linux/drivers/nvme/host/auth.c
Christophe JAILLET 0f5335e158 nvmet: reorder fields in 'struct nvme_dhchap_queue_context'
Group some variables based on their sizes to reduce holes.
On x86_64, this shrinks the size of 'struct nvme_dhchap_queue_context' from
416 to 400 bytes.

This structure is kvcalloc()'ed in nvme_auth_init_ctrl(), so it is likely
that the allocation can be relatively big. Saving 16 bytes per structure
may might a slight difference.

Signed-off-by: Christophe JAILLET <christophe.jaillet@wanadoo.fr>
Reviewed-by: Sagi Grimberg <sagi@grimberg.me>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Keith Busch <kbusch@kernel.org>
2023-06-12 10:36:51 -07:00

1042 lines
27 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (c) 2020 Hannes Reinecke, SUSE Linux
*/
#include <linux/crc32.h>
#include <linux/base64.h>
#include <linux/prandom.h>
#include <asm/unaligned.h>
#include <crypto/hash.h>
#include <crypto/dh.h>
#include "nvme.h"
#include "fabrics.h"
#include <linux/nvme-auth.h>
#define CHAP_BUF_SIZE 4096
static struct kmem_cache *nvme_chap_buf_cache;
static mempool_t *nvme_chap_buf_pool;
struct nvme_dhchap_queue_context {
struct list_head entry;
struct work_struct auth_work;
struct nvme_ctrl *ctrl;
struct crypto_shash *shash_tfm;
struct crypto_kpp *dh_tfm;
void *buf;
int qid;
int error;
u32 s1;
u32 s2;
u16 transaction;
u8 status;
u8 dhgroup_id;
u8 hash_id;
size_t hash_len;
u8 c1[64];
u8 c2[64];
u8 response[64];
u8 *host_response;
u8 *ctrl_key;
u8 *host_key;
u8 *sess_key;
int ctrl_key_len;
int host_key_len;
int sess_key_len;
};
static struct workqueue_struct *nvme_auth_wq;
#define nvme_auth_flags_from_qid(qid) \
(qid == 0) ? 0 : BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_RESERVED
#define nvme_auth_queue_from_qid(ctrl, qid) \
(qid == 0) ? (ctrl)->fabrics_q : (ctrl)->connect_q
static inline int ctrl_max_dhchaps(struct nvme_ctrl *ctrl)
{
return ctrl->opts->nr_io_queues + ctrl->opts->nr_write_queues +
ctrl->opts->nr_poll_queues + 1;
}
static int nvme_auth_submit(struct nvme_ctrl *ctrl, int qid,
void *data, size_t data_len, bool auth_send)
{
struct nvme_command cmd = {};
blk_mq_req_flags_t flags = nvme_auth_flags_from_qid(qid);
struct request_queue *q = nvme_auth_queue_from_qid(ctrl, qid);
int ret;
cmd.auth_common.opcode = nvme_fabrics_command;
cmd.auth_common.secp = NVME_AUTH_DHCHAP_PROTOCOL_IDENTIFIER;
cmd.auth_common.spsp0 = 0x01;
cmd.auth_common.spsp1 = 0x01;
if (auth_send) {
cmd.auth_send.fctype = nvme_fabrics_type_auth_send;
cmd.auth_send.tl = cpu_to_le32(data_len);
} else {
cmd.auth_receive.fctype = nvme_fabrics_type_auth_receive;
cmd.auth_receive.al = cpu_to_le32(data_len);
}
ret = __nvme_submit_sync_cmd(q, &cmd, NULL, data, data_len,
qid == 0 ? NVME_QID_ANY : qid,
0, flags);
if (ret > 0)
dev_warn(ctrl->device,
"qid %d auth_send failed with status %d\n", qid, ret);
else if (ret < 0)
dev_err(ctrl->device,
"qid %d auth_send failed with error %d\n", qid, ret);
return ret;
}
static int nvme_auth_receive_validate(struct nvme_ctrl *ctrl, int qid,
struct nvmf_auth_dhchap_failure_data *data,
u16 transaction, u8 expected_msg)
{
dev_dbg(ctrl->device, "%s: qid %d auth_type %d auth_id %x\n",
__func__, qid, data->auth_type, data->auth_id);
if (data->auth_type == NVME_AUTH_COMMON_MESSAGES &&
data->auth_id == NVME_AUTH_DHCHAP_MESSAGE_FAILURE1) {
return data->rescode_exp;
}
if (data->auth_type != NVME_AUTH_DHCHAP_MESSAGES ||
