mirror of
https://github.com/torvalds/linux.git
synced 2024-11-11 06:31:49 +00:00
710d707d2f
During testing of xfs/141 on a V4 filesystem, I observed some inconsistent behavior with regards to resources that are held (i.e. remain locked) across a defer roll. The transaction roll always gives the defer roll function a new transaction, even if committing the old transaction fails. However, the defer roll function only rejoins the held resources if the transaction commit succeedied. This means that callers of defer roll have to figure out whether the held resources are attached to the transaction being passed back. Worse yet, if the defer roll was part of a defer finish call, we have a third possibility: the defer finish could pass back a dirty transaction with dirty held resources and an error code. The only sane way to handle all of these scenarios is to require that the code that held the resource either cancel the transaction before unlocking and releasing the resources, or use functions that detach resources from a transaction properly (e.g. xfs_trans_brelse) if they need to drop the reference before committing or cancelling the transaction. In order to make this so, change the defer roll code to join held resources to the new transaction unconditionally and fix all the bhold callers to release the held buffers correctly. Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Brian Foster <bfoster@redhat.com>
1274 lines
31 KiB
C
1274 lines
31 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Copyright (c) 2000-2003 Silicon Graphics, Inc.
|
|
* All Rights Reserved.
|
|
*/
|
|
#include "xfs.h"
|
|
#include "xfs_fs.h"
|
|
#include "xfs_format.h"
|
|
#include "xfs_log_format.h"
|
|
#include "xfs_shared.h"
|
|
#include "xfs_trans_resv.h"
|
|
#include "xfs_bit.h"
|
|
#include "xfs_mount.h"
|
|
#include "xfs_defer.h"
|
|
#include "xfs_inode.h"
|
|
#include "xfs_bmap.h"
|
|
#include "xfs_bmap_util.h"
|
|
#include "xfs_alloc.h"
|
|
#include "xfs_quota.h"
|
|
#include "xfs_error.h"
|
|
#include "xfs_trans.h"
|
|
#include "xfs_buf_item.h"
|
|
#include "xfs_trans_space.h"
|
|
#include "xfs_trans_priv.h"
|
|
#include "xfs_qm.h"
|
|
#include "xfs_cksum.h"
|
|
#include "xfs_trace.h"
|
|
#include "xfs_log.h"
|
|
#include "xfs_bmap_btree.h"
|
|
|
|
/*
|
|
* Lock order:
|
|
*
|
|
* ip->i_lock
|
|
* qi->qi_tree_lock
|
|
* dquot->q_qlock (xfs_dqlock() and friends)
|
|
* dquot->q_flush (xfs_dqflock() and friends)
|
|
* qi->qi_lru_lock
|
|
*
|
|
* If two dquots need to be locked the order is user before group/project,
|
|
* otherwise by the lowest id first, see xfs_dqlock2.
|
|
*/
|
|
|
|
struct kmem_zone *xfs_qm_dqtrxzone;
|
|
static struct kmem_zone *xfs_qm_dqzone;
|
|
|
|
static struct lock_class_key xfs_dquot_group_class;
|
|
static struct lock_class_key xfs_dquot_project_class;
|
|
|
|
/*
|
|
* This is called to free all the memory associated with a dquot
|
|
*/
|
|
void
|
|
xfs_qm_dqdestroy(
|
|
xfs_dquot_t *dqp)
|
|
{
|
|
ASSERT(list_empty(&dqp->q_lru));
|
|
|
|
kmem_free(dqp->q_logitem.qli_item.li_lv_shadow);
|
|
mutex_destroy(&dqp->q_qlock);
|
|
|
|
XFS_STATS_DEC(dqp->q_mount, xs_qm_dquot);
|
|
kmem_zone_free(xfs_qm_dqzone, dqp);
|
|
}
|
|
|
|
/*
|
|
* If default limits are in force, push them into the dquot now.
|
|
* We overwrite the dquot limits only if they are zero and this
|
|
* is not the root dquot.
|
|
*/
|
|
void
|
|
xfs_qm_adjust_dqlimits(
|
|
struct xfs_mount *mp,
|
|
struct xfs_dquot *dq)
|
|
{
|
|
struct xfs_quotainfo *q = mp->m_quotainfo;
|
|
struct xfs_disk_dquot *d = &dq->q_core;
|
|
struct xfs_def_quota *defq;
|
|
int prealloc = 0;
|
|
|
|
ASSERT(d->d_id);
|
|
defq = xfs_get_defquota(dq, q);
|
|
|
|
if (defq->bsoftlimit && !d->d_blk_softlimit) {
|
|
d->d_blk_softlimit = cpu_to_be64(defq->bsoftlimit);
|
|
prealloc = 1;
|
|
}
|
|
if (defq->bhardlimit && !d->d_blk_hardlimit) {
|
|
d->d_blk_hardlimit = cpu_to_be64(defq->bhardlimit);
|
|
prealloc = 1;
|
|
}
|
|
if (defq->isoftlimit && !d->d_ino_softlimit)
|
|
d->d_ino_softlimit = cpu_to_be64(defq->isoftlimit);
|
|
if (defq->ihardlimit && !d->d_ino_hardlimit)
|
|
d->d_ino_hardlimit = cpu_to_be64(defq->ihardlimit);
|
|
if (defq->rtbsoftlimit && !d->d_rtb_softlimit)
|
|
d->d_rtb_softlimit = cpu_to_be64(defq->rtbsoftlimit);
|
|
if (defq->rtbhardlimit && !d->d_rtb_hardlimit)
|
|
d->d_rtb_hardlimit = cpu_to_be64(defq->rtbhardlimit);
|
|
|
|
if (prealloc)
|
|
xfs_dquot_set_prealloc_limits(dq);
|
|
}
|
|
|
|
/*
|
|
* Check the limits and timers of a dquot and start or reset timers
|
|
* if necessary.
|
|
* This gets called even when quota enforcement is OFF, which makes our
|
|
* life a little less complicated. (We just don't reject any quota
|
|
* reservations in that case, when enforcement is off).
|
|
* We also return 0 as the values of the timers in Q_GETQUOTA calls, when
|
|
* enforcement's off.
|
|
* In contrast, warnings are a little different in that they don't
|
|
* 'automatically' get started when limits get exceeded. They do
|
|
* get reset to zero, however, when we find the count to be under
|
|
* the soft limit (they are only ever set non-zero via userspace).
