mirror of
https://github.com/torvalds/linux.git
synced 2024-11-17 17:41:44 +00:00
989515647e
From our investigation for all RTC drivers, 1 driver will be expired before year 2017, 7 drivers will be expired before year 2038, 23 drivers will be expired before year 2069, 72 drivers will be expired before 2100 and 104 drivers will be expired before 2106. Especially for these early expired drivers, we need to expand the RTC range to make the RTC can still work after the expired year. So we can expand the RTC range by adding one offset to the time when reading from hardware, and subtracting it when writing back. For example, if you have an RTC that can do 100 years, and currently is configured to be based in Jan 1 1970, so it can represents times from 1970 to 2069. Then if you change the start year from 1970 to 2000, which means it can represents times from 2000 to 2099. By adding or subtracting the offset produced by moving the wrap point, all times between 1970 and 1999 from RTC hardware could get interpreted as times from 2070 to 2099, but the interpretation of dates between 2000 and 2069 would not change. Signed-off-by: Baolin Wang <baolin.wang@linaro.org> Signed-off-by: Alexandre Belloni <alexandre.belloni@bootlin.com>
1137 lines
28 KiB
C
1137 lines
28 KiB
C
/*
|
|
* RTC subsystem, interface functions
|
|
*
|
|
* Copyright (C) 2005 Tower Technologies
|
|
* Author: Alessandro Zummo <a.zummo@towertech.it>
|
|
*
|
|
* based on arch/arm/common/rtctime.c
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License version 2 as
|
|
* published by the Free Software Foundation.
|
|
*/
|
|
|
|
#include <linux/rtc.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/module.h>
|
|
#include <linux/log2.h>
|
|
#include <linux/workqueue.h>
|
|
|
|
#define CREATE_TRACE_POINTS
|
|
#include <trace/events/rtc.h>
|
|
|
|
static int rtc_timer_enqueue(struct rtc_device *rtc, struct rtc_timer *timer);
|
|
static void rtc_timer_remove(struct rtc_device *rtc, struct rtc_timer *timer);
|
|
|
|
static void rtc_add_offset(struct rtc_device *rtc, struct rtc_time *tm)
|
|
{
|
|
time64_t secs;
|
|
|
|
if (!rtc->offset_secs)
|
|
return;
|
|
|
|
secs = rtc_tm_to_time64(tm);
|
|
|
|
/*
|
|
* Since the reading time values from RTC device are always in the RTC
|
|
* original valid range, but we need to skip the overlapped region
|
|
* between expanded range and original range, which is no need to add
|
|
* the offset.
|
|
*/
|
|
if ((rtc->start_secs > rtc->range_min && secs >= rtc->start_secs) ||
|
|
(rtc->start_secs < rtc->range_min &&
|
|
secs <= (rtc->start_secs + rtc->range_max - rtc->range_min)))
|
|
return;
|
|
|
|
rtc_time64_to_tm(secs + rtc->offset_secs, tm);
|
|
}
|
|
|
|
static void rtc_subtract_offset(struct rtc_device *rtc, struct rtc_time *tm)
|
|
{
|
|
time64_t secs;
|
|
|
|
if (!rtc->offset_secs)
|
|
return;
|
|
|
|
secs = rtc_tm_to_time64(tm);
|
|
|
|
/*
|
|
* If the setting time values are in the valid range of RTC hardware
|
|
* device, then no need to subtract the offset when setting time to RTC
|
|
* device. Otherwise we need to subtract the offset to make the time
|
|
* values are valid for RTC hardware device.
|
|
*/
|
|
if (secs >= rtc->range_min && secs <= rtc->range_max)
|
|
return;
|
|
|
|
rtc_time64_to_tm(secs - rtc->offset_secs, tm);
|
|
}
|
|
|
|
static int rtc_valid_range(struct rtc_device *rtc, struct rtc_time *tm)
|
|
{
|
|
if (rtc->range_min != rtc->range_max) {
|
|
time64_t time = rtc_tm_to_time64(tm);
|
|
time64_t range_min = rtc->set_start_time ? rtc->start_secs :
|
|
rtc->range_min;
|
|
time64_t range_max = rtc->set_start_time ?
