mirror of
https://github.com/torvalds/linux.git
synced 2024-11-17 17:41:44 +00:00
148f9bb877
The __cpuinit type of throwaway sections might have made sense
some time ago when RAM was more constrained, but now the savings
do not offset the cost and complications. For example, the fix in
commit 5e427ec2d0
("x86: Fix bit corruption at CPU resume time")
is a good example of the nasty type of bugs that can be created
with improper use of the various __init prefixes.
After a discussion on LKML[1] it was decided that cpuinit should go
the way of devinit and be phased out. Once all the users are gone,
we can then finally remove the macros themselves from linux/init.h.
Note that some harmless section mismatch warnings may result, since
notify_cpu_starting() and cpu_up() are arch independent (kernel/cpu.c)
are flagged as __cpuinit -- so if we remove the __cpuinit from
arch specific callers, we will also get section mismatch warnings.
As an intermediate step, we intend to turn the linux/init.h cpuinit
content into no-ops as early as possible, since that will get rid
of these warnings. In any case, they are temporary and harmless.
This removes all the arch/x86 uses of the __cpuinit macros from
all C files. x86 only had the one __CPUINIT used in assembly files,
and it wasn't paired off with a .previous or a __FINIT, so we can
delete it directly w/o any corresponding additional change there.
[1] https://lkml.org/lkml/2013/5/20/589
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: x86@kernel.org
Acked-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: H. Peter Anvin <hpa@linux.intel.com>
Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
727 lines
20 KiB
C
727 lines
20 KiB
C
#include <linux/init.h>
|
|
#include <linux/kernel.h>
|
|
|
|
#include <linux/string.h>
|
|
#include <linux/bitops.h>
|
|
#include <linux/smp.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/thread_info.h>
|
|
#include <linux/module.h>
|
|
#include <linux/uaccess.h>
|
|
|
|
#include <asm/processor.h>
|
|
#include <asm/pgtable.h>
|
|
#include <asm/msr.h>
|
|
#include <asm/bugs.h>
|
|
#include <asm/cpu.h>
|
|
|
|
#ifdef CONFIG_X86_64
|
|
#include <linux/topology.h>
|
|
#endif
|
|
|
|
#include "cpu.h"
|
|
|
|
#ifdef CONFIG_X86_LOCAL_APIC
|
|
#include <asm/mpspec.h>
|
|
#include <asm/apic.h>
|
|
#endif
|
|
|
|
static void early_init_intel(struct cpuinfo_x86 *c)
|
|
{
|
|
u64 misc_enable;
|
|
|
|
/* Unmask CPUID levels if masked: */
|
|
if (c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xd)) {
|
|
rdmsrl(MSR_IA32_MISC_ENABLE, misc_enable);
|
|
|
|
if (misc_enable & MSR_IA32_MISC_ENABLE_LIMIT_CPUID) {
|
|
misc_enable &= ~MSR_IA32_MISC_ENABLE_LIMIT_CPUID;
|
|
wrmsrl(MSR_IA32_MISC_ENABLE, misc_enable);
|
|
c->cpuid_level = cpuid_eax(0);
|
|
get_cpu_cap(c);
|
|
}
|
|
}
|
|
|
|
if ((c->x86 == 0xf && c->x86_model >= 0x03) ||
|
|
(c->x86 == 0x6 && c->x86_model >= 0x0e))
|
|
set_cpu_cap(c, X86_FEATURE_CONSTANT_TSC);
|
|
|
|
if (c->x86 >= 6 && !cpu_has(c, X86_FEATURE_IA64)) {
|
|
unsigned lower_word;
|
|
|
|
wrmsr(MSR_IA32_UCODE_REV, 0, 0);
|
|
/* Required by the SDM */
|
|
sync_core();
|
|
rdmsr(MSR_IA32_UCODE_REV, lower_word, c->microcode);
|
|
}
|
|
|
|
/*
|
|
* Atom erratum AAE44/AAF40/AAG38/AAH41:
|
|
*
|
|
* A race condition between speculative fetches and invalidating
|
|
* a large page. This is worked around in microcode, but we
|
|
* need the microcode to have already been loaded... so if it is
|
|
* not, recommend a BIOS update and disable large pages.