|
|
*/
|
|
void
|
|
xfs_qm_adjust_dqtimers(
|
|
xfs_mount_t *mp,
|
|
xfs_disk_dquot_t *d)
|
|
{
|
|
ASSERT(d->d_id);
|
|
|
|
#ifdef DEBUG
|
|
if (d->d_blk_hardlimit)
|
|
ASSERT(be64_to_cpu(d->d_blk_softlimit) <=
|
|
be64_to_cpu(d->d_blk_hardlimit));
|
|
if (d->d_ino_hardlimit)
|
|
ASSERT(be64_to_cpu(d->d_ino_softlimit) <=
|
|
be64_to_cpu(d->d_ino_hardlimit));
|
|
if (d->d_rtb_hardlimit)
|
|
ASSERT(be64_to_cpu(d->d_rtb_softlimit) <=
|
|
be64_to_cpu(d->d_rtb_hardlimit));
|
|
#endif
|
|
|
|
if (!d->d_btimer) {
|
|
if ((d->d_blk_softlimit &&
|
|
(be64_to_cpu(d->d_bcount) >
|
|
be64_to_cpu(d->d_blk_softlimit))) ||
|
|
(d->d_blk_hardlimit &&
|
|
(be64_to_cpu(d->d_bcount) >
|
|
be64_to_cpu(d->d_blk_hardlimit)))) {
|
|
d->d_btimer = cpu_to_be32(get_seconds() +
|
|
mp->m_quotainfo->qi_btimelimit);
|
|
} else {
|
|
d->d_bwarns = 0;
|
|
}
|
|
} else {
|
|
if ((!d->d_blk_softlimit ||
|
|
(be64_to_cpu(d->d_bcount) <=
|
|
be64_to_cpu(d->d_blk_softlimit))) &&
|
|
(!d->d_blk_hardlimit ||
|
|
(be64_to_cpu(d->d_bcount) <=
|
|
be64_to_cpu(d->d_blk_hardlimit)))) {
|
|
d->d_btimer = 0;
|
|
}
|
|
}
|
|
|
|
if (!d->d_itimer) {
|
|
if ((d->d_ino_softlimit &&
|
|
(be64_to_cpu(d->d_icount) >
|
|
be64_to_cpu(d->d_ino_softlimit))) ||
|
|
(d->d_ino_hardlimit &&
|
|
(be64_to_cpu(d->d_icount) >
|
|
be64_to_cpu(d->d_ino_hardlimit)))) {
|
|
d->d_itimer = cpu_to_be32(get_seconds() +
|
|
mp->m_quotainfo->qi_itimelimit);
|
|
} else {
|
|
d->d_iwarns = 0;
|
|
}
|
|
} else {
|
|
if ((!d->d_ino_softlimit ||
|
|
(be64_to_cpu(d->d_icount) <=
|
|
be64_to_cpu(d->d_ino_softlimit))) &&
|
|
(!d->d_ino_hardlimit ||
|
|
(be64_to_cpu(d->d_icount) <=
|
|
be64_to_cpu(d->d_ino_hardlimit)))) {
|
|
d->d_itimer = 0;
|
|
}
|
|
}
|
|
|
|
if (!d->d_rtbtimer) {
|
|
if ((d->d_rtb_softlimit &&
|
|
(be64_to_cpu(d->d_rtbcount) >
|
|
be64_to_cpu(d->d_rtb_softlimit))) ||
|
|
(d->d_rtb_hardlimit &&
|
|
(be64_to_cpu(d->d_rtbcount) >
|
|
be64_to_cpu(d->d_rtb_hardlimit)))) {
|
|
d->d_rtbtimer = cpu_to_be32(get_seconds() +
|
|
mp->m_quotainfo->qi_rtbtimelimit);
|
|
} else {
|
|
d->d_rtbwarns = 0;
|
|
}
|
|
} else {
|
|
if ((!d->d_rtb_softlimit ||
|
|
(be64_to_cpu(d->d_rtbcount) <=
|
|
be64_to_cpu(d->d_rtb_softlimit))) &&
|
|
(!d->d_rtb_hardlimit ||
|
|
(be64_to_cpu(d->d_rtbcount) <=
|
|
be64_to_cpu(d->d_rtb_hardlimit)))) {
|
|
d->d_rtbtimer = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* initialize a buffer full of dquots and log the whole thing
|
|
*/
|
|
STATIC void
|
|
xfs_qm_init_dquot_blk(
|
|
xfs_trans_t *tp,
|
|
xfs_mount_t *mp,
|
|
xfs_dqid_t id,
|
|
uint type,
|
|
xfs_buf_t *bp)
|
|
{
|
|
struct xfs_quotainfo *q = mp->m_quotainfo;
|
|
xfs_dqblk_t *d;
|
|
xfs_dqid_t curid;
|
|
int i;
|
|
|
|
ASSERT(tp);
|
|
ASSERT(xfs_buf_islocked(bp));
|
|
|
|
d = bp->b_addr;
|
|
|
|
/*
|
|
* ID of the first dquot in the block - id's are zero based.
|
|
*/
|
|
curid = id - (id % q->qi_dqperchunk);
|
|
memset(d, 0, BBTOB(q->qi_dqchunklen));
|
|
for (i = 0; i < q->qi_dqperchunk; i++, d++, curid++) {
|
|
d->dd_diskdq.d_magic = cpu_to_be16(XFS_DQUOT_MAGIC);
|
|
d->dd_diskdq.d_version = XFS_DQUOT_VERSION;
|
|
d->dd_diskdq.d_id = cpu_to_be32(curid);
|
|
d->dd_diskdq.d_flags = type;
|
|
if (xfs_sb_version_hascrc(&mp->m_sb)) {
|
|
uuid_copy(&d->dd_uuid, &mp->m_sb.sb_meta_uuid);
|
|
xfs_update_cksum((char *)d, sizeof(struct xfs_dqblk),
|
|
XFS_DQUOT_CRC_OFF);
|
|
}
|
|
}
|
|
|
|
xfs_trans_dquot_buf(tp, bp,
|
|
(type & XFS_DQ_USER ? XFS_BLF_UDQUOT_BUF :
|
|
((type & XFS_DQ_PROJ) ? XFS_BLF_PDQUOT_BUF :
|
|
XFS_BLF_GDQUOT_BUF)));
|
|
xfs_trans_log_buf(tp, bp, 0, BBTOB(q->qi_dqchunklen) - 1);
|
|
}
|
|
|
|
/*
|
|
* Initialize the dynamic speculative preallocation thresholds. The lo/hi
|
|
* watermarks correspond to the soft and hard limits by default. If a soft limit
|
|
* is not specified, we use 95% of the hard limit.