data->auth_id != expected_msg) {
dev_warn(ctrl->device,
"qid %d invalid message %02x/%02x\n",
qid, data->auth_type, data->auth_id);
return NVME_AUTH_DHCHAP_FAILURE_INCORRECT_MESSAGE;
}
if (le16_to_cpu(data->t_id) != transaction) {
dev_warn(ctrl->device,
"qid %d invalid transaction ID %d\n",
qid, le16_to_cpu(data->t_id));
return NVME_AUTH_DHCHAP_FAILURE_INCORRECT_MESSAGE;
}
return 0;
}
static int nvme_auth_set_dhchap_negotiate_data(struct nvme_ctrl *ctrl,
struct nvme_dhchap_queue_context *chap)
{
struct nvmf_auth_dhchap_negotiate_data *data = chap->buf;
size_t size = sizeof(*data) + sizeof(union nvmf_auth_protocol);
if (size > CHAP_BUF_SIZE) {
chap->status = NVME_AUTH_DHCHAP_FAILURE_INCORRECT_PAYLOAD;
return -EINVAL;
}
memset((u8 *)chap->buf, 0, size);
data->auth_type = NVME_AUTH_COMMON_MESSAGES;
data->auth_id = NVME_AUTH_DHCHAP_MESSAGE_NEGOTIATE;
data->t_id = cpu_to_le16(chap->transaction);
data->sc_c = 0; /* No secure channel concatenation */
data->napd = 1;
data->auth_protocol[0].dhchap.authid = NVME_AUTH_DHCHAP_AUTH_ID;
data->auth_protocol[0].dhchap.halen = 3;
data->auth_protocol[0].dhchap.dhlen = 6;
data->auth_protocol[0].dhchap.idlist[0] = NVME_AUTH_HASH_SHA256;
data->auth_protocol[0].dhchap.idlist[1] = NVME_AUTH_HASH_SHA384;
data->auth_protocol[0].dhchap.idlist[2] = NVME_AUTH_HASH_SHA512;
data->auth_protocol[0].dhchap.idlist[30] = NVME_AUTH_DHGROUP_NULL;
data->auth_protocol[0].dhchap.idlist[31] = NVME_AUTH_DHGROUP_2048;
data->auth_protocol[0].dhchap.idlist[32] = NVME_AUTH_DHGROUP_3072;
data->auth_protocol[0].dhchap.idlist[33] = NVME_AUTH_DHGROUP_4096;
data->auth_protocol[0].dhchap.idlist[34] = NVME_AUTH_DHGROUP_6144;
data->auth_protocol[0].dhchap.idlist[35] = NVME_AUTH_DHGROUP_8192;
return size;
}
static int nvme_auth_process_dhchap_challenge(struct nvme_ctrl *ctrl,
struct nvme_dhchap_queue_context *chap)
{
struct nvmf_auth_dhchap_challenge_data *data = chap->buf;
u16 dhvlen = le16_to_cpu(data->dhvlen);
size_t size = sizeof(*data) + data->hl + dhvlen;
const char *gid_name = nvme_auth_dhgroup_name(data->dhgid);
const char *hmac_name, *kpp_name;
if (size > CHAP_BUF_SIZE) {
chap->status = NVME_AUTH_DHCHAP_FAILURE_INCORRECT_PAYLOAD;
return -EINVAL;
}
hmac_name = nvme_auth_hmac_name(data->hashid);
if (!hmac_name) {
dev_warn(ctrl->device,
"qid %d: invalid HASH ID %d\n",
chap->qid, data->hashid);
chap->status = NVME_AUTH_DHCHAP_FAILURE_HASH_UNUSABLE;
return -EPROTO;
}
if (chap->hash_id == data->hashid && chap->shash_tfm &&
!strcmp(crypto_shash_alg_name(chap->shash_tfm), hmac_name) &&
crypto_shash_digestsize(chap->shash_tfm) == data->hl) {
dev_dbg(ctrl->device,
"qid %d: reuse existing hash %s\n",
chap->qid, hmac_name);
goto select_kpp;
}
/* Reset if hash cannot be reused */
if (chap->shash_tfm) {
crypto_free_shash(chap->shash_tfm);
chap->hash_id = 0;
chap->hash_len = 0;
}
chap->shash_tfm = crypto_alloc_shash(hmac_name, 0,
CRYPTO_ALG_ALLOCATES_MEMORY);
if (IS_ERR(chap->shash_tfm)) {
dev_warn(ctrl->device,
"qid %d: failed to allocate hash %s, error %ld\n",
chap->qid, hmac_name, PTR_ERR(chap->shash_tfm));
chap->shash_tfm = NULL;
chap->status = NVME_AUTH_DHCHAP_FAILURE_FAILED;
return -ENOMEM;
}
if (crypto_shash_digestsize(chap->shash_tfm) != data->hl) {
dev_warn(ctrl->device,
"qid %d: invalid hash length %d\n",
chap->qid, data->hl);
crypto_free_shash(chap->shash_tfm);
chap->shash_tfm = NULL;
chap->status = NVME_AUTH_DHCHAP_FAILURE_HASH_UNUSABLE;
return -EPROTO;