|
|
(rtc->start_secs + rtc->range_max - rtc->range_min) :
|
|
rtc->range_max;
|
|
|
|
if (time < range_min || time > range_max)
|
|
return -ERANGE;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int __rtc_read_time(struct rtc_device *rtc, struct rtc_time *tm)
|
|
{
|
|
int err;
|
|
if (!rtc->ops)
|
|
err = -ENODEV;
|
|
else if (!rtc->ops->read_time)
|
|
err = -EINVAL;
|
|
else {
|
|
memset(tm, 0, sizeof(struct rtc_time));
|
|
err = rtc->ops->read_time(rtc->dev.parent, tm);
|
|
if (err < 0) {
|
|
dev_dbg(&rtc->dev, "read_time: fail to read: %d\n",
|
|
err);
|
|
return err;
|
|
}
|
|
|
|
rtc_add_offset(rtc, tm);
|
|
|
|
err = rtc_valid_tm(tm);
|
|
if (err < 0)
|
|
dev_dbg(&rtc->dev, "read_time: rtc_time isn't valid\n");
|
|
}
|
|
return err;
|
|
}
|
|
|
|
int rtc_read_time(struct rtc_device *rtc, struct rtc_time *tm)
|
|
{
|
|
int err;
|
|
|
|
err = mutex_lock_interruptible(&rtc->ops_lock);
|
|
if (err)
|
|
return err;
|
|
|
|
err = __rtc_read_time(rtc, tm);
|
|
mutex_unlock(&rtc->ops_lock);
|
|
|
|
trace_rtc_read_time(rtc_tm_to_time64(tm), err);
|
|
return err;
|
|
}
|
|
EXPORT_SYMBOL_GPL(rtc_read_time);
|
|
|
|
int rtc_set_time(struct rtc_device *rtc, struct rtc_time *tm)
|
|
{
|
|
int err;
|
|
|
|
err = rtc_valid_tm(tm);
|
|
if (err != 0)
|
|
return err;
|
|
|
|
err = rtc_valid_range(rtc, tm);
|
|
if (err)
|
|
return err;
|
|
|
|
rtc_subtract_offset(rtc, tm);
|
|
|
|
err = mutex_lock_interruptible(&rtc->ops_lock);
|
|
if (err)
|
|
return err;
|
|
|
|
if (!rtc->ops)
|
|
err = -ENODEV;
|
|
else if (rtc->ops->set_time)
|
|
err = rtc->ops->set_time(rtc->dev.parent, tm);
|
|
else if (rtc->ops->set_mmss64) {
|
|
time64_t secs64 = rtc_tm_to_time64(tm);
|
|
|
|
err = rtc->ops->set_mmss64(rtc->dev.parent, secs64);
|
|
} else if (rtc->ops->set_mmss) {
|
|
time64_t secs64 = rtc_tm_to_time64(tm);
|
|
err = rtc->ops->set_mmss(rtc->dev.parent, secs64);
|
|
} else
|
|
err = -EINVAL;
|
|
|
|
pm_stay_awake(rtc->dev.parent);
|
|
mutex_unlock(&rtc->ops_lock);
|
|
/* A timer might have just expired */
|
|
schedule_work(&rtc->irqwork);
|
|
|
|
trace_rtc_set_time(rtc_tm_to_time64(tm), err);
|
|
return err;
|
|
}
|
|
EXPORT_SYMBOL_GPL(rtc_set_time);
|
|
|
|
static int rtc_read_alarm_internal(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
|
|
{
|
|
int err;
|
|
|
|
err = mutex_lock_interruptible(&rtc->ops_lock);
|
|
if (err)
|
|
return err;
|
|
|
|
if (rtc->ops == NULL)
|
|
err = -ENODEV;
|
|
else if (!rtc->ops->read_alarm)
|
|
err = -EINVAL;
|
|
else {
|
|
alarm->enabled = 0;
|
|
alarm->pending = 0;
|
|
alarm->time.tm_sec = -1;
|
|
alarm->time.tm_min = -1;
|
|
alarm->time.tm_hour = -1;
|
|
alarm->time.tm_mday = -1;
|
|
alarm->time.tm_mon = -1;
|
|
alarm->time.tm_year = -1;
|
|
alarm->time.tm_wday = -1;
|
|
alarm->time.tm_yday = -1;
|
|
alarm->time.tm_isdst = -1;
|
|
err = rtc->ops->read_alarm(rtc->dev.parent, alarm);
|
|
}
|
|
|
|
mutex_unlock(&rtc->ops_lock);
|
|
|
|
trace_rtc_read_alarm(rtc_tm_to_time64(&alarm->time), err);
|
|
return err;
|
|
}
|
|
|
|
int __rtc_read_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
|
|
{
|
|
int err;
|
|
struct rtc_time before, now;
|
|
int first_time = 1;
|
|
time64_t t_now, t_alm;
|
|
enum { none, day, month, year } missing = none;
|
|
unsigned days;
|
|
|
|
/* The lower level RTC driver may return -1 in some fields,
|
|
* creating invalid alarm->time values, for reasons like:
|
|
*
|
|
* - The hardware may not be capable of filling them in;
|
|
* many alarms match only on time-of-day fields, not
|
|
* day/month/year calendar data.
|
|
*
|
|
* - Some hardware uses illegal values as "wildcard" match
|
|
* values, which non-Linux firmware (like a BIOS) may try
|
|
* to set up as e.g. "alarm 15 minutes after each hour".
|
|
* Linux uses only oneshot alarms.
|
|
*
|
|
* When we see that here, we deal with it by using values from
|
|
* a current RTC timestamp for any missing (-1) values. The
|
|
* RTC driver prevents "periodic alarm" modes.
|
|
*
|
|
* But this can be racey, because some fields of the RTC timestamp
|
|
* may have wrapped in the interval since we read the RTC alarm,
|
|
* which would lead to us inserting inconsistent values in place
|
|
* of the -1 fields.
|
|
*
|
|
* Reading the alarm and timestamp in the reverse sequence
|
|
* would have the same race condition, and not solve the issue.
|
|
*
|
|
* So, we must first read the RTC timestamp,
|
|
* then read the RTC alarm value,
|
|
* and then read a second RTC timestamp.
|
|
*
|
|
* If any fields of the second timestamp have changed
|
|
* when compared with the first timestamp, then we know
|
|
* our timestamp may be inconsistent with that used by
|
|
* the low-level rtc_read_alarm_internal() function.
|
|
*
|
|
* So, when the two timestamps disagree, we just loop and do
|
|
* the process again to get a fully consistent set of values.
|
|
*
|
|
* This could all instead be done in the lower level driver,
|
|
* but since more than one lower level RTC implementation needs it,
|
|
* then it's probably best best to do it here instead of there..