|
|
*/
|
|
if (c->x86 == 6 && c->x86_model == 0x1c && c->x86_mask <= 2 &&
|
|
c->microcode < 0x20e) {
|
|
printk(KERN_WARNING "Atom PSE erratum detected, BIOS microcode update recommended\n");
|
|
clear_cpu_cap(c, X86_FEATURE_PSE);
|
|
}
|
|
|
|
#ifdef CONFIG_X86_64
|
|
set_cpu_cap(c, X86_FEATURE_SYSENTER32);
|
|
#else
|
|
/* Netburst reports 64 bytes clflush size, but does IO in 128 bytes */
|
|
if (c->x86 == 15 && c->x86_cache_alignment == 64)
|
|
c->x86_cache_alignment = 128;
|
|
#endif
|
|
|
|
/* CPUID workaround for 0F33/0F34 CPU */
|
|
if (c->x86 == 0xF && c->x86_model == 0x3
|
|
&& (c->x86_mask == 0x3 || c->x86_mask == 0x4))
|
|
c->x86_phys_bits = 36;
|
|
|
|
/*
|
|
* c->x86_power is 8000_0007 edx. Bit 8 is TSC runs at constant rate
|
|
* with P/T states and does not stop in deep C-states.
|
|
*
|
|
* It is also reliable across cores and sockets. (but not across
|
|
* cabinets - we turn it off in that case explicitly.)
|
|
*/
|
|
if (c->x86_power & (1 << 8)) {
|
|
set_cpu_cap(c, X86_FEATURE_CONSTANT_TSC);
|
|
set_cpu_cap(c, X86_FEATURE_NONSTOP_TSC);
|
|
if (!check_tsc_unstable())
|
|
sched_clock_stable = 1;
|
|
}
|
|
|
|
/* Penwell and Cloverview have the TSC which doesn't sleep on S3 */
|
|
if (c->x86 == 6) {
|
|
switch (c->x86_model) {
|
|
case 0x27: /* Penwell */
|
|
case 0x35: /* Cloverview */
|
|
set_cpu_cap(c, X86_FEATURE_NONSTOP_TSC_S3);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* There is a known erratum on Pentium III and Core Solo
|
|
* and Core Duo CPUs.
|
|
* " Page with PAT set to WC while associated MTRR is UC
|
|
* may consolidate to UC "
|
|
* Because of this erratum, it is better to stick with
|
|
* setting WC in MTRR rather than using PAT on these CPUs.
|
|
*
|
|
* Enable PAT WC only on P4, Core 2 or later CPUs.
|
|
*/
|
|
if (c->x86 == 6 && c->x86_model < 15)
|
|
clear_cpu_cap(c, X86_FEATURE_PAT);
|
|
|
|
#ifdef CONFIG_KMEMCHECK
|
|
/*
|
|
* P4s have a "fast strings" feature which causes single-
|
|
* stepping REP instructions to only generate a #DB on
|
|
* cache-line boundaries.
|
|
*
|
|
* Ingo Molnar reported a Pentium D (model 6) and a Xeon
|
|
* (model 2) with the same problem.
|
|
*/
|
|
if (c->x86 == 15) {
|
|
rdmsrl(MSR_IA32_MISC_ENABLE, misc_enable);
|
|
|
|
if (misc_enable & MSR_IA32_MISC_ENABLE_FAST_STRING) {
|
|
printk(KERN_INFO "kmemcheck: Disabling fast string operations\n");
|
|
|
|
misc_enable &= ~MSR_IA32_MISC_ENABLE_FAST_STRING;
|
|
wrmsrl(MSR_IA32_MISC_ENABLE, misc_enable);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* If fast string is not enabled in IA32_MISC_ENABLE for any reason,
|
|
* clear the fast string and enhanced fast string CPU capabilities.
