev);
ret = pm_runtime_resume_and_get(dev);
if (ret < 0)
return ret;
ret = clk_prepare_enable(cqspi->clk);
if (ret) {
dev_err(dev, "Cannot enable QSPI clock.\n");
goto probe_clk_failed;
}
/* Obtain QSPI reset control */
rstc = devm_reset_control_get_optional_exclusive(dev, "qspi");
if (IS_ERR(rstc)) {
ret = PTR_ERR(rstc);
dev_err(dev, "Cannot get QSPI reset.\n");
goto probe_reset_failed;
}
rstc_ocp = devm_reset_control_get_optional_exclusive(dev, "qspi-ocp");
if (IS_ERR(rstc_ocp)) {
ret = PTR_ERR(rstc_ocp);
dev_err(dev, "Cannot get QSPI OCP reset.\n");
goto probe_reset_failed;
}
reset_control_assert(rstc);
reset_control_deassert(rstc);
reset_control_assert(rstc_ocp);
reset_control_deassert(rstc_ocp);
cqspi->master_ref_clk_hz = clk_get_rate(cqspi->clk);
master->max_speed_hz = cqspi->master_ref_clk_hz;
/* write completion is supported by default */
cqspi->wr_completion = true;
ddata = of_device_get_match_data(dev);
if (ddata) {
if (ddata->quirks & CQSPI_NEEDS_WR_DELAY)
cqspi->wr_delay = 50 * DIV_ROUND_UP(NSEC_PER_SEC,
cqspi->master_ref_clk_hz);
if (ddata->hwcaps_mask & CQSPI_SUPPORTS_OCTAL)
master->mode_bits |= SPI_RX_OCTAL | SPI_TX_OCTAL;
if (!(ddata->quirks & CQSPI_DISABLE_DAC_MODE))
cqspi->use_direct_mode = true;
if (ddata->quirks & CQSPI_SUPPORT_EXTERNAL_DMA)
cqspi->use_dma_read = true;
if (ddata->quirks & CQSPI_NO_SUPPORT_WR_COMPLETION)
cqspi->wr_completion = false;
if (of_device_is_compatible(pdev->dev.of_node,
"xlnx,versal-ospi-1.0"))
dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
}
ret = devm_request_irq(dev, irq, cqspi_irq_handler, 0,
pdev->name, cqspi);
if (ret) {
dev_err(dev, "Cannot request IRQ.\n");
goto probe_reset_failed;
}
cqspi_wait_idle(cqspi);
cqspi_controller_init(cqspi);
cqspi->current_cs = -1;
cqspi->sclk = 0;
master->num_chipselect = cqspi->num_chipselect;
ret = cqspi_setup_flash(cqspi);
if (ret) {
dev_err(dev, "failed to setup flash parameters %d\n", ret);
goto probe_setup_failed;
}
if (cqspi->use_direct_mode) {
ret = cqspi_request_mmap_dma(cqspi);
if (ret == -EPROBE_DEFER)
goto probe_setup_failed;
}
ret = spi_register_master(master);
if (ret) {
dev_err(&pdev->dev, "failed to register SPI ctlr %d\n", ret);
goto probe_setup_failed;
}
return 0;
probe_setup_failed:
cqspi_controller_enable(cqspi, 0);
probe_reset_failed:
clk_disable_unprepare(cqspi->clk);
probe_clk_failed:
pm_runtime_put_sync(dev);
pm_runtime_disable(dev);
return ret;
}
static int cqspi_remove(struct platform_device *pdev)
{
struct cqspi_st *cqspi = platform_get_drvdata(pdev);
spi_unregister_master(cqspi->master);
cqspi_controller_enable(cqspi, 0);
if (cqspi->rx_chan)
dma_release_channel(cqspi->rx_chan);
clk_disable_unprepare(cqspi->clk);
pm_runtime_put_sync(&pdev->dev);
pm_runtime_disable(&pdev->dev);
return 0;
}
#ifdef CONFIG_PM_SLEEP
static int cqspi_suspend(struct device *dev)
{
struct cqspi_st *cqspi = dev_get_drvdata(dev);
cqspi_controller_enable(cqspi, 0);
return 0;
}
static int cqspi_resume(struct device *dev)
{
struct cqspi_st *cqspi = dev_get_drvdata(dev);
cqspi_controller_enable(cqspi, 1);
return 0;
}
static const struct dev_pm_ops cqspi__dev_pm_ops = {
.suspend = cqspi_suspend,
.resume = cqspi_resume,
};
#define CQSPI_DEV_PM_OPS (&cqspi__dev_pm_ops)
#else
#define CQSPI_DEV_PM_OPS NULL
#endif
static const struct cqspi_driver_platdata cdns_qspi = {
.quirks = CQSPI_DISABLE_DAC_MODE,
};
static const struct cqspi_driver_platdata k2g_qspi = {
.quirks = CQSPI_NEEDS_WR_DELAY,
};
static const struct cqspi_driver_platdata am654_ospi = {
.hwcaps_mask = CQSPI_SUPPORTS_OCTAL,
.quirks = CQSPI_NEEDS_WR_DELAY,
};
static const struct cqspi_driver_platdata intel_lgm_qspi = {
.quirks = CQSPI_DISABLE_DAC_MODE,
};
static const struct cqspi_driver_platdata socfpga_qspi = {
.quirks = CQSPI_DISABLE_DAC_MODE | CQSPI_NO_SUPPORT_WR_COMPLETION,
};
static const struct cqspi_driver_platdata versal_ospi = {
.hwcaps_mask = CQSPI_SUPPORTS_OCTAL,
.quirks = CQSPI_DISABLE_DAC_MODE | CQSPI_SUPPORT_EXTERNAL_DMA,
.indirect_read_dma = cqspi_versal_indirect_read_dma,
.get_dma_status = cqspi_get_versal_dma_status,
};
static const struct of_device_id cqspi_dt_ids[] = {
{
.compatible = "cdns,qspi-nor",
.data = &cdns_qspi,
},
{
.compatible = "ti,k2g-qspi",
.data = &k2g_qspi,
},
{
.compatible = "ti,am654-ospi",
.data = &am654_ospi,
},
{
.compatible = "intel,lgm-qspi",
.data = &intel_lgm_qspi,
},
{
.compatible = "xlnx,versal-ospi-1.0",
.data = &versal_ospi,
},
{
.compatible = "intel,socfpga-qspi",
.data = &socfpga_qspi,
},
{ /* end of table */ }
};
MODULE_DEVICE_TABLE(of, cqspi_dt_ids);
static struct platform_driver cqspi_platform_driver = {
.probe = cqspi_probe,
.remove = cqspi_remove,
.driver = {
.name = CQSPI_NAME,
.pm = CQSPI_DEV_PM_OPS,
.of_match_table = cqspi_dt_ids,
},
};
module_platform_driver(cqspi_platform_driver);
MODULE_DESCRIPTION("Cadence QSPI Controller Driver");
MODULE_LICENSE("GPL v2");
MODULE_ALIAS("platform:" CQSPI_NAME);
MODULE_AUTHOR("Ley Foon Tan <lftan@altera.com>");
MODULE_AUTHOR("Graham Moore <grmoore@opensource.altera.com>");
MODULE_AUTHOR("Vadivel Murugan R <vadivel.muruganx.ramuthevar@intel.com>");
MODULE_AUTHOR("Vignesh Raghavendra <vigneshr@ti.com>");
MODULE_AUTHOR("Pratyush Yadav <p.yadav@ti.com>");