|
|
*/
|
|
|
|
/* Get the "before" timestamp */
|
|
err = rtc_read_time(rtc, &before);
|
|
if (err < 0)
|
|
return err;
|
|
do {
|
|
if (!first_time)
|
|
memcpy(&before, &now, sizeof(struct rtc_time));
|
|
first_time = 0;
|
|
|
|
/* get the RTC alarm values, which may be incomplete */
|
|
err = rtc_read_alarm_internal(rtc, alarm);
|
|
if (err)
|
|
return err;
|
|
|
|
/* full-function RTCs won't have such missing fields */
|
|
if (rtc_valid_tm(&alarm->time) == 0)
|
|
return 0;
|
|
|
|
/* get the "after" timestamp, to detect wrapped fields */
|
|
err = rtc_read_time(rtc, &now);
|
|
if (err < 0)
|
|
return err;
|
|
|
|
/* note that tm_sec is a "don't care" value here: */
|
|
} while ( before.tm_min != now.tm_min
|
|
|| before.tm_hour != now.tm_hour
|
|
|| before.tm_mon != now.tm_mon
|
|
|| before.tm_year != now.tm_year);
|
|
|
|
/* Fill in the missing alarm fields using the timestamp; we
|
|
* know there's at least one since alarm->time is invalid.
|
|
*/
|
|
if (alarm->time.tm_sec == -1)
|
|
alarm->time.tm_sec = now.tm_sec;
|
|
if (alarm->time.tm_min == -1)
|
|
alarm->time.tm_min = now.tm_min;
|
|
if (alarm->time.tm_hour == -1)
|
|
alarm->time.tm_hour = now.tm_hour;
|
|
|
|
/* For simplicity, only support date rollover for now */
|
|
if (alarm->time.tm_mday < 1 || alarm->time.tm_mday > 31) {
|
|
alarm->time.tm_mday = now.tm_mday;
|
|
missing = day;
|
|
}
|
|
if ((unsigned)alarm->time.tm_mon >= 12) {
|
|
alarm->time.tm_mon = now.tm_mon;
|
|
if (missing == none)
|
|
missing = month;
|
|
}
|
|
if (alarm->time.tm_year == -1) {
|
|
alarm->time.tm_year = now.tm_year;
|
|
if (missing == none)
|
|
missing = year;
|
|
}
|
|
|
|
/* Can't proceed if alarm is still invalid after replacing
|
|
* missing fields.
|
|
*/
|
|
err = rtc_valid_tm(&alarm->time);
|
|
if (err)
|
|
goto done;
|
|
|
|
/* with luck, no rollover is needed */
|
|
t_now = rtc_tm_to_time64(&now);
|
|
t_alm = rtc_tm_to_time64(&alarm->time);
|
|
if (t_now < t_alm)
|
|
goto done;
|
|
|
|
switch (missing) {
|
|
|
|
/* 24 hour rollover ... if it's now 10am Monday, an alarm that
|
|
* that will trigger at 5am will do so at 5am Tuesday, which
|
|
* could also be in the next month or year. This is a common
|
|
* case, especially for PCs.
|
|
*/
|
|
case day:
|
|
dev_dbg(&rtc->dev, "alarm rollover: %s\n", "day");
|
|
t_alm += 24 * 60 * 60;
|
|
rtc_time64_to_tm(t_alm, &alarm->time);
|
|
break;
|
|
|
|
/* Month rollover ... if it's the 31th, an alarm on the 3rd will
|
|
* be next month. An alarm matching on the 30th, 29th, or 28th
|
|
* may end up in the month after that! Many newer PCs support
|
|
* this type of alarm.
|
|
*/
|
|
case month:
|
|
dev_dbg(&rtc->dev, "alarm rollover: %s\n", "month");
|
|
do {
|
|
if (alarm->time.tm_mon < 11)
|
|
alarm->time.tm_mon++;
|
|
else {
|
|
alarm->time.tm_mon = 0;
|
|
alarm->time.tm_year++;
|
|
}
|
|
days = rtc_month_days(alarm->time.tm_mon,
|
|
alarm->time.tm_year);
|
|
} while (days < alarm->time.tm_mday);
|
|
break;
|
|
|
|
/* Year rollover ... easy except for leap years! */
|
|
case year:
|
|
dev_dbg(&rtc->dev, "alarm rollover: %s\n", "year");
|
|
do {
|
|
alarm->time.tm_year++;
|
|
} while (!is_leap_year(alarm->time.tm_year + 1900)
|
|
&& rtc_valid_tm(&alarm->time) != 0);
|
|
break;
|
|
|
|
default:
|
|
dev_warn(&rtc->dev, "alarm rollover not handled\n");
|
|
}
|
|
|
|
err = rtc_valid_tm(&alarm->time);
|
|
|
|
done:
|
|
if (err) {
|
|
dev_warn(&rtc->dev, "invalid alarm value: %d-%d-%d %d:%d:%d\n",
|
|
alarm->time.tm_year + 1900, alarm->time.tm_mon + 1,
|
|
alarm->time.tm_mday, alarm->time.tm_hour, alarm->time.tm_min,
|
|
alarm->time.tm_sec);
|
|
}
|
|
|
|
return err;
|
|
}
|
|
|
|
int rtc_read_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
|
|
{
|
|
int err;
|
|
|
|
err = mutex_lock_interruptible(&rtc->ops_lock);
|
|
if (err)
|
|
return err;
|
|
if (rtc->ops == NULL)
|
|
err = -ENODEV;
|
|
else if (!rtc->ops->read_alarm)
|
|
err = -EINVAL;
|
|
else {
|
|
memset(alarm, 0, sizeof(struct rtc_wkalrm));
|
|
alarm->enabled = rtc->aie_timer.enabled;
|
|
alarm->time = rtc_ktime_to_tm(rtc->aie_timer.node.expires);
|
|
}
|
|
mutex_unlock(&rtc->ops_lock);
|
|
|
|
trace_rtc_read_alarm(rtc_tm_to_time64(&alarm->time), err);
|
|
return err;
|
|
}
|
|
EXPORT_SYMBOL_GPL(rtc_read_alarm);
|
|
|
|
static int __rtc_set_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
|
|
{
|
|
struct rtc_time tm;
|
|
time64_t now, scheduled;
|
|
int err;
|
|
|
|
err = rtc_valid_tm(&alarm->time);
|
|
if (err)
|
|
return err;
|
|
|
|
rtc_subtract_offset(rtc, &alarm->time);
|
|
scheduled = rtc_tm_to_time64(&alarm->time);
|
|
|
|
/* Make sure we're not setting alarms in the past */
|
|
err = __rtc_read_time(rtc, &tm);
|
|
if (err)
|
|
return err;
|
|
now = rtc_tm_to_time64(&tm);
|
|
if (scheduled <= now)
|
|
return -ETIME;
|
|
/*
|
|
* XXX - We just checked to make sure the alarm time is not
|
|
* in the past, but there is still a race window where if
|
|
* the is alarm set for the next second and the second ticks
|
|
* over right here, before we set the alarm.