|
|
*/
|
|
if (c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xd)) {
|
|
rdmsrl(MSR_IA32_MISC_ENABLE, misc_enable);
|
|
if (!(misc_enable & MSR_IA32_MISC_ENABLE_FAST_STRING)) {
|
|
printk(KERN_INFO "Disabled fast string operations\n");
|
|
setup_clear_cpu_cap(X86_FEATURE_REP_GOOD);
|
|
setup_clear_cpu_cap(X86_FEATURE_ERMS);
|
|
}
|
|
}
|
|
}
|
|
|
|
#ifdef CONFIG_X86_32
|
|
/*
|
|
* Early probe support logic for ppro memory erratum #50
|
|
*
|
|
* This is called before we do cpu ident work
|
|
*/
|
|
|
|
int ppro_with_ram_bug(void)
|
|
{
|
|
/* Uses data from early_cpu_detect now */
|
|
if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL &&
|
|
boot_cpu_data.x86 == 6 &&
|
|
boot_cpu_data.x86_model == 1 &&
|
|
boot_cpu_data.x86_mask < 8) {
|
|
printk(KERN_INFO "Pentium Pro with Errata#50 detected. Taking evasive action.\n");
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void intel_smp_check(struct cpuinfo_x86 *c)
|
|
{
|
|
/* calling is from identify_secondary_cpu() ? */
|
|
if (!c->cpu_index)
|
|
return;
|
|
|
|
/*
|
|
* Mask B, Pentium, but not Pentium MMX
|
|
*/
|
|
if (c->x86 == 5 &&
|
|
c->x86_mask >= 1 && c->x86_mask <= 4 &&
|
|
c->x86_model <= 3) {
|
|
/*
|
|
* Remember we have B step Pentia with bugs
|
|
*/
|
|
WARN_ONCE(1, "WARNING: SMP operation may be unreliable"
|
|
"with B stepping processors.\n");
|
|
}
|
|
}
|
|
|
|
static void intel_workarounds(struct cpuinfo_x86 *c)
|
|
{
|
|
unsigned long lo, hi;
|
|
|
|
#ifdef CONFIG_X86_F00F_BUG
|
|
/*
|
|
* All current models of Pentium and Pentium with MMX technology CPUs
|
|
* have the F0 0F bug, which lets nonprivileged users lock up the
|
|
* system. Announce that the fault handler will be checking for it.
|
|
*/
|
|
clear_cpu_bug(c, X86_BUG_F00F);
|
|
if (!paravirt_enabled() && c->x86 == 5) {
|
|
static int f00f_workaround_enabled;
|
|
|
|
set_cpu_bug(c, X86_BUG_F00F);
|
|
if (!f00f_workaround_enabled) {
|
|
printk(KERN_NOTICE "Intel Pentium with F0 0F bug - workaround enabled.\n");
|
|
f00f_workaround_enabled = 1;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* SEP CPUID bug: Pentium Pro reports SEP but doesn't have it until
|
|
* model 3 mask 3
|
|
*/
|
|
if ((c->x86<<8 | c->x86_model<<4 | c->x86_mask) < 0x633)
|
|
clear_cpu_cap(c, X86_FEATURE_SEP);
|
|
|
|
/*
|
|
* P4 Xeon errata 037 workaround.
|
|
* Hardware prefetcher may cause stale data to be loaded into the cache.
|
|
*/
|
|
if ((c->x86 == 15) && (c->x86_model == 1) && (c->x86_mask == 1)) {
|
|
rdmsr(MSR_IA32_MISC_ENABLE, lo, hi);
|
|
if ((lo & MSR_IA32_MISC_ENABLE_PREFETCH_DISABLE) == 0) {
|
|
printk (KERN_INFO "CPU: C0 stepping P4 Xeon detected.\n");
|
|
printk (KERN_INFO "CPU: Disabling hardware prefetching (Errata 037)\n");
|
|
lo |= MSR_IA32_MISC_ENABLE_PREFETCH_DISABLE;
|
|
wrmsr(MSR_IA32_MISC_ENABLE, lo, hi);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* See if we have a good local APIC by checking for buggy Pentia,
|
|
* i.e. all B steppings and the C2 stepping of P54C when using their
|
|
* integrated APIC (see 11AP erratum in "Pentium Processor
|
|
* Specification Update").