}
chap->hash_id = data->hashid;
chap->hash_len = data->hl;
dev_dbg(ctrl->device, "qid %d: selected hash %s\n",
chap->qid, hmac_name);
select_kpp:
kpp_name = nvme_auth_dhgroup_kpp(data->dhgid);
if (!kpp_name) {
dev_warn(ctrl->device,
"qid %d: invalid DH group id %d\n",
chap->qid, data->dhgid);
chap->status = NVME_AUTH_DHCHAP_FAILURE_DHGROUP_UNUSABLE;
/* Leave previous dh_tfm intact */
return -EPROTO;
}
if (chap->dhgroup_id == data->dhgid &&
(data->dhgid == NVME_AUTH_DHGROUP_NULL || chap->dh_tfm)) {
dev_dbg(ctrl->device,
"qid %d: reuse existing DH group %s\n",
chap->qid, gid_name);
goto skip_kpp;
}
/* Reset dh_tfm if it can't be reused */
if (chap->dh_tfm) {
crypto_free_kpp(chap->dh_tfm);
chap->dh_tfm = NULL;
}
if (data->dhgid != NVME_AUTH_DHGROUP_NULL) {
if (dhvlen == 0) {
dev_warn(ctrl->device,
"qid %d: empty DH value\n",
chap->qid);
chap->status = NVME_AUTH_DHCHAP_FAILURE_DHGROUP_UNUSABLE;
return -EPROTO;
}
chap->dh_tfm = crypto_alloc_kpp(kpp_name, 0, 0);
if (IS_ERR(chap->dh_tfm)) {
int ret = PTR_ERR(chap->dh_tfm);
dev_warn(ctrl->device,
"qid %d: error %d initializing DH group %s\n",
chap->qid, ret, gid_name);
chap->status = NVME_AUTH_DHCHAP_FAILURE_DHGROUP_UNUSABLE;
chap->dh_tfm = NULL;
return ret;
}
dev_dbg(ctrl->device, "qid %d: selected DH group %s\n",
chap->qid, gid_name);
} else if (dhvlen != 0) {
dev_warn(ctrl->device,
"qid %d: invalid DH value for NULL DH\n",
chap->qid);
chap->status = NVME_AUTH_DHCHAP_FAILURE_INCORRECT_PAYLOAD;
return -EPROTO;
}
chap->dhgroup_id = data->dhgid;
skip_kpp:
chap->s1 = le32_to_cpu(data->seqnum);
memcpy(chap->c1, data->cval, chap->hash_len);
if (dhvlen) {
chap->ctrl_key = kmalloc(dhvlen, GFP_KERNEL);
if (!chap->ctrl_key) {
chap->status = NVME_AUTH_DHCHAP_FAILURE_FAILED;
return -ENOMEM;
}
chap->ctrl_key_len = dhvlen;
memcpy(chap->ctrl_key, data->cval + chap->hash_len,
dhvlen);
dev_dbg(ctrl->device, "ctrl public key %*ph\n",
(int)chap->ctrl_key_len, chap->ctrl_key);
}
return 0;
}
static int nvme_auth_set_dhchap_reply_data(struct nvme_ctrl *ctrl,
struct nvme_dhchap_queue_context *chap)
{
struct nvmf_auth_dhchap_reply_data *data = chap->buf;
size_t size = sizeof(*data);
size += 2 * chap->hash_len;
if (chap->host_key_len)
size += chap->host_key_len;
if (size > CHAP_BUF_SIZE) {
chap->status = NVME_AUTH_DHCHAP_FAILURE_INCORRECT_PAYLOAD;
return -EINVAL;
}
memset(chap->buf, 0, size);
data->auth_type = NVME_AUTH_DHCHAP_MESSAGES;
data->auth_id = NVME_AUTH_DHCHAP_MESSAGE_REPLY;
data->t_id = cpu_to_le16(chap->transaction);
data->hl = chap->hash_len;
data->dhvlen = cpu_to_le16(chap->host_key_len);
memcpy(data->rval, chap->response, chap->hash_len);
if (ctrl->ctrl_key) {
get_random_bytes(chap->c2, chap->hash_len);
data->cvalid = 1;
chap->s2 = nvme_auth_get_seqnum();
memcpy(data->rval + chap->hash_len, chap->c2,
chap->hash_len);
dev_dbg(ctrl->device, "%s: qid %d ctrl challenge %*ph\n",
__func__, chap->qid, (int)chap->hash_len, chap->c2);
} else {
memset(chap->c2, 0, chap->hash_len);
chap->s2 = 0;
}
data->seqnum = cpu_to_le32(chap->s2);
if (chap->host_key_len) {
dev_dbg(ctrl->device, "%s: qid %d host public key %*ph\n",
__func__, chap->qid,
chap->host_key_len, chap->host_key);
memcpy(data->rval + 2 * chap->hash_len, chap->host_key,
chap->host_key_len);
}
return size;
}
static int nvme_auth_process_dhchap_success1(struct nvme_ctrl *ctrl,
struct nvme_dhchap_queue_context *chap)
{
struct nvmf_auth_dhchap_success1_data *data = chap->buf;