|
|
*/
|
|
void
|
|
xfs_dquot_set_prealloc_limits(struct xfs_dquot *dqp)
|
|
{
|
|
uint64_t space;
|
|
|
|
dqp->q_prealloc_hi_wmark = be64_to_cpu(dqp->q_core.d_blk_hardlimit);
|
|
dqp->q_prealloc_lo_wmark = be64_to_cpu(dqp->q_core.d_blk_softlimit);
|
|
if (!dqp->q_prealloc_lo_wmark) {
|
|
dqp->q_prealloc_lo_wmark = dqp->q_prealloc_hi_wmark;
|
|
do_div(dqp->q_prealloc_lo_wmark, 100);
|
|
dqp->q_prealloc_lo_wmark *= 95;
|
|
}
|
|
|
|
space = dqp->q_prealloc_hi_wmark;
|
|
|
|
do_div(space, 100);
|
|
dqp->q_low_space[XFS_QLOWSP_1_PCNT] = space;
|
|
dqp->q_low_space[XFS_QLOWSP_3_PCNT] = space * 3;
|
|
dqp->q_low_space[XFS_QLOWSP_5_PCNT] = space * 5;
|
|
}
|
|
|
|
/*
|
|
* Ensure that the given in-core dquot has a buffer on disk backing it, and
|
|
* return the buffer locked and held. This is called when the bmapi finds a
|
|
* hole.
|
|
*/
|
|
STATIC int
|
|
xfs_dquot_disk_alloc(
|
|
struct xfs_trans **tpp,
|
|
struct xfs_dquot *dqp,
|
|
struct xfs_buf **bpp)
|
|
{
|
|
struct xfs_bmbt_irec map;
|
|
struct xfs_trans *tp = *tpp;
|
|
struct xfs_mount *mp = tp->t_mountp;
|
|
struct xfs_buf *bp;
|
|
struct xfs_inode *quotip = xfs_quota_inode(mp, dqp->dq_flags);
|
|
int nmaps = 1;
|
|
int error;
|
|
|
|
trace_xfs_dqalloc(dqp);
|
|
|
|
xfs_ilock(quotip, XFS_ILOCK_EXCL);
|
|
if (!xfs_this_quota_on(dqp->q_mount, dqp->dq_flags)) {
|
|
/*
|
|
* Return if this type of quotas is turned off while we didn't
|
|
* have an inode lock
|
|
*/
|
|
xfs_iunlock(quotip, XFS_ILOCK_EXCL);
|
|
return -ESRCH;
|
|
}
|
|
|
|
/* Create the block mapping. */
|
|
xfs_trans_ijoin(tp, quotip, XFS_ILOCK_EXCL);
|
|
error = xfs_bmapi_write(tp, quotip, dqp->q_fileoffset,
|
|
XFS_DQUOT_CLUSTER_SIZE_FSB, XFS_BMAPI_METADATA,
|
|
XFS_QM_DQALLOC_SPACE_RES(mp), &map, &nmaps);
|
|
if (error)
|
|
return error;
|
|
ASSERT(map.br_blockcount == XFS_DQUOT_CLUSTER_SIZE_FSB);
|
|
ASSERT(nmaps == 1);
|
|
ASSERT((map.br_startblock != DELAYSTARTBLOCK) &&
|
|
(map.br_startblock != HOLESTARTBLOCK));
|
|
|
|
/*
|
|
* Keep track of the blkno to save a lookup later
|
|
*/
|
|
dqp->q_blkno = XFS_FSB_TO_DADDR(mp, map.br_startblock);
|
|
|
|
/* now we can just get the buffer (there's nothing to read yet) */
|
|
bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, dqp->q_blkno,
|
|
mp->m_quotainfo->qi_dqchunklen, 0);
|
|
if (!bp)
|
|
return -ENOMEM;
|
|
bp->b_ops = &xfs_dquot_buf_ops;
|
|
|
|
/*
|
|
* Make a chunk of dquots out of this buffer and log
|
|
* the entire thing.
|
|
*/
|
|
xfs_qm_init_dquot_blk(tp, mp, be32_to_cpu(dqp->q_core.d_id),
|
|
dqp->dq_flags & XFS_DQ_ALLTYPES, bp);
|
|
xfs_buf_set_ref(bp, XFS_DQUOT_REF);
|
|
|
|
/*
|
|
* Hold the buffer and join it to the dfops so that we'll still own
|
|
* the buffer when we return to the caller. The buffer disposal on
|
|
* error must be paid attention to very carefully, as it has been
|
|
* broken since commit efa092f3d4c6 "[XFS] Fixes a bug in the quota
|
|
* code when allocating a new dquot record" in 2005, and the later
|
|
* conversion to xfs_defer_ops in commit 310a75a3c6c747 failed to keep
|
|
* the buffer locked across the _defer_finish call. We can now do
|
|
* this correctly with xfs_defer_bjoin.
|
|
*
|
|
* Above, we allocated a disk block for the dquot information and used
|
|
* get_buf to initialize the dquot. If the _defer_finish fails, the old
|
|
* transaction is gone but the new buffer is not joined or held to any
|
|
* transaction, so we must _buf_relse it.
|
|
*
|
|
* If everything succeeds, the caller of this function is returned a
|
|
* buffer that is locked and held to the transaction. The caller
|
|
* is responsible for unlocking any buffer passed back, either
|
|
* manually or by committing the transaction. On error, the buffer is
|
|
* released and not passed back.
|
|
*/
|
|
xfs_trans_bhold(tp, bp);
|
|
error = xfs_defer_finish(tpp);
|
|
if (error) {
|
|
xfs_trans_bhold_release(*tpp, bp);
|
|
xfs_trans_brelse(*tpp, bp);
|
|
return error;
|
|
}
|
|
*bpp = bp;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Read in the in-core dquot's on-disk metadata and return the buffer.
|
|
* Returns ENOENT to signal a hole.
|
|
*/
|
|
STATIC int
|
|
xfs_dquot_disk_read(
|
|
struct xfs_mount *mp,
|
|
struct xfs_dquot *dqp,
|
|
struct xfs_buf **bpp)
|
|
{
|
|
struct xfs_bmbt_irec map;
|
|
struct xfs_buf *bp;
|
|
struct xfs_inode *quotip = xfs_quota_inode(mp, dqp->dq_flags);
|
|
uint lock_mode;
|
|
int nmaps = 1;
|
|
int error;
|
|
|
|
lock_mode = xfs_ilock_data_map_shared(quotip);
|
|
if (!xfs_this_quota_on(mp, dqp->dq_flags)) {
|
|
/*
|
|
* Return if this type of quotas is turned off while we
|
|
* didn't have the quota inode lock.