|
|
*/
|
|
if (cpu_has_apic && (c->x86<<8 | c->x86_model<<4) == 0x520 &&
|
|
(c->x86_mask < 0x6 || c->x86_mask == 0xb))
|
|
set_cpu_cap(c, X86_FEATURE_11AP);
|
|
|
|
|
|
#ifdef CONFIG_X86_INTEL_USERCOPY
|
|
/*
|
|
* Set up the preferred alignment for movsl bulk memory moves
|
|
*/
|
|
switch (c->x86) {
|
|
case 4: /* 486: untested */
|
|
break;
|
|
case 5: /* Old Pentia: untested */
|
|
break;
|
|
case 6: /* PII/PIII only like movsl with 8-byte alignment */
|
|
movsl_mask.mask = 7;
|
|
break;
|
|
case 15: /* P4 is OK down to 8-byte alignment */
|
|
movsl_mask.mask = 7;
|
|
break;
|
|
}
|
|
#endif
|
|
|
|
#ifdef CONFIG_X86_NUMAQ
|
|
numaq_tsc_disable();
|
|
#endif
|
|
|
|
intel_smp_check(c);
|
|
}
|
|
#else
|
|
static void intel_workarounds(struct cpuinfo_x86 *c)
|
|
{
|
|
}
|
|
#endif
|
|
|
|
static void srat_detect_node(struct cpuinfo_x86 *c)
|
|
{
|
|
#ifdef CONFIG_NUMA
|
|
unsigned node;
|
|
int cpu = smp_processor_id();
|
|
|
|
/* Don't do the funky fallback heuristics the AMD version employs
|
|
for now. */
|
|
node = numa_cpu_node(cpu);
|
|
if (node == NUMA_NO_NODE || !node_online(node)) {
|
|
/* reuse the value from init_cpu_to_node() */
|
|
node = cpu_to_node(cpu);
|
|
}
|
|
numa_set_node(cpu, node);
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* find out the number of processor cores on the die
|
|
*/
|
|
static int intel_num_cpu_cores(struct cpuinfo_x86 *c)
|
|
{
|
|
unsigned int eax, ebx, ecx, edx;
|
|
|
|
if (c->cpuid_level < 4)
|
|
return 1;
|
|
|
|
/* Intel has a non-standard dependency on %ecx for this CPUID level. */
|
|
cpuid_count(4, 0, &eax, &ebx, &ecx, &edx);
|
|
if (eax & 0x1f)
|
|
return (eax >> 26) + 1;
|
|
else
|
|
return 1;
|
|
}
|
|
|
|
static void detect_vmx_virtcap(struct cpuinfo_x86 *c)
|
|
{
|
|
/* Intel VMX MSR indicated features */
|
|
#define X86_VMX_FEATURE_PROC_CTLS_TPR_SHADOW 0x00200000
|
|
#define X86_VMX_FEATURE_PROC_CTLS_VNMI 0x00400000
|
|
#define X86_VMX_FEATURE_PROC_CTLS_2ND_CTLS 0x80000000
|
|
#define X86_VMX_FEATURE_PROC_CTLS2_VIRT_APIC 0x00000001
|
|
#define X86_VMX_FEATURE_PROC_CTLS2_EPT 0x00000002
|
|
#define X86_VMX_FEATURE_PROC_CTLS2_VPID 0x00000020
|
|
|
|
u32 vmx_msr_low, vmx_msr_high, msr_ctl, msr_ctl2;
|
|
|
|
clear_cpu_cap(c, X86_FEATURE_TPR_SHADOW);
|
|
clear_cpu_cap(c, X86_FEATURE_VNMI);
|
|
clear_cpu_cap(c, X86_FEATURE_FLEXPRIORITY);
|
|
clear_cpu_cap(c, X86_FEATURE_EPT);
|
|
clear_cpu_cap(c, X86_FEATURE_VPID);
|
|
|
|
rdmsr(MSR_IA32_VMX_PROCBASED_CTLS, vmx_msr_low, vmx_msr_high);
|
|
msr_ctl = vmx_msr_high | vmx_msr_low;
|
|
if (msr_ctl & X86_VMX_FEATURE_PROC_CTLS_TPR_SHADOW)
|
|
set_cpu_cap(c, X86_FEATURE_TPR_SHADOW);
|
|
if (msr_ctl & X86_VMX_FEATURE_PROC_CTLS_VNMI)
|
|
set_cpu_cap(c, X86_FEATURE_VNMI);
|
|
if (msr_ctl & X86_VMX_FEATURE_PROC_CTLS_2ND_CTLS) {
|
|
rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
|
|