size_t size = sizeof(*data);
if (chap->ctrl_key)
size += chap->hash_len;
if (size > CHAP_BUF_SIZE) {
chap->status = NVME_AUTH_DHCHAP_FAILURE_INCORRECT_PAYLOAD;
return -EINVAL;
}
if (data->hl != chap->hash_len) {
dev_warn(ctrl->device,
"qid %d: invalid hash length %u\n",
chap->qid, data->hl);
chap->status = NVME_AUTH_DHCHAP_FAILURE_HASH_UNUSABLE;
return -EPROTO;
}
/* Just print out information for the admin queue */
if (chap->qid == 0)
dev_info(ctrl->device,
"qid 0: authenticated with hash %s dhgroup %s\n",
nvme_auth_hmac_name(chap->hash_id),
nvme_auth_dhgroup_name(chap->dhgroup_id));
if (!data->rvalid)
return 0;
/* Validate controller response */
if (memcmp(chap->response, data->rval, data->hl)) {
dev_dbg(ctrl->device, "%s: qid %d ctrl response %*ph\n",
__func__, chap->qid, (int)chap->hash_len, data->rval);
dev_dbg(ctrl->device, "%s: qid %d host response %*ph\n",
__func__, chap->qid, (int)chap->hash_len,
chap->response);
dev_warn(ctrl->device,
"qid %d: controller authentication failed\n",
chap->qid);
chap->status = NVME_AUTH_DHCHAP_FAILURE_FAILED;
return -ECONNREFUSED;
}
/* Just print out information for the admin queue */
if (chap->qid == 0)
dev_info(ctrl->device,
"qid 0: controller authenticated\n");
return 0;
}
static int nvme_auth_set_dhchap_success2_data(struct nvme_ctrl *ctrl,
struct nvme_dhchap_queue_context *chap)
{
struct nvmf_auth_dhchap_success2_data *data = chap->buf;
size_t size = sizeof(*data);
memset(chap->buf, 0, size);
data->auth_type = NVME_AUTH_DHCHAP_MESSAGES;
data->auth_id = NVME_AUTH_DHCHAP_MESSAGE_SUCCESS2;
data->t_id = cpu_to_le16(chap->transaction);
return size;
}
static int nvme_auth_set_dhchap_failure2_data(struct nvme_ctrl *ctrl,
struct nvme_dhchap_queue_context *chap)
{
struct nvmf_auth_dhchap_failure_data *data = chap->buf;
size_t size = sizeof(*data);
memset(chap->buf, 0, size);
data->auth_type = NVME_AUTH_COMMON_MESSAGES;
data->auth_id = NVME_AUTH_DHCHAP_MESSAGE_FAILURE2;
data->t_id = cpu_to_le16(chap->transaction);
data->rescode = NVME_AUTH_DHCHAP_FAILURE_REASON_FAILED;
data->rescode_exp = chap->status;
return size;
}
static int nvme_auth_dhchap_setup_host_response(struct nvme_ctrl *ctrl,
struct nvme_dhchap_queue_context *chap)
{
SHASH_DESC_ON_STACK(shash, chap->shash_tfm);
u8 buf[4], *challenge = chap->c1;
int ret;
dev_dbg(ctrl->device, "%s: qid %d host response seq %u transaction %d\n",
__func__, chap->qid, chap->s1, chap->transaction);
if (!chap->host_response) {
chap->host_response = nvme_auth_transform_key(ctrl->host_key,
ctrl->opts->host->nqn);
if (IS_ERR(chap->host_response)) {
ret = PTR_ERR(chap->host_response);
chap->host_response = NULL;
return ret;
}
} else {
dev_dbg(ctrl->device, "%s: qid %d re-using host response\n",
__func__, chap->qid);
}
ret = crypto_shash_setkey(chap->shash_tfm,
chap->host_response, ctrl->host_key->len);
if (ret) {
dev_warn(ctrl->device, "qid %d: failed to set key, error %d\n",
chap->qid, ret);
goto out;
}
if (chap->dh_tfm) {
challenge = kmalloc(chap->hash_len, GFP_KERNEL);
if (!challenge) {
ret = -ENOMEM;
goto out;
}
ret = nvme_auth_augmented_challenge(chap->hash_id,
chap->sess_key,
chap->sess_key_len,
chap->c1, challenge,
chap->hash_len);
if (ret)
goto out;
}
shash->tfm = chap->shash_tfm;
ret = crypto_shash_init(shash);
if (ret)
goto out;
ret = crypto_shash_update(shash, challenge, chap->hash_len);
if (ret)
goto out;
put_unaligned_le32(chap->s1, buf);