|
|
*/
|
|
|
|
if (!rtc->ops)
|
|
err = -ENODEV;
|
|
else if (!rtc->ops->set_alarm)
|
|
err = -EINVAL;
|
|
else
|
|
err = rtc->ops->set_alarm(rtc->dev.parent, alarm);
|
|
|
|
trace_rtc_set_alarm(rtc_tm_to_time64(&alarm->time), err);
|
|
return err;
|
|
}
|
|
|
|
int rtc_set_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
|
|
{
|
|
int err;
|
|
|
|
err = rtc_valid_tm(&alarm->time);
|
|
if (err != 0)
|
|
return err;
|
|
|
|
err = rtc_valid_range(rtc, &alarm->time);
|
|
if (err)
|
|
return err;
|
|
|
|
err = mutex_lock_interruptible(&rtc->ops_lock);
|
|
if (err)
|
|
return err;
|
|
if (rtc->aie_timer.enabled)
|
|
rtc_timer_remove(rtc, &rtc->aie_timer);
|
|
|
|
rtc->aie_timer.node.expires = rtc_tm_to_ktime(alarm->time);
|
|
rtc->aie_timer.period = 0;
|
|
if (alarm->enabled)
|
|
err = rtc_timer_enqueue(rtc, &rtc->aie_timer);
|
|
|
|
mutex_unlock(&rtc->ops_lock);
|
|
|
|
rtc_add_offset(rtc, &alarm->time);
|
|
return err;
|
|
}
|
|
EXPORT_SYMBOL_GPL(rtc_set_alarm);
|
|
|
|
/* Called once per device from rtc_device_register */
|
|
int rtc_initialize_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
|
|
{
|
|
int err;
|
|
struct rtc_time now;
|
|
|
|
err = rtc_valid_tm(&alarm->time);
|
|
if (err != 0)
|
|
return err;
|
|
|
|
err = rtc_read_time(rtc, &now);
|
|
if (err)
|
|
return err;
|
|
|
|
err = mutex_lock_interruptible(&rtc->ops_lock);
|
|
if (err)
|
|
return err;
|
|
|
|
rtc->aie_timer.node.expires = rtc_tm_to_ktime(alarm->time);
|
|
rtc->aie_timer.period = 0;
|
|
|
|
/* Alarm has to be enabled & in the future for us to enqueue it */
|
|
if (alarm->enabled && (rtc_tm_to_ktime(now) <
|
|
rtc->aie_timer.node.expires)) {
|
|
|
|
rtc->aie_timer.enabled = 1;
|
|
timerqueue_add(&rtc->timerqueue, &rtc->aie_timer.node);
|
|
trace_rtc_timer_enqueue(&rtc->aie_timer);
|
|
}
|
|
mutex_unlock(&rtc->ops_lock);
|
|
return err;
|
|
}
|
|
EXPORT_SYMBOL_GPL(rtc_initialize_alarm);
|
|
|
|
int rtc_alarm_irq_enable(struct rtc_device *rtc, unsigned int enabled)
|
|
{
|
|
int err = mutex_lock_interruptible(&rtc->ops_lock);
|
|
if (err)
|
|
return err;
|
|
|
|
if (rtc->aie_timer.enabled != enabled) {
|
|
if (enabled)
|
|
err = rtc_timer_enqueue(rtc, &rtc->aie_timer);
|
|
else
|
|
rtc_timer_remove(rtc, &rtc->aie_timer);
|
|
}
|
|
|
|
if (err)
|
|
/* nothing */;
|
|
else if (!rtc->ops)
|
|
err = -ENODEV;
|
|
else if (!rtc->ops->alarm_irq_enable)
|
|
err = -EINVAL;
|
|
else
|
|
err = rtc->ops->alarm_irq_enable(rtc->dev.parent, enabled);
|
|
|
|
mutex_unlock(&rtc->ops_lock);
|
|
|
|
trace_rtc_alarm_irq_enable(enabled, err);
|
|
return err;
|
|
}
|
|
EXPORT_SYMBOL_GPL(rtc_alarm_irq_enable);
|
|
|
|
int rtc_update_irq_enable(struct rtc_device *rtc, unsigned int enabled)
|
|
{
|
|
int err = mutex_lock_interruptible(&rtc->ops_lock);
|
|
if (err)
|
|
return err;
|
|
|
|
#ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL
|
|
if (enabled == 0 && rtc->uie_irq_active) {
|
|
mutex_unlock(&rtc->ops_lock);
|
|
return rtc_dev_update_irq_enable_emul(rtc, 0);
|
|
}
|
|
#endif
|
|
/* make sure we're changing state */
|
|
if (rtc->uie_rtctimer.enabled == enabled)
|
|
goto out;
|
|
|
|
if (rtc->uie_unsupported) {
|
|
err = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
if (enabled) {
|
|
struct rtc_time tm;
|
|
ktime_t now, onesec;
|
|
|
|
__rtc_read_time(rtc, &tm);
|
|
onesec = ktime_set(1, 0);
|
|
now = rtc_tm_to_ktime(tm);
|
|
rtc->uie_rtctimer.node.expires = ktime_add(now, onesec);
|
|
rtc->uie_rtctimer.period = ktime_set(1, 0);
|
|
err = rtc_timer_enqueue(rtc, &rtc->uie_rtctimer);
|
|
} else
|
|
rtc_timer_remove(rtc, &rtc->uie_rtctimer);
|
|
|
|
out:
|
|
mutex_unlock(&rtc->ops_lock);
|
|
#ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL
|
|
/*
|
|
* Enable emulation if the driver did not provide
|
|
* the update_irq_enable function pointer or if returned
|
|
* -EINVAL to signal that it has been configured without
|
|
* interrupts or that are not available at the moment.