vmx_msr_low, vmx_msr_high);
|
|
msr_ctl2 = vmx_msr_high | vmx_msr_low;
|
|
if ((msr_ctl2 & X86_VMX_FEATURE_PROC_CTLS2_VIRT_APIC) &&
|
|
(msr_ctl & X86_VMX_FEATURE_PROC_CTLS_TPR_SHADOW))
|
|
set_cpu_cap(c, X86_FEATURE_FLEXPRIORITY);
|
|
if (msr_ctl2 & X86_VMX_FEATURE_PROC_CTLS2_EPT)
|
|
set_cpu_cap(c, X86_FEATURE_EPT);
|
|
if (msr_ctl2 & X86_VMX_FEATURE_PROC_CTLS2_VPID)
|
|
set_cpu_cap(c, X86_FEATURE_VPID);
|
|
}
|
|
}
|
|
|
|
static void init_intel(struct cpuinfo_x86 *c)
|
|
{
|
|
unsigned int l2 = 0;
|
|
|
|
early_init_intel(c);
|
|
|
|
intel_workarounds(c);
|
|
|
|
/*
|
|
* Detect the extended topology information if available. This
|
|
* will reinitialise the initial_apicid which will be used
|
|
* in init_intel_cacheinfo()
|
|
*/
|
|
detect_extended_topology(c);
|
|
|
|
l2 = init_intel_cacheinfo(c);
|
|
if (c->cpuid_level > 9) {
|
|
unsigned eax = cpuid_eax(10);
|
|
/* Check for version and the number of counters */
|
|
if ((eax & 0xff) && (((eax>>8) & 0xff) > 1))
|
|
set_cpu_cap(c, X86_FEATURE_ARCH_PERFMON);
|
|
}
|
|
|
|
if (cpu_has_xmm2)
|
|
set_cpu_cap(c, X86_FEATURE_LFENCE_RDTSC);
|
|
if (cpu_has_ds) {
|
|
unsigned int l1;
|
|
rdmsr(MSR_IA32_MISC_ENABLE, l1, l2);
|
|
if (!(l1 & (1<<11)))
|
|
set_cpu_cap(c, X86_FEATURE_BTS);
|
|
if (!(l1 & (1<<12)))
|
|
set_cpu_cap(c, X86_FEATURE_PEBS);
|
|
}
|
|
|
|
if (c->x86 == 6 && c->x86_model == 29 && cpu_has_clflush)
|
|
set_cpu_cap(c, X86_FEATURE_CLFLUSH_MONITOR);
|
|
|
|
#ifdef CONFIG_X86_64
|
|
if (c->x86 == 15)
|
|
c->x86_cache_alignment = c->x86_clflush_size * 2;
|
|
if (c->x86 == 6)
|
|
set_cpu_cap(c, X86_FEATURE_REP_GOOD);
|
|
#else
|
|
/*
|
|
* Names for the Pentium II/Celeron processors
|
|
* detectable only by also checking the cache size.
|
|
* Dixon is NOT a Celeron.
|
|
*/
|
|
if (c->x86 == 6) {
|
|
char *p = NULL;
|
|
|
|
switch (c->x86_model) {
|
|
case 5:
|
|
if (l2 == 0)
|
|
p = "Celeron (Covington)";
|
|
else if (l2 == 256)
|
|
p = "Mobile Pentium II (Dixon)";
|
|
break;
|
|
|
|
case 6:
|
|
if (l2 == 128)
|
|
p = "Celeron (Mendocino)";
|
|
else if (c->x86_mask == 0 || c->x86_mask == 5)
|
|
p = "Celeron-A";
|
|
break;
|
|
|
|
case 8:
|
|
if (l2 == 128)
|
|
p = "Celeron (Coppermine)";
|
|
break;
|
|
}
|
|
|
|
if (p)
|
|
strcpy(c->x86_model_id, p);
|
|
}
|
|
|
|
if (c->x86 == 15)
|
|
set_cpu_cap(c, X86_FEATURE_P4);
|
|
if (c->x86 == 6)
|
|
set_cpu_cap(c, X86_FEATURE_P3);
|
|
#endif
|
|
|
|
if (!cpu_has(c, X86_FEATURE_XTOPOLOGY)) {
|
|
/*
|
|
* let's use the legacy cpuid vector 0x1 and 0x4 for topology
|
|
* detection.
|
|
*/
|
|
c->x86_max_cores = intel_num_cpu_cores(c);
|
|
#ifdef CONFIG_X86_32
|
|
detect_ht(c);
|
|
#endif
|
|
}
|
|
|
|
/* Work around errata */
|
|
srat_detect_node(c);
|
|
|
|
if (cpu_has(c, X86_FEATURE_VMX))
|
|
detect_vmx_virtcap(c);
|
|
|
|
/*
|
|
* Initialize MSR_IA32_ENERGY_PERF_BIAS if BIOS did not.