ret = crypto_shash_update(shash, buf, 4);
if (ret)
goto out;
put_unaligned_le16(chap->transaction, buf);
ret = crypto_shash_update(shash, buf, 2);
if (ret)
goto out;
memset(buf, 0, sizeof(buf));
ret = crypto_shash_update(shash, buf, 1);
if (ret)
goto out;
ret = crypto_shash_update(shash, "HostHost", 8);
if (ret)
goto out;
ret = crypto_shash_update(shash, ctrl->opts->host->nqn,
strlen(ctrl->opts->host->nqn));
if (ret)
goto out;
ret = crypto_shash_update(shash, buf, 1);
if (ret)
goto out;
ret = crypto_shash_update(shash, ctrl->opts->subsysnqn,
strlen(ctrl->opts->subsysnqn));
if (ret)
goto out;
ret = crypto_shash_final(shash, chap->response);
out:
if (challenge != chap->c1)
kfree(challenge);
return ret;
}
static int nvme_auth_dhchap_setup_ctrl_response(struct nvme_ctrl *ctrl,
struct nvme_dhchap_queue_context *chap)
{
SHASH_DESC_ON_STACK(shash, chap->shash_tfm);
u8 *ctrl_response;
u8 buf[4], *challenge = chap->c2;
int ret;
ctrl_response = nvme_auth_transform_key(ctrl->ctrl_key,
ctrl->opts->subsysnqn);
if (IS_ERR(ctrl_response)) {
ret = PTR_ERR(ctrl_response);
return ret;
}
ret = crypto_shash_setkey(chap->shash_tfm,
ctrl_response, ctrl->ctrl_key->len);
if (ret) {
dev_warn(ctrl->device, "qid %d: failed to set key, error %d\n",
chap->qid, ret);
goto out;
}
if (chap->dh_tfm) {
challenge = kmalloc(chap->hash_len, GFP_KERNEL);
if (!challenge) {
ret = -ENOMEM;
goto out;
}
ret = nvme_auth_augmented_challenge(chap->hash_id,
chap->sess_key,
chap->sess_key_len,
chap->c2, challenge,
chap->hash_len);
if (ret)
goto out;
}
dev_dbg(ctrl->device, "%s: qid %d ctrl response seq %u transaction %d\n",
__func__, chap->qid, chap->s2, chap->transaction);
dev_dbg(ctrl->device, "%s: qid %d challenge %*ph\n",
__func__, chap->qid, (int)chap->hash_len, challenge);
dev_dbg(ctrl->device, "%s: qid %d subsysnqn %s\n",
__func__, chap->qid, ctrl->opts->subsysnqn);
dev_dbg(ctrl->device, "%s: qid %d hostnqn %s\n",
__func__, chap->qid, ctrl->opts->host->nqn);
shash->tfm = chap->shash_tfm;
ret = crypto_shash_init(shash);
if (ret)
goto out;
ret = crypto_shash_update(shash, challenge, chap->hash_len);
if (ret)
goto out;
put_unaligned_le32(chap->s2, buf);
ret = crypto_shash_update(shash, buf, 4);
if (ret)
goto out;
put_unaligned_le16(chap->transaction, buf);
ret = crypto_shash_update(shash, buf, 2);
if (ret)
goto out;
memset(buf, 0, 4);
ret = crypto_shash_update(shash, buf, 1);
if (ret)
goto out;
ret = crypto_shash_update(shash, "Controller", 10);
if (ret)
goto out;
ret = crypto_shash_update(shash, ctrl->opts->subsysnqn,
strlen(ctrl->opts->subsysnqn));
if (ret)
goto out;
ret = crypto_shash_update(shash, buf, 1);
if (ret)
goto out;
ret = crypto_shash_update(shash, ctrl->opts->host->nqn,
strlen(ctrl->opts->host->nqn));
if (ret)
goto out;
ret = crypto_shash_final(shash, chap->response);
out:
if (challenge != chap->c2)
kfree(challenge);
kfree(ctrl_response);
return ret;
}
static int nvme_auth_dhchap_exponential(struct nvme_ctrl *ctrl,
struct nvme_dhchap_queue_context *chap)
{
int ret;
if (chap->host_key && chap->host_key_len) {
dev_dbg(ctrl->device,
"qid %d: reusing host key\n", chap->qid);
goto gen_sesskey;
}
ret = nvme_auth_gen_privkey(chap->dh_tfm, chap->dhgroup_id);
if (ret < 0) {
chap->status = NVME_AUTH_DHCHAP_FAILURE_INCORRECT_PAYLOAD;
return ret;
}
chap->host_key_len = crypto_kpp_maxsize(chap->dh_tfm);
chap->host_key = kzalloc(chap->host_key_len, GFP_KERNEL);
if (!chap->host_key) {
chap->host_key_len = 0;