|
|
*/
|
|
if (err == -EINVAL)
|
|
err = rtc_dev_update_irq_enable_emul(rtc, enabled);
|
|
#endif
|
|
return err;
|
|
|
|
}
|
|
EXPORT_SYMBOL_GPL(rtc_update_irq_enable);
|
|
|
|
|
|
/**
|
|
* rtc_handle_legacy_irq - AIE, UIE and PIE event hook
|
|
* @rtc: pointer to the rtc device
|
|
*
|
|
* This function is called when an AIE, UIE or PIE mode interrupt
|
|
* has occurred (or been emulated).
|
|
*
|
|
* Triggers the registered irq_task function callback.
|
|
*/
|
|
void rtc_handle_legacy_irq(struct rtc_device *rtc, int num, int mode)
|
|
{
|
|
unsigned long flags;
|
|
|
|
/* mark one irq of the appropriate mode */
|
|
spin_lock_irqsave(&rtc->irq_lock, flags);
|
|
rtc->irq_data = (rtc->irq_data + (num << 8)) | (RTC_IRQF|mode);
|
|
spin_unlock_irqrestore(&rtc->irq_lock, flags);
|
|
|
|
/* call the task func */
|
|
spin_lock_irqsave(&rtc->irq_task_lock, flags);
|
|
if (rtc->irq_task)
|
|
rtc->irq_task->func(rtc->irq_task->private_data);
|
|
spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
|
|
|
|
wake_up_interruptible(&rtc->irq_queue);
|
|
kill_fasync(&rtc->async_queue, SIGIO, POLL_IN);
|
|
}
|
|
|
|
|
|
/**
|
|
* rtc_aie_update_irq - AIE mode rtctimer hook
|
|
* @private: pointer to the rtc_device
|
|
*
|
|
* This functions is called when the aie_timer expires.
|
|
*/
|
|
void rtc_aie_update_irq(void *private)
|
|
{
|
|
struct rtc_device *rtc = (struct rtc_device *)private;
|
|
rtc_handle_legacy_irq(rtc, 1, RTC_AF);
|
|
}
|
|
|
|
|
|
/**
|
|
* rtc_uie_update_irq - UIE mode rtctimer hook
|
|
* @private: pointer to the rtc_device
|
|
*
|
|
* This functions is called when the uie_timer expires.
|
|
*/
|
|
void rtc_uie_update_irq(void *private)
|
|
{
|
|
struct rtc_device *rtc = (struct rtc_device *)private;
|
|
rtc_handle_legacy_irq(rtc, 1, RTC_UF);
|
|
}
|
|
|
|
|
|
/**
|
|
* rtc_pie_update_irq - PIE mode hrtimer hook
|
|
* @timer: pointer to the pie mode hrtimer
|
|
*
|
|
* This function is used to emulate PIE mode interrupts
|
|
* using an hrtimer. This function is called when the periodic
|
|
* hrtimer expires.
|
|
*/
|
|
enum hrtimer_restart rtc_pie_update_irq(struct hrtimer *timer)
|
|
{
|
|
struct rtc_device *rtc;
|
|
ktime_t period;
|
|
int count;
|
|
rtc = container_of(timer, struct rtc_device, pie_timer);
|
|
|
|
period = NSEC_PER_SEC / rtc->irq_freq;
|
|
count = hrtimer_forward_now(timer, period);
|
|
|
|
rtc_handle_legacy_irq(rtc, count, RTC_PF);
|
|
|
|
return HRTIMER_RESTART;
|
|
}
|
|
|
|
/**
|
|
* rtc_update_irq - Triggered when a RTC interrupt occurs.