|
|
* x86_energy_perf_policy(8) is available to change it at run-time
|
|
*/
|
|
if (cpu_has(c, X86_FEATURE_EPB)) {
|
|
u64 epb;
|
|
|
|
rdmsrl(MSR_IA32_ENERGY_PERF_BIAS, epb);
|
|
if ((epb & 0xF) == ENERGY_PERF_BIAS_PERFORMANCE) {
|
|
printk_once(KERN_WARNING "ENERGY_PERF_BIAS:"
|
|
" Set to 'normal', was 'performance'\n"
|
|
"ENERGY_PERF_BIAS: View and update with"
|
|
" x86_energy_perf_policy(8)\n");
|
|
epb = (epb & ~0xF) | ENERGY_PERF_BIAS_NORMAL;
|
|
wrmsrl(MSR_IA32_ENERGY_PERF_BIAS, epb);
|
|
}
|
|
}
|
|
}
|
|
|
|
#ifdef CONFIG_X86_32
|
|
static unsigned int intel_size_cache(struct cpuinfo_x86 *c, unsigned int size)
|
|
{
|
|
/*
|
|
* Intel PIII Tualatin. This comes in two flavours.
|
|
* One has 256kb of cache, the other 512. We have no way
|
|
* to determine which, so we use a boottime override
|
|
* for the 512kb model, and assume 256 otherwise.
|
|
*/
|
|
if ((c->x86 == 6) && (c->x86_model == 11) && (size == 0))
|
|
size = 256;
|
|
return size;
|
|
}
|
|
#endif
|
|
|
|
#define TLB_INST_4K 0x01
|
|
#define TLB_INST_4M 0x02
|
|
#define TLB_INST_2M_4M 0x03
|
|
|
|
#define TLB_INST_ALL 0x05
|
|
#define TLB_INST_1G 0x06
|
|
|
|
#define TLB_DATA_4K 0x11
|
|
#define TLB_DATA_4M 0x12
|
|
#define TLB_DATA_2M_4M 0x13
|
|
#define TLB_DATA_4K_4M 0x14
|
|
|
|
#define TLB_DATA_1G 0x16
|
|
|
|
#define TLB_DATA0_4K 0x21
|
|
#define TLB_DATA0_4M 0x22
|
|
#define TLB_DATA0_2M_4M 0x23
|
|
|
|
#define STLB_4K 0x41
|
|
|
|
static const struct _tlb_table intel_tlb_table[] = {
|
|
{ 0x01, TLB_INST_4K, 32, " TLB_INST 4 KByte pages, 4-way set associative" },
|
|
{ 0x02, TLB_INST_4M, 2, " TLB_INST 4 MByte pages, full associative" },
|
|
{ 0x03, TLB_DATA_4K, 64, " TLB_DATA 4 KByte pages, 4-way set associative" },
|
|
{ 0x04, TLB_DATA_4M, 8, " TLB_DATA 4 MByte pages, 4-way set associative" },
|
|
{ 0x05, TLB_DATA_4M, 32, " TLB_DATA 4 MByte pages, 4-way set associative" },
|
|
{ 0x0b, TLB_INST_4M, 4, " TLB_INST 4 MByte pages, 4-way set associative" },
|
|
{ 0x4f, TLB_INST_4K, 32, " TLB_INST 4 KByte pages */" },
|
|
{ 0x50, TLB_INST_ALL, 64, " TLB_INST 4 KByte and 2-MByte or 4-MByte pages" },
|
|
{ 0x51, TLB_INST_ALL, 128, " TLB_INST 4 KByte and 2-MByte or 4-MByte pages" },
|
|
{ 0x52, TLB_INST_ALL, 256, " TLB_INST 4 KByte and 2-MByte or 4-MByte pages" },
|
|
{ 0x55, TLB_INST_2M_4M, 7, " TLB_INST 2-MByte or 4-MByte pages, fully associative" },
|
|
{ 0x56, TLB_DATA0_4M, 16, " TLB_DATA0 4 MByte pages, 4-way set associative" },
|
|
{ 0x57, TLB_DATA0_4K, 16, " TLB_DATA0 4 KByte pages, 4-way associative" },
|
|
{ 0x59, TLB_DATA0_4K, 16, " TLB_DATA0 4 KByte pages, fully associative" },
|
|
{ 0x5a, TLB_DATA0_2M_4M, 32, " TLB_DATA0 2-MByte or 4 MByte pages, 4-way set associative" },
|
|
{ 0x5b, TLB_DATA_4K_4M, 64, " TLB_DATA 4 KByte and 4 MByte pages" },
|
|
{ 0x5c, TLB_DATA_4K_4M, 128, " TLB_DATA 4 KByte and 4 MByte pages" },
|
|
{ 0x5d, TLB_DATA_4K_4M, 256, " TLB_DATA 4 KByte and 4 MByte pages" },
|
|
{ 0xb0, TLB_INST_4K, 128, " TLB_INST 4 KByte pages, 4-way set associative" },
|
|
{ 0xb1, TLB_INST_2M_4M, 4, " TLB_INST 2M pages, 4-way, 8 entries or 4M pages, 4-way entries" },
|
|
{ 0xb2, TLB_INST_4K, 64, " TLB_INST 4KByte pages, 4-way set associative" },
|
|