chap->status = NVME_AUTH_DHCHAP_FAILURE_FAILED;
return -ENOMEM;
}
ret = nvme_auth_gen_pubkey(chap->dh_tfm,
chap->host_key, chap->host_key_len);
if (ret) {
dev_dbg(ctrl->device,
"failed to generate public key, error %d\n", ret);
chap->status = NVME_AUTH_DHCHAP_FAILURE_INCORRECT_PAYLOAD;
return ret;
}
gen_sesskey:
chap->sess_key_len = chap->host_key_len;
chap->sess_key = kmalloc(chap->sess_key_len, GFP_KERNEL);
if (!chap->sess_key) {
chap->sess_key_len = 0;
chap->status = NVME_AUTH_DHCHAP_FAILURE_FAILED;
return -ENOMEM;
}
ret = nvme_auth_gen_shared_secret(chap->dh_tfm,
chap->ctrl_key, chap->ctrl_key_len,
chap->sess_key, chap->sess_key_len);
if (ret) {
dev_dbg(ctrl->device,
"failed to generate shared secret, error %d\n", ret);
chap->status = NVME_AUTH_DHCHAP_FAILURE_INCORRECT_PAYLOAD;
return ret;
}
dev_dbg(ctrl->device, "shared secret %*ph\n",
(int)chap->sess_key_len, chap->sess_key);
return 0;
}
static void nvme_auth_reset_dhchap(struct nvme_dhchap_queue_context *chap)
{
kfree_sensitive(chap->host_response);
chap->host_response = NULL;
kfree_sensitive(chap->host_key);
chap->host_key = NULL;
chap->host_key_len = 0;
kfree_sensitive(chap->ctrl_key);
chap->ctrl_key = NULL;
chap->ctrl_key_len = 0;
kfree_sensitive(chap->sess_key);
chap->sess_key = NULL;
chap->sess_key_len = 0;
chap->status = 0;
chap->error = 0;
chap->s1 = 0;
chap->s2 = 0;
chap->transaction = 0;
memset(chap->c1, 0, sizeof(chap->c1));
memset(chap->c2, 0, sizeof(chap->c2));
mempool_free(chap->buf, nvme_chap_buf_pool);
chap->buf = NULL;
}
static void nvme_auth_free_dhchap(struct nvme_dhchap_queue_context *chap)
{
nvme_auth_reset_dhchap(chap);
if (chap->shash_tfm)
crypto_free_shash(chap->shash_tfm);
if (chap->dh_tfm)
crypto_free_kpp(chap->dh_tfm);
}
static void nvme_queue_auth_work(struct work_struct *work)
{
struct nvme_dhchap_queue_context *chap =
container_of(work, struct nvme_dhchap_queue_context, auth_work);
struct nvme_ctrl *ctrl = chap->ctrl;
size_t tl;
int ret = 0;
/*
* Allocate a large enough buffer for the entire negotiation:
* 4k is enough to ffdhe8192.
*/
chap->buf = mempool_alloc(nvme_chap_buf_pool, GFP_KERNEL);
if (!chap->buf) {
chap->error = -ENOMEM;
return;
}
chap->transaction = ctrl->transaction++;
/* DH-HMAC-CHAP Step 1: send negotiate */
dev_dbg(ctrl->device, "%s: qid %d send negotiate\n",
__func__, chap->qid);
ret = nvme_auth_set_dhchap_negotiate_data(ctrl, chap);
if (ret < 0) {
chap->error = ret;
return;
}
tl = ret;
ret = nvme_auth_submit(ctrl, chap->qid, chap->buf, tl, true);
if (ret) {
chap->error = ret;
return;
}
/* DH-HMAC-CHAP Step 2: receive challenge */
dev_dbg(ctrl->device, "%s: qid %d receive challenge\n",
__func__, chap->qid);
memset(chap->buf, 0, CHAP_BUF_SIZE);
ret = nvme_auth_submit(ctrl, chap->qid, chap->buf, CHAP_BUF_SIZE,
false);
if (ret) {
dev_warn(ctrl->device,
"qid %d failed to receive challenge, %s %d\n",
chap->qid, ret < 0 ? "error" : "nvme status", ret);
chap->error = ret;
return;
}
ret = nvme_auth_receive_validate(ctrl, chap->qid, chap->buf, chap->transaction,
NVME_AUTH_DHCHAP_MESSAGE_CHALLENGE);
if (ret) {
chap->status = ret;
chap->error = -ECONNREFUSED;
return;
}
ret = nvme_auth_process_dhchap_challenge(ctrl, chap);
if (ret) {
/* Invalid challenge parameters */
chap->error = ret;
goto fail2;
}
if (chap->ctrl_key_len) {
dev_dbg(ctrl->device,
"%s: qid %d DH exponential\n",
__func__, chap->qid);
ret = nvme_auth_dhchap_exponential(ctrl, chap);
if (ret) {