|
|
* @rtc: the rtc device
|
|
* @num: how many irqs are being reported (usually one)
|
|
* @events: mask of RTC_IRQF with one or more of RTC_PF, RTC_AF, RTC_UF
|
|
* Context: any
|
|
*/
|
|
void rtc_update_irq(struct rtc_device *rtc,
|
|
unsigned long num, unsigned long events)
|
|
{
|
|
if (IS_ERR_OR_NULL(rtc))
|
|
return;
|
|
|
|
pm_stay_awake(rtc->dev.parent);
|
|
schedule_work(&rtc->irqwork);
|
|
}
|
|
EXPORT_SYMBOL_GPL(rtc_update_irq);
|
|
|
|
static int __rtc_match(struct device *dev, const void *data)
|
|
{
|
|
const char *name = data;
|
|
|
|
if (strcmp(dev_name(dev), name) == 0)
|
|
return 1;
|
|
return 0;
|
|
}
|
|
|
|
struct rtc_device *rtc_class_open(const char *name)
|
|
{
|
|
struct device *dev;
|
|
struct rtc_device *rtc = NULL;
|
|
|
|
dev = class_find_device(rtc_class, NULL, name, __rtc_match);
|
|
if (dev)
|
|
rtc = to_rtc_device(dev);
|
|
|
|
if (rtc) {
|
|
if (!try_module_get(rtc->owner)) {
|
|
put_device(dev);
|
|
rtc = NULL;
|
|
}
|
|
}
|
|
|
|
return rtc;
|
|
}
|
|
EXPORT_SYMBOL_GPL(rtc_class_open);
|
|
|
|
void rtc_class_close(struct rtc_device *rtc)
|
|
{
|
|
module_put(rtc->owner);
|
|
put_device(&rtc->dev);
|
|
}
|
|
EXPORT_SYMBOL_GPL(rtc_class_close);
|
|
|
|
int rtc_irq_register(struct rtc_device *rtc, struct rtc_task *task)
|
|
{
|
|
int retval = -EBUSY;
|
|
|
|
if (task == NULL || task->func == NULL)
|
|
return -EINVAL;
|
|
|
|
/* Cannot register while the char dev is in use */
|
|
if (test_and_set_bit_lock(RTC_DEV_BUSY, &rtc->flags))
|
|
return -EBUSY;
|
|
|
|
spin_lock_irq(&rtc->irq_task_lock);
|
|
if (rtc->irq_task == NULL) {
|
|
rtc->irq_task = task;
|
|
retval = 0;
|
|
}
|
|
spin_unlock_irq(&rtc->irq_task_lock);
|
|
|
|
clear_bit_unlock(RTC_DEV_BUSY, &rtc->flags);
|
|
|
|
return retval;
|
|
}
|
|
EXPORT_SYMBOL_GPL(rtc_irq_register);
|
|
|
|
void rtc_irq_unregister(struct rtc_device *rtc, struct rtc_task *task)
|
|
{
|
|
spin_lock_irq(&rtc->irq_task_lock);
|
|
if (rtc->irq_task == task)
|
|
rtc->irq_task = NULL;
|
|
spin_unlock_irq(&rtc->irq_task_lock);
|
|
}
|
|
EXPORT_SYMBOL_GPL(rtc_irq_unregister);
|
|
|
|
static int rtc_update_hrtimer(struct rtc_device *rtc, int enabled)
|
|
{
|
|
/*
|
|
* We always cancel the timer here first, because otherwise
|
|
* we could run into BUG_ON(timer->state != HRTIMER_STATE_CALLBACK);
|
|
* when we manage to start the timer before the callback
|
|
* returns HRTIMER_RESTART.
|
|
*
|
|
* We cannot use hrtimer_cancel() here as a running callback
|
|
* could be blocked on rtc->irq_task_lock and hrtimer_cancel()
|
|
* would spin forever.
|
|
*/
|
|
if (hrtimer_try_to_cancel(&rtc->pie_timer) < 0)
|
|
return -1;
|
|
|
|
if (enabled) {
|
|
ktime_t period = NSEC_PER_SEC / rtc->irq_freq;
|
|
|
|
hrtimer_start(&rtc->pie_timer, period, HRTIMER_MODE_REL);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* rtc_irq_set_state - enable/disable 2^N Hz periodic IRQs
|
|
* @rtc: the rtc device
|
|
* @task: currently registered with rtc_irq_register()
|
|
* @enabled: true to enable periodic IRQs
|
|
* Context: any
|
|
*
|
|
* Note that rtc_irq_set_freq() should previously have been used to
|
|
* specify the desired frequency of periodic IRQ task->func() callbacks.
|
|
*/
|
|
int rtc_irq_set_state(struct rtc_device *rtc, struct rtc_task *task, int enabled)
|
|
{
|
|
int err = 0;
|
|
unsigned long flags;
|
|
|
|
retry:
|
|
spin_lock_irqsave(&rtc->irq_task_lock, flags);
|
|
if (rtc->irq_task != NULL && task == NULL)
|
|
err = -EBUSY;
|
|
else if (rtc->irq_task != task)
|
|
err = -EACCES;
|
|
else {
|
|
if (rtc_update_hrtimer(rtc, enabled) < 0) {
|
|
spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
|
|
cpu_relax();
|
|
goto retry;
|
|
}
|
|
rtc->pie_enabled = enabled;
|
|
}
|
|
spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
|
|
|
|
trace_rtc_irq_set_state(enabled, err);
|
|
return err;
|
|
}
|
|
EXPORT_SYMBOL_GPL(rtc_irq_set_state);
|
|
|
|
/**
|
|
* rtc_irq_set_freq - set 2^N Hz periodic IRQ frequency for IRQ
|
|
* @rtc: the rtc device
|
|
* @task: currently registered with rtc_irq_register()
|
|
* @freq: positive frequency with which task->func() will be called
|
|
* Context: any
|
|
*
|
|
* Note that rtc_irq_set_state() is used to enable or disable the
|
|
* periodic IRQs.
|
|
*/
|
|
int rtc_irq_set_freq(struct rtc_device *rtc, struct rtc_task *task, int freq)
|
|
{
|
|
int err = 0;
|
|
unsigned long flags;
|
|
|
|
if (freq <= 0 || freq > RTC_MAX_FREQ)
|
|
return -EINVAL;
|
|
retry:
|
|
spin_lock_irqsave(&rtc->irq_task_lock, flags);
|
|
if (rtc->irq_task != NULL && task == NULL)
|
|
err = -EBUSY;
|
|
else if (rtc->irq_task != task)
|
|
err = -EACCES;
|
|
else {
|
|
rtc->irq_freq = freq;
|
|
if (rtc->pie_enabled && rtc_update_hrtimer(rtc, 1) < 0) {
|
|
spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
|
|
cpu_relax();
|
|
goto retry;
|
|
}
|
|
}
|
|
spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
|
|
|
|
trace_rtc_irq_set_freq(freq, err);
|
|
return err;
|
|
}
|
|
EXPORT_SYMBOL_GPL(rtc_irq_set_freq);
|
|
|
|
/**
|
|
* rtc_timer_enqueue - Adds a rtc_timer to the rtc_device timerqueue
|
|
* @rtc rtc device
|
|
* @timer timer being added.