|
|
*/
|
|
xfs_iunlock(quotip, lock_mode);
|
|
return -ESRCH;
|
|
}
|
|
|
|
/*
|
|
* Find the block map; no allocations yet
|
|
*/
|
|
error = xfs_bmapi_read(quotip, dqp->q_fileoffset,
|
|
XFS_DQUOT_CLUSTER_SIZE_FSB, &map, &nmaps, 0);
|
|
xfs_iunlock(quotip, lock_mode);
|
|
if (error)
|
|
return error;
|
|
|
|
ASSERT(nmaps == 1);
|
|
ASSERT(map.br_blockcount >= 1);
|
|
ASSERT(map.br_startblock != DELAYSTARTBLOCK);
|
|
if (map.br_startblock == HOLESTARTBLOCK)
|
|
return -ENOENT;
|
|
|
|
trace_xfs_dqtobp_read(dqp);
|
|
|
|
/*
|
|
* store the blkno etc so that we don't have to do the
|
|
* mapping all the time
|
|
*/
|
|
dqp->q_blkno = XFS_FSB_TO_DADDR(mp, map.br_startblock);
|
|
|
|
error = xfs_trans_read_buf(mp, NULL, mp->m_ddev_targp, dqp->q_blkno,
|
|
mp->m_quotainfo->qi_dqchunklen, 0, &bp,
|
|
&xfs_dquot_buf_ops);
|
|
if (error) {
|
|
ASSERT(bp == NULL);
|
|
return error;
|
|
}
|
|
|
|
ASSERT(xfs_buf_islocked(bp));
|
|
xfs_buf_set_ref(bp, XFS_DQUOT_REF);
|
|
*bpp = bp;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Allocate and initialize everything we need for an incore dquot. */
|
|
STATIC struct xfs_dquot *
|
|
xfs_dquot_alloc(
|
|
struct xfs_mount *mp,
|
|
xfs_dqid_t id,
|
|
uint type)
|
|
{
|
|
struct xfs_dquot *dqp;
|
|
|
|
dqp = kmem_zone_zalloc(xfs_qm_dqzone, KM_SLEEP);
|
|
|
|
dqp->dq_flags = type;
|
|
dqp->q_core.d_id = cpu_to_be32(id);
|
|
dqp->q_mount = mp;
|
|
INIT_LIST_HEAD(&dqp->q_lru);
|
|
mutex_init(&dqp->q_qlock);
|
|
init_waitqueue_head(&dqp->q_pinwait);
|
|
dqp->q_fileoffset = (xfs_fileoff_t)id / mp->m_quotainfo->qi_dqperchunk;
|
|
/*
|
|
* Offset of dquot in the (fixed sized) dquot chunk.
|
|
*/
|
|
dqp->q_bufoffset = (id % mp->m_quotainfo->qi_dqperchunk) *
|
|
sizeof(xfs_dqblk_t);
|
|
|
|
/*
|
|
* Because we want to use a counting completion, complete
|
|
* the flush completion once to allow a single access to
|
|
* the flush completion without blocking.
|
|
*/
|
|
init_completion(&dqp->q_flush);
|
|
complete(&dqp->q_flush);
|
|
|
|
/*
|
|
* Make sure group quotas have a different lock class than user
|
|
* quotas.
|
|
*/
|
|
switch (type) {
|
|
case XFS_DQ_USER:
|
|
/* uses the default lock class */
|
|
break;
|
|
case XFS_DQ_GROUP:
|
|
lockdep_set_class(&dqp->q_qlock, &xfs_dquot_group_class);
|
|
break;
|
|
case XFS_DQ_PROJ:
|
|
lockdep_set_class(&dqp->q_qlock, &xfs_dquot_project_class);
|
|
break;
|
|
default:
|
|
ASSERT(0);
|
|
break;
|
|
}
|
|
|
|
xfs_qm_dquot_logitem_init(dqp);
|
|
|
|
XFS_STATS_INC(mp, xs_qm_dquot);
|
|
return dqp;
|
|
}
|
|
|
|
/* Copy the in-core quota fields in from the on-disk buffer. */
|
|
STATIC void
|
|
xfs_dquot_from_disk(
|
|
struct xfs_dquot *dqp,
|
|
struct xfs_buf *bp)
|
|
{
|
|
struct xfs_disk_dquot *ddqp = bp->b_addr + dqp->q_bufoffset;
|
|
|
|
/* copy everything from disk dquot to the incore dquot */
|
|
memcpy(&dqp->q_core, ddqp, sizeof(xfs_disk_dquot_t));
|
|
|
|
/*
|
|
* Reservation counters are defined as reservation plus current usage
|
|
* to avoid having to add every time.
|
|
*/
|
|
dqp->q_res_bcount = be64_to_cpu(ddqp->d_bcount);
|
|
dqp->q_res_icount = be64_to_cpu(ddqp->d_icount);
|
|
dqp->q_res_rtbcount = be64_to_cpu(ddqp->d_rtbcount);
|
|
|
|
/* initialize the dquot speculative prealloc thresholds */
|
|
xfs_dquot_set_prealloc_limits(dqp);
|
|
}
|
|
|
|
/* Allocate and initialize the dquot buffer for this in-core dquot. */
|
|
static int
|
|
xfs_qm_dqread_alloc(
|
|
struct xfs_mount *mp,
|
|
struct xfs_dquot *dqp,
|
|
struct xfs_buf **bpp)
|
|
{
|
|
struct xfs_trans *tp;
|
|
int error;
|
|
|
|
error = xfs_trans_alloc(mp, &M_RES(mp)->tr_qm_dqalloc,
|
|
XFS_QM_DQALLOC_SPACE_RES(mp), 0, 0, &tp);
|
|
if (error)
|
|
goto err;
|
|
|
|
error = xfs_dquot_disk_alloc(&tp, dqp, bpp);
|
|
if (error)
|
|
goto err_cancel;
|
|
|
|
error = xfs_trans_commit(tp);
|
|
if (error) {
|
|
/*
|
|
* Buffer was held to the transaction, so we have to unlock it
|
|
* manually here because we're not passing it back.
|
|
*/
|
|
xfs_buf_relse(*bpp);
|
|
*bpp = NULL;
|
|
goto err;
|
|
}
|
|
return 0;
|
|
|
|
err_cancel:
|
|
xfs_trans_cancel(tp);
|
|
err:
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* Read in the ondisk dquot using dqtobp() then copy it to an incore version,
|
|
* and release the buffer immediately. If @can_alloc is true, fill any
|
|
* holes in the on-disk metadata.