chap->error = ret;
goto fail2;
}
}
dev_dbg(ctrl->device, "%s: qid %d host response\n",
__func__, chap->qid);
mutex_lock(&ctrl->dhchap_auth_mutex);
ret = nvme_auth_dhchap_setup_host_response(ctrl, chap);
if (ret) {
mutex_unlock(&ctrl->dhchap_auth_mutex);
chap->error = ret;
goto fail2;
}
mutex_unlock(&ctrl->dhchap_auth_mutex);
/* DH-HMAC-CHAP Step 3: send reply */
dev_dbg(ctrl->device, "%s: qid %d send reply\n",
__func__, chap->qid);
ret = nvme_auth_set_dhchap_reply_data(ctrl, chap);
if (ret < 0) {
chap->error = ret;
goto fail2;
}
tl = ret;
ret = nvme_auth_submit(ctrl, chap->qid, chap->buf, tl, true);
if (ret) {
chap->error = ret;
goto fail2;
}
/* DH-HMAC-CHAP Step 4: receive success1 */
dev_dbg(ctrl->device, "%s: qid %d receive success1\n",
__func__, chap->qid);
memset(chap->buf, 0, CHAP_BUF_SIZE);
ret = nvme_auth_submit(ctrl, chap->qid, chap->buf, CHAP_BUF_SIZE,
false);
if (ret) {
dev_warn(ctrl->device,
"qid %d failed to receive success1, %s %d\n",
chap->qid, ret < 0 ? "error" : "nvme status", ret);
chap->error = ret;
return;
}
ret = nvme_auth_receive_validate(ctrl, chap->qid,
chap->buf, chap->transaction,
NVME_AUTH_DHCHAP_MESSAGE_SUCCESS1);
if (ret) {
chap->status = ret;
chap->error = -ECONNREFUSED;
return;
}
mutex_lock(&ctrl->dhchap_auth_mutex);
if (ctrl->ctrl_key) {
dev_dbg(ctrl->device,
"%s: qid %d controller response\n",
__func__, chap->qid);
ret = nvme_auth_dhchap_setup_ctrl_response(ctrl, chap);
if (ret) {
mutex_unlock(&ctrl->dhchap_auth_mutex);
chap->error = ret;
goto fail2;
}
}
mutex_unlock(&ctrl->dhchap_auth_mutex);
ret = nvme_auth_process_dhchap_success1(ctrl, chap);
if (ret) {
/* Controller authentication failed */
chap->error = -ECONNREFUSED;
goto fail2;
}
if (chap->ctrl_key) {
/* DH-HMAC-CHAP Step 5: send success2 */
dev_dbg(ctrl->device, "%s: qid %d send success2\n",
__func__, chap->qid);
tl = nvme_auth_set_dhchap_success2_data(ctrl, chap);
ret = nvme_auth_submit(ctrl, chap->qid, chap->buf, tl, true);
if (ret)
chap->error = ret;
}
if (!ret) {
chap->error = 0;
return;
}
fail2:
dev_dbg(ctrl->device, "%s: qid %d send failure2, status %x\n",
__func__, chap->qid, chap->status);
tl = nvme_auth_set_dhchap_failure2_data(ctrl, chap);
ret = nvme_auth_submit(ctrl, chap->qid, chap->buf, tl, true);
/*
* only update error if send failure2 failed and no other
* error had been set during authentication.
*/
if (ret && !chap->error)
chap->error = ret;
}
int nvme_auth_negotiate(struct nvme_ctrl *ctrl, int qid)
{
struct nvme_dhchap_queue_context *chap;
if (!ctrl->host_key) {
dev_warn(ctrl->device, "qid %d: no key\n", qid);
return -ENOKEY;
}
if (ctrl->opts->dhchap_ctrl_secret && !ctrl->ctrl_key) {
dev_warn(ctrl->device, "qid %d: invalid ctrl key\n", qid);
return -ENOKEY;
}
chap = &ctrl->dhchap_ctxs[qid];
cancel_work_sync(&chap->auth_work);
queue_work(nvme_auth_wq, &chap->auth_work);
return 0;
}
EXPORT_SYMBOL_GPL(nvme_auth_negotiate);
int nvme_auth_wait(struct nvme_ctrl *ctrl, int qid)
{
struct nvme_dhchap_queue_context *chap;
int ret;
chap = &ctrl->dhchap_ctxs[qid];
flush_work(&chap->auth_work);
ret = chap->error;
/* clear sensitive info */
nvme_auth_reset_dhchap(chap);
return ret;
}
EXPORT_SYMBOL_GPL(nvme_auth_wait);
static void nvme_ctrl_auth_work(struct work_struct *work)
{
struct nvme_ctrl *ctrl =
container_of(work, struct nvme_ctrl, dhchap_auth_work);
int ret, q;
/*
* If the ctrl is no connected, bail as reconnect will handle
* authentication.