{ 0xb3, TLB_DATA_4K, 128, " TLB_DATA 4 KByte pages, 4-way set associative" },
|
|
{ 0xb4, TLB_DATA_4K, 256, " TLB_DATA 4 KByte pages, 4-way associative" },
|
|
{ 0xba, TLB_DATA_4K, 64, " TLB_DATA 4 KByte pages, 4-way associative" },
|
|
{ 0xc0, TLB_DATA_4K_4M, 8, " TLB_DATA 4 KByte and 4 MByte pages, 4-way associative" },
|
|
{ 0xca, STLB_4K, 512, " STLB 4 KByte pages, 4-way associative" },
|
|
{ 0x00, 0, 0 }
|
|
};
|
|
|
|
static void intel_tlb_lookup(const unsigned char desc)
|
|
{
|
|
unsigned char k;
|
|
if (desc == 0)
|
|
return;
|
|
|
|
/* look up this descriptor in the table */
|
|
for (k = 0; intel_tlb_table[k].descriptor != desc && \
|
|
intel_tlb_table[k].descriptor != 0; k++)
|
|
;
|
|
|
|
if (intel_tlb_table[k].tlb_type == 0)
|
|
return;
|
|
|
|
switch (intel_tlb_table[k].tlb_type) {
|
|
case STLB_4K:
|
|
if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries)
|
|
tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries;
|
|
if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries)
|
|
tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries;
|
|
break;
|
|
case TLB_INST_ALL:
|
|
if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries)
|
|
tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries;
|
|
if (tlb_lli_2m[ENTRIES] < intel_tlb_table[k].entries)
|
|
tlb_lli_2m[ENTRIES] = intel_tlb_table[k].entries;
|
|
if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries)
|
|
tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries;
|
|
break;
|
|
case TLB_INST_4K:
|
|
if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries)
|
|
tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries;
|
|
break;
|
|
case TLB_INST_4M:
|
|
if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries)
|
|
tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries;
|
|
break;
|
|
case TLB_INST_2M_4M:
|
|
if (tlb_lli_2m[ENTRIES] < intel_tlb_table[k].entries)
|
|
tlb_lli_2m[ENTRIES] = intel_tlb_table[k].entries;
|
|
if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries)
|
|
tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries;
|
|
break;
|
|
case TLB_DATA_4K:
|
|
case TLB_DATA0_4K:
|
|
if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries)
|
|
tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries;
|
|
break;
|
|
case TLB_DATA_4M:
|
|
case TLB_DATA0_4M:
|
|
if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries)
|
|
tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries;
|
|
break;
|
|
case TLB_DATA_2M_4M:
|
|
case TLB_DATA0_2M_4M:
|
|
if (tlb_lld_2m[ENTRIES] < intel_tlb_table[k].entries)
|
|
tlb_lld_2m[ENTRIES] = intel_tlb_table[k].entries;
|
|
if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries)
|
|
tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries;
|
|
break;
|
|
case TLB_DATA_4K_4M:
|
|
if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries)
|
|
tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries;
|
|
if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries)
|
|
tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries;
|
|
break;
|
|
}
|
|
}
|
|
|
|
static void intel_tlb_flushall_shift_set(struct cpuinfo_x86 *c)
|
|
{
|
|
switch ((c->x86 << 8) + c->x86_model) {
|
|