|
|
*/
|
|
static int
|
|
xfs_qm_dqread(
|
|
struct xfs_mount *mp,
|
|
xfs_dqid_t id,
|
|
uint type,
|
|
bool can_alloc,
|
|
struct xfs_dquot **dqpp)
|
|
{
|
|
struct xfs_dquot *dqp;
|
|
struct xfs_buf *bp;
|
|
int error;
|
|
|
|
dqp = xfs_dquot_alloc(mp, id, type);
|
|
trace_xfs_dqread(dqp);
|
|
|
|
/* Try to read the buffer, allocating if necessary. */
|
|
error = xfs_dquot_disk_read(mp, dqp, &bp);
|
|
if (error == -ENOENT && can_alloc)
|
|
error = xfs_qm_dqread_alloc(mp, dqp, &bp);
|
|
if (error)
|
|
goto err;
|
|
|
|
/*
|
|
* At this point we should have a clean locked buffer. Copy the data
|
|
* to the incore dquot and release the buffer since the incore dquot
|
|
* has its own locking protocol so we needn't tie up the buffer any
|
|
* further.
|
|
*/
|
|
ASSERT(xfs_buf_islocked(bp));
|
|
xfs_dquot_from_disk(dqp, bp);
|
|
|
|
xfs_buf_relse(bp);
|
|
*dqpp = dqp;
|
|
return error;
|
|
|
|
err:
|
|
trace_xfs_dqread_fail(dqp);
|
|
xfs_qm_dqdestroy(dqp);
|
|
*dqpp = NULL;
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* Advance to the next id in the current chunk, or if at the
|
|
* end of the chunk, skip ahead to first id in next allocated chunk
|
|
* using the SEEK_DATA interface.
|
|
*/
|
|
static int
|
|
xfs_dq_get_next_id(
|
|
struct xfs_mount *mp,
|
|
uint type,
|
|
xfs_dqid_t *id)
|
|
{
|
|
struct xfs_inode *quotip = xfs_quota_inode(mp, type);
|
|
xfs_dqid_t next_id = *id + 1; /* simple advance */
|
|
uint lock_flags;
|
|
struct xfs_bmbt_irec got;
|
|
struct xfs_iext_cursor cur;
|
|
xfs_fsblock_t start;
|
|
int error = 0;
|
|
|
|
/* If we'd wrap past the max ID, stop */
|
|
if (next_id < *id)
|
|
return -ENOENT;
|
|
|
|
/* If new ID is within the current chunk, advancing it sufficed */
|
|
if (next_id % mp->m_quotainfo->qi_dqperchunk) {
|
|
*id = next_id;
|
|
return 0;
|
|
}
|
|
|
|
/* Nope, next_id is now past the current chunk, so find the next one */
|
|
start = (xfs_fsblock_t)next_id / mp->m_quotainfo->qi_dqperchunk;
|
|
|
|
lock_flags = xfs_ilock_data_map_shared(quotip);
|
|
if (!(quotip->i_df.if_flags & XFS_IFEXTENTS)) {
|
|
error = xfs_iread_extents(NULL, quotip, XFS_DATA_FORK);
|
|
if (error)
|
|
return error;
|
|
}
|
|
|
|
if (xfs_iext_lookup_extent(quotip, "ip->i_df, start, &cur, &got)) {
|
|
/* contiguous chunk, bump startoff for the id calculation */
|
|
if (got.br_startoff < start)
|
|
got.br_startoff = start;
|
|
*id = got.br_startoff * mp->m_quotainfo->qi_dqperchunk;
|
|
} else {
|
|
error = -ENOENT;
|
|
}
|
|
|
|
xfs_iunlock(quotip, lock_flags);
|
|
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* Look up the dquot in the in-core cache. If found, the dquot is returned
|
|
* locked and ready to go.
|
|
*/
|
|
static struct xfs_dquot *
|
|
xfs_qm_dqget_cache_lookup(
|
|
struct xfs_mount *mp,
|
|
struct xfs_quotainfo *qi,
|
|
struct radix_tree_root *tree,
|
|
xfs_dqid_t id)
|
|
{
|
|
struct xfs_dquot *dqp;
|
|
|
|
restart:
|
|
mutex_lock(&qi->qi_tree_lock);
|
|
dqp = radix_tree_lookup(tree, id);
|
|
if (!dqp) {
|
|
mutex_unlock(&qi->qi_tree_lock);
|
|
XFS_STATS_INC(mp, xs_qm_dqcachemisses);
|
|
return NULL;
|
|
}
|
|
|
|
xfs_dqlock(dqp);
|
|
if (dqp->dq_flags & XFS_DQ_FREEING) {
|
|
xfs_dqunlock(dqp);
|
|
mutex_unlock(&qi->qi_tree_lock);
|
|
trace_xfs_dqget_freeing(dqp);
|
|
delay(1);
|
|
goto restart;
|
|
}
|
|
|
|
dqp->q_nrefs++;
|
|
mutex_unlock(&qi->qi_tree_lock);
|
|
|
|
trace_xfs_dqget_hit(dqp);
|
|
XFS_STATS_INC(mp, xs_qm_dqcachehits);
|
|
return dqp;
|
|
}
|
|
|
|
/*
|
|
* Try to insert a new dquot into the in-core cache. If an error occurs the
|
|
* caller should throw away the dquot and start over. Otherwise, the dquot
|
|
* is returned locked (and held by the cache) as if there had been a cache
|
|
* hit.
|
|
*/
|
|
static int
|
|
xfs_qm_dqget_cache_insert(
|
|
struct xfs_mount *mp,
|
|
struct xfs_quotainfo *qi,
|
|
struct radix_tree_root *tree,
|
|
xfs_dqid_t id,
|
|
struct xfs_dquot *dqp)
|
|
{
|
|
int error;
|
|
|
|
mutex_lock(&qi->qi_tree_lock);
|
|
error = radix_tree_insert(tree, id, dqp);
|
|
if (unlikely(error)) {
|
|
/* Duplicate found! Caller must try again. */
|
|
WARN_ON(error != -EEXIST);
|
|
mutex_unlock(&qi->qi_tree_lock);
|
|
trace_xfs_dqget_dup(dqp);
|
|
return error;
|
|
}
|
|
|
|
/* Return a locked dquot to the caller, with a reference taken. */
|
|
xfs_dqlock(dqp);
|
|
dqp->q_nrefs = 1;
|
|
|
|
qi->qi_dquots++;
|
|
mutex_unlock(&qi->qi_tree_lock);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Check our input parameters. */
|
|
static int
|
|
xfs_qm_dqget_checks(
|
|
struct xfs_mount *mp,
|
|
uint type)
|
|
{
|
|
if (WARN_ON_ONCE(!XFS_IS_QUOTA_RUNNING(mp)))
|
|
return -ESRCH;
|
|
|
|
switch (type) {
|
|
case XFS_DQ_USER:
|
|
if (!XFS_IS_UQUOTA_ON(mp))
|
|
return -ESRCH;
|
|
return 0;
|
|
case XFS_DQ_GROUP:
|
|
if (!XFS_IS_GQUOTA_ON(mp))
|
|
return -ESRCH;
|
|
return 0;
|
|
case XFS_DQ_PROJ:
|
|
if (!XFS_IS_PQUOTA_ON(mp))
|
|
return -ESRCH;
|
|
return 0;
|
|
default:
|
|
WARN_ON_ONCE(0);
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Given the file system, id, and type (UDQUOT/GDQUOT), return a a locked
|
|
* dquot, doing an allocation (if requested) as needed.