|
|
*
|
|
* Enqueues a timer onto the rtc devices timerqueue and sets
|
|
* the next alarm event appropriately.
|
|
*
|
|
* Sets the enabled bit on the added timer.
|
|
*
|
|
* Must hold ops_lock for proper serialization of timerqueue
|
|
*/
|
|
static int rtc_timer_enqueue(struct rtc_device *rtc, struct rtc_timer *timer)
|
|
{
|
|
struct timerqueue_node *next = timerqueue_getnext(&rtc->timerqueue);
|
|
struct rtc_time tm;
|
|
ktime_t now;
|
|
|
|
timer->enabled = 1;
|
|
__rtc_read_time(rtc, &tm);
|
|
now = rtc_tm_to_ktime(tm);
|
|
|
|
/* Skip over expired timers */
|
|
while (next) {
|
|
if (next->expires >= now)
|
|
break;
|
|
next = timerqueue_iterate_next(next);
|
|
}
|
|
|
|
timerqueue_add(&rtc->timerqueue, &timer->node);
|
|
trace_rtc_timer_enqueue(timer);
|
|
if (!next || ktime_before(timer->node.expires, next->expires)) {
|
|
struct rtc_wkalrm alarm;
|
|
int err;
|
|
alarm.time = rtc_ktime_to_tm(timer->node.expires);
|
|
alarm.enabled = 1;
|
|
err = __rtc_set_alarm(rtc, &alarm);
|
|
if (err == -ETIME) {
|
|
pm_stay_awake(rtc->dev.parent);
|
|
schedule_work(&rtc->irqwork);
|
|
} else if (err) {
|
|
timerqueue_del(&rtc->timerqueue, &timer->node);
|
|
trace_rtc_timer_dequeue(timer);
|
|
timer->enabled = 0;
|
|
return err;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void rtc_alarm_disable(struct rtc_device *rtc)
|
|
{
|
|
if (!rtc->ops || !rtc->ops->alarm_irq_enable)
|
|
return;
|
|
|
|
rtc->ops->alarm_irq_enable(rtc->dev.parent, false);
|
|
trace_rtc_alarm_irq_enable(0, 0);
|
|
}
|
|
|
|
/**
|
|
* rtc_timer_remove - Removes a rtc_timer from the rtc_device timerqueue
|
|
* @rtc rtc device
|
|
* @timer timer being removed.
|
|
*
|
|
* Removes a timer onto the rtc devices timerqueue and sets
|
|
* the next alarm event appropriately.
|
|
*
|
|
* Clears the enabled bit on the removed timer.
|
|
*
|
|
* Must hold ops_lock for proper serialization of timerqueue
|
|
*/
|
|
static void rtc_timer_remove(struct rtc_device *rtc, struct rtc_timer *timer)
|
|
{
|
|
struct timerqueue_node *next = timerqueue_getnext(&rtc->timerqueue);
|
|
timerqueue_del(&rtc->timerqueue, &timer->node);
|
|
trace_rtc_timer_dequeue(timer);
|
|
timer->enabled = 0;
|
|
if (next == &timer->node) {
|
|
struct rtc_wkalrm alarm;
|
|
int err;
|
|
next = timerqueue_getnext(&rtc->timerqueue);
|
|
if (!next) {
|
|
rtc_alarm_disable(rtc);
|
|
return;
|
|
}
|
|
alarm.time = rtc_ktime_to_tm(next->expires);
|
|
alarm.enabled = 1;
|
|
err = __rtc_set_alarm(rtc, &alarm);
|
|
if (err == -ETIME) {
|
|
pm_stay_awake(rtc->dev.parent);
|
|
schedule_work(&rtc->irqwork);
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* rtc_timer_do_work - Expires rtc timers
|
|
* @rtc rtc device
|
|
* @timer timer being removed.
|
|
*
|
|
* Expires rtc timers. Reprograms next alarm event if needed.
|
|
* Called via worktask.
|
|
*
|
|
* Serializes access to timerqueue via ops_lock mutex
|
|
*/
|
|
void rtc_timer_do_work(struct work_struct *work)
|
|
{
|
|
struct rtc_timer *timer;
|
|
struct timerqueue_node *next;
|
|
ktime_t now;
|
|
struct rtc_time tm;
|
|
|
|
struct rtc_device *rtc =
|
|
container_of(work, struct rtc_device, irqwork);
|
|
|
|
mutex_lock(&rtc->ops_lock);
|
|
again:
|
|
__rtc_read_time(rtc, &tm);
|
|
now = rtc_tm_to_ktime(tm);
|
|
while ((next = timerqueue_getnext(&rtc->timerqueue))) {
|
|
if (next->expires > now)
|
|
break;
|
|
|
|
/* expire timer */
|
|
timer = container_of(next, struct rtc_timer, node);
|
|
timerqueue_del(&rtc->timerqueue, &timer->node);
|
|
trace_rtc_timer_dequeue(timer);
|
|
timer->enabled = 0;
|
|
if (timer->task.func)
|
|
timer->task.func(timer->task.private_data);
|
|
|
|
trace_rtc_timer_fired(timer);
|
|
/* Re-add/fwd periodic timers */
|
|
if (ktime_to_ns(timer->period)) {
|
|
timer->node.expires = ktime_add(timer->node.expires,
|
|
timer->period);
|
|
timer->enabled = 1;
|
|
timerqueue_add(&rtc->timerqueue, &timer->node);
|
|
trace_rtc_timer_enqueue(timer);
|
|
}
|
|
}
|
|
|
|
/* Set next alarm */
|
|
if (next) {
|
|
struct rtc_wkalrm alarm;
|
|
int err;
|
|
int retry = 3;
|
|
|
|
alarm.time = rtc_ktime_to_tm(next->expires);
|
|
alarm.enabled = 1;
|
|
reprogram:
|
|
err = __rtc_set_alarm(rtc, &alarm);
|
|
if (err == -ETIME)
|
|
goto again;
|
|
else if (err) {
|
|
if (retry-- > 0)
|
|
goto reprogram;
|
|
|
|
timer = container_of(next, struct rtc_timer, node);
|
|
timerqueue_del(&rtc->timerqueue, &timer->node);
|
|
trace_rtc_timer_dequeue(timer);
|
|
timer->enabled = 0;
|
|
dev_err(&rtc->dev, "__rtc_set_alarm: err=%d\n", err);
|
|
goto again;
|
|
}
|
|
} else
|
|
rtc_alarm_disable(rtc);
|
|
|
|
pm_relax(rtc->dev.parent);
|
|
mutex_unlock(&rtc->ops_lock);
|
|
}
|
|
|
|
|
|
/* rtc_timer_init - Initializes an rtc_timer
|
|
* @timer: timer to be intiialized
|
|
* @f: function pointer to be called when timer fires
|
|
* @data: private data passed to function pointer
|
|
*
|
|
* Kernel interface to initializing an rtc_timer.