case 0x60f: /* original 65 nm celeron/pentium/core2/xeon, "Merom"/"Conroe" */
|
|
case 0x616: /* single-core 65 nm celeron/core2solo "Merom-L"/"Conroe-L" */
|
|
case 0x617: /* current 45 nm celeron/core2/xeon "Penryn"/"Wolfdale" */
|
|
case 0x61d: /* six-core 45 nm xeon "Dunnington" */
|
|
tlb_flushall_shift = -1;
|
|
break;
|
|
case 0x61a: /* 45 nm nehalem, "Bloomfield" */
|
|
case 0x61e: /* 45 nm nehalem, "Lynnfield" */
|
|
case 0x625: /* 32 nm nehalem, "Clarkdale" */
|
|
case 0x62c: /* 32 nm nehalem, "Gulftown" */
|
|
case 0x62e: /* 45 nm nehalem-ex, "Beckton" */
|
|
case 0x62f: /* 32 nm Xeon E7 */
|
|
tlb_flushall_shift = 6;
|
|
break;
|
|
case 0x62a: /* SandyBridge */
|
|
case 0x62d: /* SandyBridge, "Romely-EP" */
|
|
tlb_flushall_shift = 5;
|
|
break;
|
|
case 0x63a: /* Ivybridge */
|
|
tlb_flushall_shift = 1;
|
|
break;
|
|
default:
|
|
tlb_flushall_shift = 6;
|
|
}
|
|
}
|
|
|
|
static void intel_detect_tlb(struct cpuinfo_x86 *c)
|
|
{
|
|
int i, j, n;
|
|
unsigned int regs[4];
|
|
unsigned char *desc = (unsigned char *)regs;
|
|
|
|
if (c->cpuid_level < 2)
|
|
return;
|
|
|
|
/* Number of times to iterate */
|
|
n = cpuid_eax(2) & 0xFF;
|
|
|
|
for (i = 0 ; i < n ; i++) {
|
|
cpuid(2, ®s[0], ®s[1], ®s[2], ®s[3]);
|
|
|
|
/* If bit 31 is set, this is an unknown format */
|
|
for (j = 0 ; j < 3 ; j++)
|
|
if (regs[j] & (1 << 31))
|
|
regs[j] = 0;
|
|
|
|
/* Byte 0 is level count, not a descriptor */
|
|
for (j = 1 ; j < 16 ; j++)
|
|
intel_tlb_lookup(desc[j]);
|
|
}
|
|
intel_tlb_flushall_shift_set(c);
|
|
}
|
|
|
|
static const struct cpu_dev intel_cpu_dev = {
|
|
.c_vendor = "Intel",
|
|
.c_ident = { "GenuineIntel" },
|
|
#ifdef CONFIG_X86_32
|
|
.c_models = {
|
|
{ .vendor = X86_VENDOR_INTEL, .family = 4, .model_names =
|
|
{
|
|
[0] = "486 DX-25/33",
|
|
[1] = "486 DX-50",
|
|
[2] = "486 SX",
|
|
[3] = "486 DX/2",
|
|
[4] = "486 SL",
|
|
[5] = "486 SX/2",
|
|
[7] = "486 DX/2-WB",
|
|
[8] = "486 DX/4",
|
|
[9] = "486 DX/4-WB"
|
|
}
|
|
},
|
|
{ .vendor = X86_VENDOR_INTEL, .family = 5, .model_names =
|
|
{
|
|
[0] = "Pentium 60/66 A-step",
|
|
[1] = "Pentium 60/66",
|
|
[2] = "Pentium 75 - 200",
|
|
[3] = "OverDrive PODP5V83",
|
|
[4] = "Pentium MMX",
|
|
[7] = "Mobile Pentium 75 - 200",
|
|
[8] = "Mobile Pentium MMX"
|
|
}
|
|
},
|
|
{ .vendor = X86_VENDOR_INTEL, .family = 6, .model_names =
|
|
{
|
|
[0] = "Pentium Pro A-step",
|
|
[1] = "Pentium Pro",
|
|
[3] = "Pentium II (Klamath)",
|
|
[4] = "Pentium II (Deschutes)",
|
|
[5] = "Pentium II (Deschutes)",
|
|
[6] = "Mobile Pentium II",
|
|
[7] = "Pentium III (Katmai)",
|
|
[8] = "Pentium III (Coppermine)",
|
|
[10] = "Pentium III (Cascades)",
|
|
[11] = "Pentium III (Tualatin)",
|
|
}
|
|
},
|
|
{ .vendor = X86_VENDOR_INTEL, .family = 15, .model_names =
|
|
{
|
|
[0] = "Pentium 4 (Unknown)",
|
|
[1] = "Pentium 4 (Willamette)",
|
|
[2] = "Pentium 4 (Northwood)",
|
|
[4] = "Pentium 4 (Foster)",
|
|
[5] = "Pentium 4 (Foster)",
|
|
}
|
|
},
|
|
},
|
|
.c_size_cache = intel_size_cache,
|
|
#endif
|
|
.c_detect_tlb = intel_detect_tlb,
|
|
.c_early_init = early_init_intel,
|
|
.c_init = init_intel,
|
|
.c_x86_vendor = X86_VENDOR_INTEL,
|
|
};
|
|
|
|
cpu_dev_register(intel_cpu_dev);
|
|
|