|
|
*/
|
|
int
|
|
xfs_qm_dqget(
|
|
struct xfs_mount *mp,
|
|
xfs_dqid_t id,
|
|
uint type,
|
|
bool can_alloc,
|
|
struct xfs_dquot **O_dqpp)
|
|
{
|
|
struct xfs_quotainfo *qi = mp->m_quotainfo;
|
|
struct radix_tree_root *tree = xfs_dquot_tree(qi, type);
|
|
struct xfs_dquot *dqp;
|
|
int error;
|
|
|
|
error = xfs_qm_dqget_checks(mp, type);
|
|
if (error)
|
|
return error;
|
|
|
|
restart:
|
|
dqp = xfs_qm_dqget_cache_lookup(mp, qi, tree, id);
|
|
if (dqp) {
|
|
*O_dqpp = dqp;
|
|
return 0;
|
|
}
|
|
|
|
error = xfs_qm_dqread(mp, id, type, can_alloc, &dqp);
|
|
if (error)
|
|
return error;
|
|
|
|
error = xfs_qm_dqget_cache_insert(mp, qi, tree, id, dqp);
|
|
if (error) {
|
|
/*
|
|
* Duplicate found. Just throw away the new dquot and start
|
|
* over.
|
|
*/
|
|
xfs_qm_dqdestroy(dqp);
|
|
XFS_STATS_INC(mp, xs_qm_dquot_dups);
|
|
goto restart;
|
|
}
|
|
|
|
trace_xfs_dqget_miss(dqp);
|
|
*O_dqpp = dqp;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Given a dquot id and type, read and initialize a dquot from the on-disk
|
|
* metadata. This function is only for use during quota initialization so
|
|
* it ignores the dquot cache assuming that the dquot shrinker isn't set up.
|
|
* The caller is responsible for _qm_dqdestroy'ing the returned dquot.
|
|
*/
|
|
int
|
|
xfs_qm_dqget_uncached(
|
|
struct xfs_mount *mp,
|
|
xfs_dqid_t id,
|
|
uint type,
|
|
struct xfs_dquot **dqpp)
|
|
{
|
|
int error;
|
|
|
|
error = xfs_qm_dqget_checks(mp, type);
|
|
if (error)
|
|
return error;
|
|
|
|
return xfs_qm_dqread(mp, id, type, 0, dqpp);
|
|
}
|
|
|
|
/* Return the quota id for a given inode and type. */
|
|
xfs_dqid_t
|
|
xfs_qm_id_for_quotatype(
|
|
struct xfs_inode *ip,
|
|
uint type)
|
|
{
|
|
switch (type) {
|
|
case XFS_DQ_USER:
|
|
return ip->i_d.di_uid;
|
|
case XFS_DQ_GROUP:
|
|
return ip->i_d.di_gid;
|
|
case XFS_DQ_PROJ:
|
|
return xfs_get_projid(ip);
|
|
}
|
|
ASSERT(0);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Return the dquot for a given inode and type. If @can_alloc is true, then
|
|
* allocate blocks if needed. The inode's ILOCK must be held and it must not
|
|
* have already had an inode attached.
|
|
*/
|
|
int
|
|
xfs_qm_dqget_inode(
|
|
struct xfs_inode *ip,
|
|
uint type,
|
|
bool can_alloc,
|
|
struct xfs_dquot **O_dqpp)
|
|
{
|
|
struct xfs_mount *mp = ip->i_mount;
|
|
struct xfs_quotainfo *qi = mp->m_quotainfo;
|
|
struct radix_tree_root *tree = xfs_dquot_tree(qi, type);
|
|
struct xfs_dquot *dqp;
|
|
xfs_dqid_t id;
|
|
int error;
|
|
|
|
error = xfs_qm_dqget_checks(mp, type);
|
|
if (error)
|
|
return error;
|
|
|
|
ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
|
|
ASSERT(xfs_inode_dquot(ip, type) == NULL);
|
|
|
|
id = xfs_qm_id_for_quotatype(ip, type);
|
|
|
|
restart:
|
|
dqp = xfs_qm_dqget_cache_lookup(mp, qi, tree, id);
|
|
if (dqp) {
|
|
*O_dqpp = dqp;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Dquot cache miss. We don't want to keep the inode lock across
|
|
* a (potential) disk read. Also we don't want to deal with the lock
|
|
* ordering between quotainode and this inode. OTOH, dropping the inode
|
|
* lock here means dealing with a chown that can happen before
|
|
* we re-acquire the lock.
|
|
*/
|
|
xfs_iunlock(ip, XFS_ILOCK_EXCL);
|
|
error = xfs_qm_dqread(mp, id, type, can_alloc, &dqp);
|
|
xfs_ilock(ip, XFS_ILOCK_EXCL);
|
|
if (error)
|
|
return error;
|
|
|
|
/*
|
|
* A dquot could be attached to this inode by now, since we had
|
|
* dropped the ilock.
|
|
*/
|
|
if (xfs_this_quota_on(mp, type)) {
|
|
struct xfs_dquot *dqp1;
|
|
|
|
dqp1 = xfs_inode_dquot(ip, type);
|
|
if (dqp1) {
|
|
xfs_qm_dqdestroy(dqp);
|
|
dqp = dqp1;
|
|
xfs_dqlock(dqp);
|
|
goto dqret;
|
|
}
|
|
} else {
|
|
/* inode stays locked on return */
|
|
xfs_qm_dqdestroy(dqp);
|
|
return -ESRCH;
|
|
}
|
|
|
|
error = xfs_qm_dqget_cache_insert(mp, qi, tree, id, dqp);
|
|
if (error) {
|
|
/*
|
|
* Duplicate found. Just throw away the new dquot and start
|
|
* over.
|
|
*/
|
|
xfs_qm_dqdestroy(dqp);
|
|
XFS_STATS_INC(mp, xs_qm_dquot_dups);
|
|
goto restart;
|
|
}
|
|
|
|
dqret:
|
|
ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
|
|
trace_xfs_dqget_miss(dqp);
|
|
*O_dqpp = dqp;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Starting at @id and progressing upwards, look for an initialized incore
|
|
* dquot, lock it, and return it.