*/
if (ctrl->state != NVME_CTRL_LIVE)
return;
/* Authenticate admin queue first */
ret = nvme_auth_negotiate(ctrl, 0);
if (ret) {
dev_warn(ctrl->device,
"qid 0: error %d setting up authentication\n", ret);
return;
}
ret = nvme_auth_wait(ctrl, 0);
if (ret) {
dev_warn(ctrl->device,
"qid 0: authentication failed\n");
return;
}
for (q = 1; q < ctrl->queue_count; q++) {
ret = nvme_auth_negotiate(ctrl, q);
if (ret) {
dev_warn(ctrl->device,
"qid %d: error %d setting up authentication\n",
q, ret);
break;
}
}
/*
* Failure is a soft-state; credentials remain valid until
* the controller terminates the connection.
*/
for (q = 1; q < ctrl->queue_count; q++) {
ret = nvme_auth_wait(ctrl, q);
if (ret)
dev_warn(ctrl->device,
"qid %d: authentication failed\n", q);
}
}
int nvme_auth_init_ctrl(struct nvme_ctrl *ctrl)
{
struct nvme_dhchap_queue_context *chap;
int i, ret;
mutex_init(&ctrl->dhchap_auth_mutex);
INIT_WORK(&ctrl->dhchap_auth_work, nvme_ctrl_auth_work);
if (!ctrl->opts)
return 0;
ret = nvme_auth_generate_key(ctrl->opts->dhchap_secret,
&ctrl->host_key);
if (ret)
return ret;
ret = nvme_auth_generate_key(ctrl->opts->dhchap_ctrl_secret,
&ctrl->ctrl_key);
if (ret)
goto err_free_dhchap_secret;
if (!ctrl->opts->dhchap_secret && !ctrl->opts->dhchap_ctrl_secret)
return 0;
ctrl->dhchap_ctxs = kvcalloc(ctrl_max_dhchaps(ctrl),
sizeof(*chap), GFP_KERNEL);
if (!ctrl->dhchap_ctxs) {
ret = -ENOMEM;
goto err_free_dhchap_ctrl_secret;
}
for (i = 0; i < ctrl_max_dhchaps(ctrl); i++) {
chap = &ctrl->dhchap_ctxs[i];
chap->qid = i;
chap->ctrl = ctrl;
INIT_WORK(&chap->auth_work, nvme_queue_auth_work);
}
return 0;
err_free_dhchap_ctrl_secret:
nvme_auth_free_key(ctrl->ctrl_key);
ctrl->ctrl_key = NULL;
err_free_dhchap_secret:
nvme_auth_free_key(ctrl->host_key);
ctrl->host_key = NULL;
return ret;
}
EXPORT_SYMBOL_GPL(nvme_auth_init_ctrl);
void nvme_auth_stop(struct nvme_ctrl *ctrl)
{
cancel_work_sync(&ctrl->dhchap_auth_work);
}
EXPORT_SYMBOL_GPL(nvme_auth_stop);
void nvme_auth_free(struct nvme_ctrl *ctrl)
{
int i;
if (ctrl->dhchap_ctxs) {
for (i = 0; i < ctrl_max_dhchaps(ctrl); i++)
nvme_auth_free_dhchap(&ctrl->dhchap_ctxs[i]);
kfree(ctrl->dhchap_ctxs);
}
if (ctrl->host_key) {
nvme_auth_free_key(ctrl->host_key);
ctrl->host_key = NULL;
}
if (ctrl->ctrl_key) {
nvme_auth_free_key(ctrl->ctrl_key);
ctrl->ctrl_key = NULL;
}
}
EXPORT_SYMBOL_GPL(nvme_auth_free);
int __init nvme_init_auth(void)
{
nvme_auth_wq = alloc_workqueue("nvme-auth-wq",
WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
if (!nvme_auth_wq)
return -ENOMEM;
nvme_chap_buf_cache = kmem_cache_create("nvme-chap-buf-cache",
CHAP_BUF_SIZE, 0, SLAB_HWCACHE_ALIGN, NULL);
if (!nvme_chap_buf_cache)
goto err_destroy_workqueue;
nvme_chap_buf_pool = mempool_create(16, mempool_alloc_slab,
mempool_free_slab, nvme_chap_buf_cache);
if (!nvme_chap_buf_pool)
goto err_destroy_chap_buf_cache;
return 0;
err_destroy_chap_buf_cache:
kmem_cache_destroy(nvme_chap_buf_cache);
err_destroy_workqueue:
destroy_workqueue(nvme_auth_wq);
return -ENOMEM;
}
void __exit nvme_exit_auth(void)
{
mempool_destroy(nvme_chap_buf_pool);
kmem_cache_destroy(nvme_chap_buf_cache);
destroy_workqueue(nvme_auth_wq);
}