|
|
*/
|
|
void rtc_timer_init(struct rtc_timer *timer, void (*f)(void *p), void *data)
|
|
{
|
|
timerqueue_init(&timer->node);
|
|
timer->enabled = 0;
|
|
timer->task.func = f;
|
|
timer->task.private_data = data;
|
|
}
|
|
|
|
/* rtc_timer_start - Sets an rtc_timer to fire in the future
|
|
* @ rtc: rtc device to be used
|
|
* @ timer: timer being set
|
|
* @ expires: time at which to expire the timer
|
|
* @ period: period that the timer will recur
|
|
*
|
|
* Kernel interface to set an rtc_timer
|
|
*/
|
|
int rtc_timer_start(struct rtc_device *rtc, struct rtc_timer *timer,
|
|
ktime_t expires, ktime_t period)
|
|
{
|
|
int ret = 0;
|
|
mutex_lock(&rtc->ops_lock);
|
|
if (timer->enabled)
|
|
rtc_timer_remove(rtc, timer);
|
|
|
|
timer->node.expires = expires;
|
|
timer->period = period;
|
|
|
|
ret = rtc_timer_enqueue(rtc, timer);
|
|
|
|
mutex_unlock(&rtc->ops_lock);
|
|
return ret;
|
|
}
|
|
|
|
/* rtc_timer_cancel - Stops an rtc_timer
|
|
* @ rtc: rtc device to be used
|
|
* @ timer: timer being set
|
|
*
|
|
* Kernel interface to cancel an rtc_timer
|
|
*/
|
|
void rtc_timer_cancel(struct rtc_device *rtc, struct rtc_timer *timer)
|
|
{
|
|
mutex_lock(&rtc->ops_lock);
|
|
if (timer->enabled)
|
|
rtc_timer_remove(rtc, timer);
|
|
mutex_unlock(&rtc->ops_lock);
|
|
}
|
|
|
|
/**
|
|
* rtc_read_offset - Read the amount of rtc offset in parts per billion
|
|
* @ rtc: rtc device to be used
|
|
* @ offset: the offset in parts per billion
|
|
*
|
|
* see below for details.
|
|
*
|
|
* Kernel interface to read rtc clock offset
|
|
* Returns 0 on success, or a negative number on error.
|
|
* If read_offset() is not implemented for the rtc, return -EINVAL
|
|
*/
|
|
int rtc_read_offset(struct rtc_device *rtc, long *offset)
|
|
{
|
|
int ret;
|
|
|
|
if (!rtc->ops)
|
|
return -ENODEV;
|
|
|
|
if (!rtc->ops->read_offset)
|
|
return -EINVAL;
|
|
|
|
mutex_lock(&rtc->ops_lock);
|
|
ret = rtc->ops->read_offset(rtc->dev.parent, offset);
|
|
mutex_unlock(&rtc->ops_lock);
|
|
|
|
trace_rtc_read_offset(*offset, ret);
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* rtc_set_offset - Adjusts the duration of the average second
|
|
* @ rtc: rtc device to be used
|
|
* @ offset: the offset in parts per billion
|
|
*
|
|
* Some rtc's allow an adjustment to the average duration of a second
|
|
* to compensate for differences in the actual clock rate due to temperature,
|
|
* the crystal, capacitor, etc.
|
|
*
|
|
* The adjustment applied is as follows:
|
|
* t = t0 * (1 + offset * 1e-9)
|
|
* where t0 is the measured length of 1 RTC second with offset = 0
|
|
*
|
|
* Kernel interface to adjust an rtc clock offset.
|
|
* Return 0 on success, or a negative number on error.
|
|
* If the rtc offset is not setable (or not implemented), return -EINVAL
|
|
*/
|
|
int rtc_set_offset(struct rtc_device *rtc, long offset)
|
|
{
|
|
int ret;
|
|
|
|
if (!rtc->ops)
|
|
return -ENODEV;
|
|
|
|
if (!rtc->ops->set_offset)
|
|
return -EINVAL;
|
|
|
|
mutex_lock(&rtc->ops_lock);
|
|
ret = rtc->ops->set_offset(rtc->dev.parent, offset);
|
|
mutex_unlock(&rtc->ops_lock);
|
|
|
|
trace_rtc_set_offset(offset, ret);
|
|
return ret;
|
|
}
|