|
|
*/
|
|
int
|
|
xfs_qm_dqget_next(
|
|
struct xfs_mount *mp,
|
|
xfs_dqid_t id,
|
|
uint type,
|
|
struct xfs_dquot **dqpp)
|
|
{
|
|
struct xfs_dquot *dqp;
|
|
int error = 0;
|
|
|
|
*dqpp = NULL;
|
|
for (; !error; error = xfs_dq_get_next_id(mp, type, &id)) {
|
|
error = xfs_qm_dqget(mp, id, type, false, &dqp);
|
|
if (error == -ENOENT)
|
|
continue;
|
|
else if (error != 0)
|
|
break;
|
|
|
|
if (!XFS_IS_DQUOT_UNINITIALIZED(dqp)) {
|
|
*dqpp = dqp;
|
|
return 0;
|
|
}
|
|
|
|
xfs_qm_dqput(dqp);
|
|
}
|
|
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* Release a reference to the dquot (decrement ref-count) and unlock it.
|
|
*
|
|
* If there is a group quota attached to this dquot, carefully release that
|
|
* too without tripping over deadlocks'n'stuff.
|
|
*/
|
|
void
|
|
xfs_qm_dqput(
|
|
struct xfs_dquot *dqp)
|
|
{
|
|
ASSERT(dqp->q_nrefs > 0);
|
|
ASSERT(XFS_DQ_IS_LOCKED(dqp));
|
|
|
|
trace_xfs_dqput(dqp);
|
|
|
|
if (--dqp->q_nrefs == 0) {
|
|
struct xfs_quotainfo *qi = dqp->q_mount->m_quotainfo;
|
|
trace_xfs_dqput_free(dqp);
|
|
|
|
if (list_lru_add(&qi->qi_lru, &dqp->q_lru))
|
|
XFS_STATS_INC(dqp->q_mount, xs_qm_dquot_unused);
|
|
}
|
|
xfs_dqunlock(dqp);
|
|
}
|
|
|
|
/*
|
|
* Release a dquot. Flush it if dirty, then dqput() it.
|
|
* dquot must not be locked.
|
|
*/
|
|
void
|
|
xfs_qm_dqrele(
|
|
xfs_dquot_t *dqp)
|
|
{
|
|
if (!dqp)
|
|
return;
|
|
|
|
trace_xfs_dqrele(dqp);
|
|
|
|
xfs_dqlock(dqp);
|
|
/*
|
|
* We don't care to flush it if the dquot is dirty here.
|
|
* That will create stutters that we want to avoid.
|
|
* Instead we do a delayed write when we try to reclaim
|
|
* a dirty dquot. Also xfs_sync will take part of the burden...
|
|
*/
|
|
xfs_qm_dqput(dqp);
|
|
}
|
|
|
|
/*
|
|
* This is the dquot flushing I/O completion routine. It is called
|
|
* from interrupt level when the buffer containing the dquot is
|
|
* flushed to disk. It is responsible for removing the dquot logitem
|
|
* from the AIL if it has not been re-logged, and unlocking the dquot's
|
|
* flush lock. This behavior is very similar to that of inodes..
|
|
*/
|
|
STATIC void
|
|
xfs_qm_dqflush_done(
|
|
struct xfs_buf *bp,
|
|
struct xfs_log_item *lip)
|
|
{
|
|
xfs_dq_logitem_t *qip = (struct xfs_dq_logitem *)lip;
|
|
xfs_dquot_t *dqp = qip->qli_dquot;
|
|
struct xfs_ail *ailp = lip->li_ailp;
|
|
|
|
/*
|
|
* We only want to pull the item from the AIL if its
|
|
* location in the log has not changed since we started the flush.
|
|
* Thus, we only bother if the dquot's lsn has
|
|
* not changed. First we check the lsn outside the lock
|
|
* since it's cheaper, and then we recheck while
|
|
* holding the lock before removing the dquot from the AIL.
|
|
*/
|
|
if (test_bit(XFS_LI_IN_AIL, &lip->li_flags) &&
|
|
((lip->li_lsn == qip->qli_flush_lsn) ||
|
|
test_bit(XFS_LI_FAILED, &lip->li_flags))) {
|
|
|
|
/* xfs_trans_ail_delete() drops the AIL lock. */
|
|
spin_lock(&ailp->ail_lock);
|
|
if (lip->li_lsn == qip->qli_flush_lsn) {
|
|
xfs_trans_ail_delete(ailp, lip, SHUTDOWN_CORRUPT_INCORE);
|
|
} else {
|
|
/*
|
|
* Clear the failed state since we are about to drop the
|
|
* flush lock
|
|
*/
|
|
xfs_clear_li_failed(lip);
|
|
spin_unlock(&ailp->ail_lock);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Release the dq's flush lock since we're done with it.
|
|
*/
|
|
xfs_dqfunlock(dqp);
|
|
}
|
|
|
|
/*
|
|
* Write a modified dquot to disk.
|
|
* The dquot must be locked and the flush lock too taken by caller.
|
|
* The flush lock will not be unlocked until the dquot reaches the disk,
|
|
* but the dquot is free to be unlocked and modified by the caller
|
|
* in the interim. Dquot is still locked on return. This behavior is
|
|
* identical to that of inodes.
|
|
*/
|
|
int
|
|
xfs_qm_dqflush(
|
|
struct xfs_dquot *dqp,
|
|
struct xfs_buf **bpp)
|
|
{
|
|
struct xfs_mount *mp = dqp->q_mount;
|
|
struct xfs_buf *bp;
|
|
struct xfs_dqblk *dqb;
|
|
struct xfs_disk_dquot *ddqp;
|
|
xfs_failaddr_t fa;
|
|
int error;
|
|
|
|
ASSERT(XFS_DQ_IS_LOCKED(dqp));
|
|
ASSERT(!completion_done(&dqp->q_flush));
|
|
|
|
trace_xfs_dqflush(dqp);
|
|
|
|
*bpp = NULL;
|
|
|
|
xfs_qm_dqunpin_wait(dqp);
|
|
|
|
/*
|
|
* This may have been unpinned because the filesystem is shutting
|
|
* down forcibly. If that's the case we must not write this dquot
|
|
* to disk, because the log record didn't make it to disk.
|
|
*
|
|
* We also have to remove the log item from the AIL in this case,
|
|
* as we wait for an emptry AIL as part of the unmount process.
|
|
*/
|
|
if (XFS_FORCED_SHUTDOWN(mp)) {
|
|
struct xfs_log_item *lip = &dqp->q_logitem.qli_item;
|
|
dqp->dq_flags &= ~XFS_DQ_DIRTY;
|
|
|
|
xfs_trans_ail_remove(lip, SHUTDOWN_CORRUPT_INCORE);
|
|
|
|
error = -EIO;
|
|
goto out_unlock;
|
|
}
|
|
|
|
/*
|
|
* Get the buffer containing the on-disk dquot
|
|
*/
|
|
error = xfs_trans_read_buf(mp, NULL, mp->m_ddev_targp, dqp->q_blkno,
|
|
mp->m_quotainfo->qi_dqchunklen, 0, &bp,
|
|
&xfs_dquot_buf_ops);
|
|
if (error)
|
|
goto out_unlock;
|
|
|
|
/*
|
|
* Calculate the location of the dquot inside the buffer.
|
|
*/
|
|
dqb = bp->b_addr + dqp->q_bufoffset;
|
|
ddqp = &dqb->dd_diskdq;
|
|
|
|
/*
|
|
* A simple sanity check in case we got a corrupted dquot.
|
|
*/
|
|
fa = xfs_dqblk_verify(mp, dqb, be32_to_cpu(ddqp->d_id), 0);
|
|
if (fa) {
|
|
xfs_alert(mp, "corrupt dquot ID 0x%x in memory at %pS",
|
|
be32_to_cpu(ddqp->d_id), fa);
|
|
xfs_buf_relse(bp);
|
|
xfs_dqfunlock(dqp);
|
|
xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
|
|
return -EIO;
|
|
}
|
|
|
|
/* This is the only portion of data that needs to persist */
|
|
memcpy(ddqp, &dqp->q_core, sizeof(xfs_disk_dquot_t));
|
|
|
|
/*
|
|
* Clear the dirty field and remember the flush lsn for later use.
|
|
*/
|
|
dqp->dq_flags &= ~XFS_DQ_DIRTY;
|
|
|
|
xfs_trans_ail_copy_lsn(mp->m_ail, &dqp->q_logitem.qli_flush_lsn,
|
|
&dqp->q_logitem.qli_item.li_lsn);
|
|
|
|
/*
|
|
* copy the lsn into the on-disk dquot now while we have the in memory
|
|
* dquot here. This can't be done later in the write verifier as we
|
|
* can't get access to the log item at that point in time.
|
|
*
|
|
* We also calculate the CRC here so that the on-disk dquot in the
|
|
* buffer always has a valid CRC. This ensures there is no possibility
|
|
* of a dquot without an up-to-date CRC getting to disk.
|
|
*/
|
|
if (xfs_sb_version_hascrc(&mp->m_sb)) {
|
|
dqb->dd_lsn = cpu_to_be64(dqp->q_logitem.qli_item.li_lsn);
|
|
xfs_update_cksum((char *)dqb, sizeof(struct xfs_dqblk),
|
|
XFS_DQUOT_CRC_OFF);
|
|
}
|
|
|
|
/*
|
|
* Attach an iodone routine so that we can remove this dquot from the
|
|
* AIL and release the flush lock once the dquot is synced to disk.
|
|
*/
|
|
xfs_buf_attach_iodone(bp, xfs_qm_dqflush_done,
|
|
&dqp->q_logitem.qli_item);
|
|
|
|
/*
|
|
* If the buffer is pinned then push on the log so we won't
|
|
* get stuck waiting in the write for too long.
|
|
*/
|
|
if (xfs_buf_ispinned(bp)) {
|
|
trace_xfs_dqflush_force(dqp);
|
|
xfs_log_force(mp, 0);
|
|
}
|
|
|
|
trace_xfs_dqflush_done(dqp);
|
|
*bpp = bp;
|
|
return 0;
|
|
|
|
out_unlock:
|
|
xfs_dqfunlock(dqp);
|
|
return -EIO;
|
|
}
|
|
|
|
/*
|
|
* Lock two xfs_dquot structures.
|
|
*
|
|
* To avoid deadlocks we always lock the quota structure with
|
|
* the lowerd id first.
|
|
*/
|
|
void
|
|
xfs_dqlock2(
|
|
xfs_dquot_t *d1,
|
|
xfs_dquot_t *d2)
|
|
{
|
|
if (d1 && d2) {
|
|
ASSERT(d1 != d2);
|
|
if (be32_to_cpu(d1->q_core.d_id) >
|
|
be32_to_cpu(d2->q_core.d_id)) {
|
|
mutex_lock(&d2->q_qlock);
|
|
mutex_lock_nested(&d1->q_qlock, XFS_QLOCK_NESTED);
|
|
} else {
|
|
mutex_lock(&d1->q_qlock);
|
|
mutex_lock_nested(&d2->q_qlock, XFS_QLOCK_NESTED);
|
|
}
|
|
} else if (d1) {
|
|
mutex_lock(&d1->q_qlock);
|
|
} else if (d2) {
|
|
mutex_lock(&d2->q_qlock);
|
|
}
|
|
}
|
|
|
|
int __init
|
|
xfs_qm_init(void)
|
|
{
|
|
xfs_qm_dqzone =
|
|
kmem_zone_init(sizeof(struct xfs_dquot), "xfs_dquot");
|
|
if (!xfs_qm_dqzone)
|
|
goto out;
|
|
|
|
xfs_qm_dqtrxzone =
|
|
kmem_zone_init(sizeof(struct xfs_dquot_acct), "xfs_dqtrx");
|
|
if (!xfs_qm_dqtrxzone)
|
|
goto out_free_dqzone;
|
|
|
|
return 0;
|
|
|
|
out_free_dqzone:
|
|
kmem_zone_destroy(xfs_qm_dqzone);
|
|
out:
|
|
return -ENOMEM;
|
|
}
|
|
|
|
void
|
|
xfs_qm_exit(void)
|
|
{
|
|
kmem_zone_destroy(xfs_qm_dqtrxzone);
|
|
kmem_zone_destroy(xfs_qm_dqzone);
|
|
}
|
|
|
|
/*
|
|
* Iterate every dquot of a particular type. The caller must ensure that the
|
|
* particular quota type is active. iter_fn can return negative error codes,
|
|
* or XFS_BTREE_QUERY_RANGE_ABORT to indicate that it wants to stop iterating.
|
|
*/
|
|
int
|
|
xfs_qm_dqiterate(
|
|
struct xfs_mount *mp,
|
|
uint dqtype,
|
|
xfs_qm_dqiterate_fn iter_fn,
|
|
void *priv)
|
|
{
|
|
struct xfs_dquot *dq;
|
|
xfs_dqid_t id = 0;
|
|
int error;
|
|
|
|
do {
|
|
error = xfs_qm_dqget_next(mp, id, dqtype, &dq);
|
|
if (error == -ENOENT)
|
|
return 0;
|
|
if (error)
|
|
return error;
|
|
|
|
error = iter_fn(dq, dqtype, priv);
|
|
id = be32_to_cpu(dq->q_core.d_id);
|
|
xfs_qm_dqput(dq);
|
|
id++;
|
|
} while (error == 0 && id != 0);
|
|
|
|
return error;
|
|
}
|